
Copyright (c) 1996 IEEE. See full copyright notice at the end of this paper.

Parallelized Network Security Protocols

Erich Nahum
�

, David J. Yates
�

, Sean O’Malley
�

, Hilarie Orman
�

, and Richard Schroeppel
�

Department of Computer Science
�

Department of Computer Science
�

University of Massachusetts University of Arizona
Amherst, MA 01003 Tucson, AZ 85721

{nahum,yates}@cs.umass.edu {sean,ho,rcs}@cs.arizona.edu

Abstract

Security and privacy are growing concerns in the Internet
community, due to the Internet’s rapid growth and the desire
to conduct business over it safely. This desire has led to the
advent of several proposals for security standards, such as
secure IP, secure HTTP, and the Secure Socket Layer. All of
these standards propose using cryptographic protocols such
as DES and RSA. Thus, the need to use encryption protocols
is increasing.

Shared-memory multiprocessors make attractive server
platforms, for example as secure World-Wide Web servers.
These machines are becoming more common, as shown by
recent vendor introductions of platforms such as SGI’s Chal-
lenge, Sun’s SPARCCenter, and DEC’s AlphaServer. The
spread of these machines is due both to their relative ease
of programming and their good price/performance.

This paper is an experimental performance study that
examines how encryption protocol performance can be im-
proved by using parallelism. We show linear speedup
for several different Internet-based cryptographic protocol
stacks running on a symmetric shared-memory multiproces-
sor using two different approaches to parallelism.

1 Intr oduction

Security and privacy is a growing concern in the Internet
community, due to the Internet’s rapid growth and the desire
to conduct business over it safely. This desire has led to the
advent of several proposals for security standards, such as
secure IP [2], Secure HTTP (SHTTP) [30], and the Secure
Socket Layer (SSL) [14]. Thus, the need to use encryption
protocols such as DES and RSA is increasing.

�

This research supported in part by NSF under grant NCR-9206908, and
by ARPA under contract F19628-92-C-0089. Erich Nahum is supported by
a Computer Measurement Group Fellowship. David Yates is the recipient
of a Motorola Codex University Partnership in Research Grant.

�

This research supported in part by ARPA under contract DABT63-94-
C-0002, and by NCSC under contract MDA 904-94-C-6110.

One problem with using cryptographic protocols is the
fact that they are slow. An important question then is
whether security can be provided at gigabit speeds. The
standard set of algorithms required to secure a connection
includes a bulk encryption algorithm such as DES [1], a
cryptographic message digest such as MD5 [31], a key ex-
change algorithm such as Diffie-Hellman [7] to securely
distribute a private key, and some form of digital signature
algorithm to authenticate the parties, such as RSA [32]. The
encryption and hash digest algorithms must be applied to
every packet going across a link to ensure confidentiality,
and therefore the performance of these algorithms directly
affects the achievable throughput of an application. Fur-
thermore, there are some services, such as strong sender au-
thentication in scalable multicast algorithms, that currently
require the use of expensive algorithms such as RSA signa-
tures on every packet. For non-multicast services, the most
expensive algorithms, RSA and Diffie-Hellman, need only
be run at connection set-up time. They only affect the over-
all bandwidth if the connections are short, the algorithms are
particularly expensive, and/or the overhead of using these
algorithms on busy servers reduces overall network perfor-
mance.

A straightforward approach to improving cryptographic
performance is to implement cryptographic algorithms in
hardware. This approach has been shown to improve cryp-
tographic performance of single algorithms (e.g., DEC has
demonstrated a 1 Gbit/sec DES chip [8]). Unfortunately
there are several problems with this approach, that indicate
why one would desire to do cryptography in software:

� Variability. Systems need to support suites of cryp-
tographic protocols, not just DES. For example, both
SSL and SHTTP support using RSA, DES, Triple-DES,
MD5, RC4, and IDEA. Hardware support for all of
these is unlikely.

� Flexibility. Standards change over time, and this is one
reason why the IP security architecture and proposed

1

key exchange schemes are designed to handle multiple
type of authentication and confidentiality algorithms.

� Security. Algorithms can be broken, such as knapsack
crypto-systems, 129 digit RSA, and 192 bit DHKX. It
is easier to replace software cryptographic algorithms
than hardware.

� Cost. Custom hardware is not cheap, ubiquitous, or
exportable.

� Performance. Certain algorithms, such as MD5 and
IDEA, are designed to run quickly in software on cur-
rent microprocessor architectures. Specialized hard-
ware for them may not improve performance much.
An analysis of this is given for MD5 [37].

Many approaches are available for improving software
cryptographic support [23], including improved algorithm
design and algorithm-independent hardware support. In this
paper, we focus on how parallelism can improve software
cryptographic performance.

A common approach to parallelism is through sym-
metric shared-memory multiprocessors. These machines
are becoming more common, as shown by recent vendor
introductions of machines such as SGI’s Challenge [11],
Sun’s SPARCCenter [9], and DEC’s AlphaServer [10]. The
spread of these machines is due to a number of factors:
binary compatibility with lower-end workstations, good
price/performance relative to high-end machines such as
Crays, and their ease of programming compared to more
elaborate parallel machines such as Hypercubes. In addi-
tion, these machines make attractive server platforms, for
example as secure HTTP (World-Wide Web) servers.

In this paper we demonstrate that parallelism is an effec-
tive vehicle for improving software cryptographic perfor-
mance. We show linear speedup results of several different
Internet-based cryptographic protocol stacks using two dif-
ferent approaches to parallelism. Our implementation con-
sists of parallelized versions of the x-kernel [15] that run
in user space on Silicon Graphics shared-memory multipro-
cessors. We give performance results on a 12 processor
100MHz MIPS R4400 SGI Challenge XL.

The remainder of the paper is organized as follows: In
Section 2, we discuss several approaches to parallelism.
Section 3 describes our implementation and experiments.
In Section 4 we present our results in detail. Section 5
discusses related issues. In Section 6 we summarize our
results.

2 Parallelismin Network ProtocolProcessing

Parallelism can take many forms in network protocol
processing. Many approaches to parallelism have been pro-
posed and are briefly described here; more detailed surveys

TCP

IP

FDDI

1 2
�

1 2
�

TCP

IP

FDDI

1 2
�

TCP

IP

FDDI

1 2
�

2
�

1

Processing
Element Protocol Packet Packet

 Flow1TCP

 Connection
�

 Level
Parallelism

 Packet
 Level
Parallelism

 Layer
Parallelism

Figure 1: Approaches to Concurrency

can be found in [3, 13]. In general, we attempt to classify
approaches by the unit of concurrency, or what it is that pro-
cessing elements do in parallel. Here a processing element
is a locus of execution for protocol processing, and can be a
dedicated processor, a heavyweight process, or a lightweight
thread. Figure 1 illustrates the various approaches to concur-
rency in host protocol processing. The dashed ovals repre-
sent processing elements. Messages marked with a number
indicate which connection the message is associated with.

In layered parallelism, each protocol layer is a unit of
concurrency, where a protocol layer is defined by the ISO
reference model. Specific layers are assigned to processing
elements, and messages passed between protocols through
interprocess communication. The main advantage of lay-
ered parallelism is that it is simple and defines a clean sep-
aration between protocol boundaries. The disadvantages
are that concurrency is limited to the number of layers in
the stack, and that associating processing with layers re-
sults in increased context switching and synchronization
between layers [5, 6, 34]. Performance gains are limited to
throughput, mainly achieved through pipelining effects. An
example is found in [12].

Connections form the unit of concurrency in connection-
level parallelism, where connections are assigned to pro-
cessing elements. Speedup is achieved using multiple con-
nections, each of which is processed in parallel. The ad-
vantage of this approach is that it exploits the natural con-
currency between connections, and only requires one lock
acquisition, i.e. for the appropriate connection. Thus, lock-

2

ing is kept to a minimum along the "fast path" of data trans-
fer. The disadvantage with connection-level parallelism
is that no concurrency within a single connection can be
achieved, which may be a problem if traffic exhibits locality
[16, 19, 22, 27], i.e., is bursty. Systems using this approach
include [29, 33, 34, 38].

In packet-level parallelism, packets are the unit of
concurrency. Sometimes referred to as thread-per-packet
or processor-per-message, packet-level parallelism assigns
each packet or message to a single processing element. The
advantage of this approach is that packets are processed re-
gardless of their connection or where they are in the protocol
stack, achieving speedup both with multiple connections and
within a single connection. The disadvantage is that it re-
quires locking shared state, most significantly the protocol
state at each layer. Systems using this approach include
[3, 13].

In functional parallelism, a protocol layer’s functions are
the unit of concurrency. Functions within a single protocol
layer (e.g., checksum, ACK generation) are decomposed,
and each assigned to a processing element. The advantage to
this approach is that it is relatively fine-grained, and thus can
improve latency as well as throughput. The disadvantage
is that it requires synchronizing within a protocol layer, and
is dependent upon the concurrency available between the
functions of a particular layer. Examples include [17, 28,
25].

In data-level parallelism, the pieces of data are the units
of concurrency, analogous to SIMD processing. Processing
elements are assigned to the same function of a particular
layer, but perform processing on separate pieces of data from
the same message. An example would be computing a single
message’s checksum using multiple processors. The advan-
tage to this approach is that it is the most fine-grained, and
thus has the potential for the greatest improvement in both
throughput and latency. The disadvantage is that processing
elements must synchronize, which may be expensive. We
are unaware of any work using this approach.

The relative merits of one approach over another depend
on many factors, including the host architecture, the cost
of primitives such as locking and context switching, the
workload and number of connections, the thread scheduling
policies employed, and whether the implementations are in
hardware or software. Most importantly, they depend on the
available concurrency within a protocol stack.

The most comprehensive study to date comparing dif-
ferent approaches to parallelism on a shared-memory mul-
tiprocessor is by Schmidt and Suda [34, 35]. They show
that packet-level parallelism and connection-level paral-
lelism generally perform better than layer parallelism, due to
the context-switching overhead incurred crossing protocol
boundaries using layer parallelism. In [35], they suggest that
packet-level parallelism is preferable when the workload is

a relatively small number of active connections, and that
connection-level parallelism is preferable for large numbers
of connections.

In this paper, we restrict our focus to connection-level and
packet-level parallel approaches to network cryptographic
protocols on shared-memory multiprocessors. More fine-
grained approaches to parallelized security protocols, such
as functional parallelism and data-level parallelism, are out-
side the scope of this work. We do discuss them in more
depth in Section 5.

3 Implementation and Experiments

In this section we describe our implementation and experi-
mental environment.

Our implementation consists of parallelized versions of
the x-kernel [15] extended for packet-level parallelism [24]
and connection-level parallelism [38]. Our parallel imple-
mentations run in user space on Silicon Graphics shared-
memory multiprocessors using the IRIX operating system.

In this study, we examine the impact of cryptographic
protocols under the respective paradigms, and show how
parallelism improves cryptographic performance. The pro-
tocols we examine are those used in typical secure Internet
scenarios. We briefly describe them here.

3.1 Protocols

The protocols used in our experiments are those that would
be seen along the common case or “fast path” during data
transfer of an application such as a secure World-Wide Web
server. We focus on available throughput; we do not ex-
amine connection setup or teardown, or the attendant issues
of key exchange. In these experiments, connections are al-
ready established, and keys are assumed to be available, as
needed.

We use the terminology defined by the proposed secure
IP standard [2]. Authentication is the property of knowing
that the data received is the same as the data sent by the
sender, and that the claimed sender is in fact the actual
sender. Integrity is the property that the data is transmitted
from source to destination without undetected alteration.
Confidentiality is the property that the intended participants
know what data was sent, but any unintended parties do not.
Encryption is typically used to provide confidentiality.

TCP is the Transmission Control Protocol used by reli-
able Internet applications such as file transfer, remote login,
and HTTP, the protocol used for retrieving hypertext doc-
uments in the World-Wide Web. IP is the network-layer
protocol that performs routing of messages over the Inter-
net. FDDI is the Fiber Distribute Data Interface,a fiber-optic
token-ring based LAN protocol.

3

MD5 is a message digest algorithm used for authentica-
tion and message integrity. MD5 is a “required option” for
secure IP; by required option we mean that an application’s
use of MD5 in IP is optional, but an implementation must
support use of that option. MD5 is also the default mes-
sage digest algorithm proposed for SHTTP; and is also used
in SSL. In our implementation we use the standard MD5
message digest calculation, rather than the keyed one. DES
is the ANSI Data Encryption Standard, used for confiden-
tiality, and is one of the required protocols used in secure
IP, secure HTTP, and SSL. We use DES in cipher-block-
chaining (CBC) mode. 3-DES is "triple DES," which runs
the DES algorithm 3 times over the message. DES experi-
ments can produce unrealistically good times on empty data
buffers, since only a fraction of the 64KB Sbox

�

is exer-
cised, which may lead to artificially good cache hit rates.
To guard against this, we fill each buffer at the beginning
of a test with a random sequence, with each test using a
different initial seed value. Our protocols are taken from
the cryptographic suite available with the x-kernel [26].

3.2 Parallel Infrastructur e

The implementations for packet-level parallel protocols and
connection-level parallel protocols are described in detail in
[24, 38]. We briefly outline them here.

In the packet-level parallel protocol testbed, packets are
assigned to threads as they arrive, regardless of the connec-
tions they are associated with. Correctness and safety is
maintained by placing locks around shared data structures,
such as the TCP connection state or a protocol’s set of active
associations, termed the active map in the x-kernel. Threads
must contend with one another to gain access to shared data.

In the connection-level parallel testbed, connections are
assigned to threads on one-to-one basis, called thread-per-
connection. The entire connection forms the unit of con-
currency, only allowing one thread to perform protocol pro-
cessing for any particular connection. Arriving packets are
demultiplexed to the appropriate thread via a packet-filter
mechanism [21]. The notion of a connection is extended
through the entire protocol stack. Where possible, data
structures are replicated per-thread, in order to avoid lock-
ing and therefore contention.

The two schemes do have some implementation differ-
ences that are necessitated by their respective approaches to
concurrency. However, wherever possible, we have strived
to make the implementations consistent. For example, both
use the same TCP uniprocessor source code base, which is
derived from Berkeley’s Net/2 TCP [18] with BSD 4.4 fixes,
but not the RFC1323 extensions [4].

�

We use a double-Sbox implementation in our tests.

IP
�

FDDI
	

TCP

SIM−TCP−RECV
�

DATA
�

FLOW ACKS

THROUGHPUT

 TEST

MD5
�

Figure 2: Sample Configuration: TCP/MD5/IP

3.3 In-Memory Drivers

Since our platform runs in user space, accessing the FDDI
adaptor involves crossing the IRIX socket layer, which is
prohibitively expensive. Normally, in a user-space imple-
mentation of the x-kernel, a simulated device driver is con-
figured below the media access control layer (in this case,
FDDI). The simulated driver uses the socket interface to em-
ulate a network device. To avoid this socket-crossing cost,
we replaced the simulated driver with in-memory device
drivers for the TCP protocol stacks. The drivers emulate
a high-speed FDDI interface, and support the FDDI max-
imum transmission unit (MTU) of slightly over 4K bytes.
This is similar to the approaches taken in [3, 13, 20, 34].

The drivers act as senders or receivers, producing or con-
suming packets as fast as possible, to simulate the behavior
of simplex data transfer over an error-free network. To
minimize execution time and experimental perturbation, the
receive-side drivers use preconstructed packet templates.
They do not calculate TCP checksums, MD5 hash values,
or encrypt packets for decryption. Instead, in experiments
that use a simulated sender, checksums, signatures, and de-
cryptions are all performed, but the results are ignored, and
assumed correct.

Figure 2 shows a sample test configuration, in this case
a TCP/MD5/IP stack. Our test environment measures
throughput through the network subsystem on the multipro-
cessor; it does not measure external factors such as latency
across the wire to a remote host.

4

4 Results

We present results for packet-level and connection-level par-
allelism here.

4.1 Packet-LevelParallelism

Figure 3 shows the sender’s throughput rates for our packet-
level parallel (PLP) experiments. Times given are in
megabits per second for several protocol stacks. Our base-
line Internet stack consists of TCP/IP/FDDI, representing
protocol processing without any security. A second stack is
an Internet stack with MD5 between TCP and IP, represent-
ing the work done for an application that requires authenti-
cation and integrity but no confidentiality. Our third stack
uses DES above TCP and MD5 below TCP, which supports
both confidentiality and integrity. Our fourth stack is the
same as the third, except that we use triple-DES instead of
DES.

These throughputs were measured on our 12-processor
Challenge machine, using a single TCP connection with 4
KB packets. For these and all subsequent graphs, each data
point is the average of 10 runs, where a run consists of
measuring the steady-state throughput for 30 seconds, after
an initial 30 second warmup period. Throughput graphs
include 90 percent confidence intervals.

Figure 3 quantifies the slowdown due to the use of cryp-
tographic protocols. The baseline speed for the send-side
TCP stack is roughly 138 Mbits/sec. Adding MD5 to the
stack reduces throughput by nearly an order of magnitude, to
a mere 18 Mbits/sec

�

. Adding DES on top of TCP reduces
throughput nearly 2 orders of magnitude, to 4.6 Mbits/sec.
Using Triple-DES is 3 times slower at 1.5 Mbits/sec.

Figure 4 shows the corresponding relative speedup for
the send-side tests, where speedup is throughput normalized
relative to the uniprocessor throughput for the appropriate
stack. The theoretical ideal linear speedup is included for
comparison. Previous work [3, 24] has shown limited per-
formance gains when using packet-level parallelism for a
single TCP connection, barring any other protocol process-
ing, and this is reflected by the baseline TCP/IP stack’s
minimal speedup. This is because manipulating a TCP con-
nection’s state is large relative to the IP and FDDI processing
and must occur inside a single locked, serial component. Of
course, throughput can be improved by using multiple con-
nections.

However, as more compute-intensive cryptographic pro-
tocols are used, while the throughput goes down, the relative
speedup improves. For example, the MD5 stack achieves a
speedup of 8 with 12 processors, and the DES and Triple-
DES stacks produce very close to linear speedup. This

�

MD5 runs 30-50% slower on big-endian hosts [37], such as our
Challenge.

Protocol Send Inc. Recv Inc.
Stack Side Cost Side Cost
TCP/IP 236 189
TCP/MD5/IP 1737 1500 1708 1519
DES/TCP/MD5/IP 8982 8746 9179 8990
3-DES/TCP/IP 21461 21225 21121 20932

Table 1: PLP Latency Breakdown (usec)

is because the cost of cryptographic protocol processing,
which outweighs the cost of TCP processing, occurs outside
the scope of any locks.

Figures 5 and 6 show the throughput and speedup re-
spectively for the same stacks on the receive side. Again we
observe successively lower throughputs but better relative
speedups as more compute intensive cryptographic proto-
cols are used. The speedup curve for 3-DES, which is the
most compute-intensive, is essentially linear.

Table 1 gives the latency breakdown for the various pro-
tocol stacks. Latency here is calculated from the unipro-
cessor throughput, to gain an understanding of the relative
cost of adding cryptographic protocols. The table includes
total time and incremental overhead for adding a protocol
in addition to the baseline TCP/IP processing time. The in-
cremental cost for MD5 is about 1500 usec, for DES about
7200 usec, and for 3-DES about 21000 usec. Since these
costs are incurred outside the scope of any locks, they can
run in parallel on different packets.

Given that the locked component of manipulating the
TCP connection-state limits the throughput to about 200
Mbits on this platform, we estimate that the TCP/MD5/IP
stack would bottleneck at about 16 processors, and that the
DES stack would scale to 30 processors. We expect that
more compute-intensive protocols, such as RSA, would also
scale linearly.

We also ran similarly configured UDP-based stacks, not
shown due to space limitations. In general, the results were
similar, except that single-connection parallelism with the
baseline UDP stacks exhibited much better speedup that the
single-connection baseline TCP stacks. However, as crypto-
graphic processing is used, the differences in both through-
put and speedup between TCP-based and UDP-based stacks
essentially disappear.

4.2 Connection-LevelParallelism

Figures 7 and 8 show send-side throughput and speedup re-
spectively for our Connection-Level Parallel (CLP) experi-
ments. In these experiments, 12 connections are measured,
and the number of processors is varied from 1 to 12. The
throughput graphs here show aggregate throughput for all 12
connections. We use the same protocols and experimental

5

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

50
�

100

150

200
�

250

300
�

3-DES/TCP/IP
�DES/TCP/MD5/IP
�TCP/MD5/IP
�TCP/IP
�

Figure 3: PLP Send-Side Throughput

Sp
ee

du
p

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

2

4

6
�

8
�

10

12

TCP/IP
TCP/MD5/IP

�DES/TCP/MD5/IP
�3-DES/TCP/IP
�Ideal Linear Speedup
�

Figure 4: PLP Send-Side Speedup

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

100

200

300
�

400

3-DES/TCP/IP
�DES/TCP/MD5/IP
�TCP/MD5/IP
�TCP/IP

Figure 5: PLP Receive-Side Throughput

Sp
ee

du
p

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

2

4

6
�

8
�

10

12

TCP/IP
TCP/MD5/IP

�DES/TCP/MD5/IP
�3-DES/TCP/IP
�Ideal Linear Speedup
�

Figure 6: PLP Receive-Side Speedup

6

methodology as with the PLP experiments, with the one
exception that in some cases, the warmup period is longer
than 30 seconds.

As with packet-level-parallelism,the throughputs decline
as more compute-intensive cryptographic operations areper-
formed. Previous work [38] showed good speedup for CLP,
barring any other protocol processing. Figure 8 illustrates
this in the baseline case (i.e., the TCP/IP stack). CLP ex-
hibits good speedup when the workload has a sufficient
number of active connections because each connection is
serviced by its own thread, and there is no explicit synchro-
nization between threads. Figure 8 also shows that when any
cryptographic processing is added to the scenario, speedup
becomes essentially linear. This is because speedup for
CLP depends on the ratio of compute-bound vs. memory
bound processing. The more compute-bound an application
is, the better the speedup will be. The more memory-bound
an application is, the greater the likelihood that memory
contention between processors will limit speedup. Since
cryptographic protocols are compute-intensive, CLP stacks
using them exhibit better speedup.

An interesting result is that while the two approaches to
parallelism behave very differently in the baseline cases (i.e.,
the standard TCP/IP stacks), as more cryptographic process-
ing is done, the more similar the schemes appear in both in
terms of throughput, speedup, and latency. For example,
in the send-side experiment using DES, both schemes have
a throughput of roughly 50 Mbits/sec with 12 processors.
Again, this is because the cryptographic processing, which
is similar in the two schemes, vastly outweighs differences
between the two approaches, as well as the differences in
the experiments (i.e., single vs. multiple connections).

Figures 9 and 10 show that for the receive side, the base-
line experiments show better throughput and speedup than
for the send side. However, once cryptographic protocols
are added, the same trends are exhibited.

Table 2 gives the appropriate latency breakdown for the
connection-level parallel stack. Again, incremental costs
are relative to the baseline TCP/IP stack. The incremental
cost for MD5 in this case is about 1550 usec, for DES about
7100 usec, and for 3-DES about 21500 usec.

Figure 11 shows how connection-level parallelism scales
with large numbers of connections for the send side. In this
experiment, 12 processors were used, and the workload var-
ied from 12 to 384 connections. Two forms of connection-
level parallelism were used here: thread-per-connection,
where the number of threads is equal to the number of con-
nections, and processor-per-connection, where the number
of threads equals the number of processors Note that at 12
connections the two schemes are equivalent.

Previous work [38] has shown that, barring any other pro-
tocol processing, thread-per-connection achieves higher ag-
gregate throughput than processor-per-connection, but that

Protocol Send Inc. Recv Inc.
Stack Side Cost Side Cost

TCP/IP 226 214
TCP/MD5/IP 1772 1546 1769 1555
DES/TCP/MD5/IP 8694 8468 8985 8771
3-DES/TCP/MD5/IP 23150 22924 23237 23023

Table 2: CLP Latency Breakdown (usec)

processor-per-connection distributes the aggregate band-
width more fairly between connections. Figure 11 shows
that, as cryptographic protocol processing is added, the dif-
ference in performance between the thread-per-connection
and processor-per-connection versions of CLP disappear.
Again, this is because cryptographic computation over-
whelms any costs due to memory referencing or increasing
the parallelism by using more threads.

5 Discussion

In this paper we have shown how both packet-level and
connection-level parallelism can be used to improve cryp-
tographic protocol performance. We have not addressed
functional parallelism or more fine-grained approaches to
parallelized cryptography, such as using multiple processors
to encrypt a single message in parallel. Such an approach
would not only improve throughput, but might also reduce
the latency as seen by an individual message.

For example, DES in Electronic Code Book (ECB) mode
can be run in parallel on different blocks of a single mes-
sage. However, DES using ECB is susceptible to simple-
substitution code attacks and cut-and-paste forgery, both of
which are realistic worries in computer systems which send
large amounts of known text. Thus, most DES implemen-
tations use CBC mode, where a plaintext block is XOR’ed
with the ciphertext of the previous block, making each block
dependent on the previous one, and preventing a parallelized
implementation. However, each 8 byte block of a message
encrypted with DES in CBC mode could be decrypted in
parallel, since computing the plaintext block requires only
the key, the ciphertext block, and the previous ciphertext
block.

In practice, DES CBC must be used with some form
of message integrity check to thwart cut-and-paste forg-
eries. MD5 is not amenable to fine-grain parallelism, and
this limits the opportunities for applying these methods.
Some avenues for research include finding faster or paral-
lelizable message integrity algorithms, and combining these
with DES modes that allow finer-grain parallel encryption
techniques, and especially modes that allow the sender and
receiver to use different processing granularities.

7

T
hr

ou
gh

pu
t (

M
b/

se
c)

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

200
�

400
�

600
�

800
�

1000

1200

1400

1600

1800

3-DES/TCP/MD5/IP
�DES/TCP/MD5/IP
TCP/MD5/IP
TCP/IP

�

Figure 7: CLP Send-Side Throughput

Sp
ee

du
p

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

2
�

4
�

6
�

8
�

10

12

TCP/IP
TCP/MD5/IP

�DES/TCP/MD5/IP
�3-DES/TCP/MD5/IP
�Ideal Linear Speedup
�

Figure 8: CLP Send-Side Speedup

T
hr

ou
gh

pu
t (

M
b/

se
c)

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

200

400
�

600
�

800
�

1000

1200

1400

1600

1800

3-DES/TCP/MD5/IP
�DES/TCP/MD5/IP
TCP/MD5/IP
TCP/IP

Figure 9: CLP Receive-Side Throughput

Sp
ee

du
p

Processors
�

0
�

2 4 6
�

8
�

10 12

0
�

2
�

4
�

6
�

8
�

10

12

TCP/IP
TCP/MD5/IP

�DES/TCP/MD5/IP
�3-DES/TCP/MD5/IP
�Ideal Linear Speedup
�

Figure 10: CLP Receive-Side Speedup

8

T
hr

ou
gh

pu
t (

M
b/

se
c)

Connections
10 100 1000

0
�

50
�

100

150

200

250

300
�

DES/TCP/MD5/IP, Processor-per-Connection
�
DES/TCP/MD5/IP, Thread-per-Connection

�
TCP/MD5/IP, Processor-per-Connection

TCP/MD5/IP, Thread-per-Connection

Figure 11: CLP Send-Side, Large Numbers of Connections

Although fine-grained approaches to parallelism may be
attractive, both packet-level parallelism and connection-
level parallelism have the important advantage that they can
be used with a wide variety of protocols, and are easier to
exploit on protocols that are already deployed. Fine grained
approaches are more dependent on the algorithm of the pro-
tocol itself, and the opportunities for finding fine-grained
concurrency seem more limited without developing new al-
gorithms. Of course, an interesting question is whether an
algorithm could be designed that could be run in parallel yet
still have sufficient cryptographic strength. One inference
seems clear: layer parallelism would be of minimal use to
a secure server. Given the predominance of cryptographic
processing times, layer parallelism would be essentially be
limited to the throughput of a dedicated single processor.

Finally, we have not addressed adversarial issues. Paral-
lelism is clearly useful to an attacker, who can use multiple
processors to speed a brute-force cracking attempt.

6 Summary

We briefly summarize our findings as follows:
� Parallelism is an effective means of improving cryp-

tographic performance, both using packet-level paral-
lelism and connection-level parallelism.

� Under both approaches, relative throughput declines
as more compute-intensive protocols are used. On the
other hand, speedup relative to the uniprocessor case
improves.

� In packet-level parallelism, speedup is essentially lin-
ear when DES or any more compute-intensive protocol
is used.

� In connection-level parallelism, speedup is essentially
linear when MD5 or any more compute-intensive pro-
tocol is used.

Due to the compute-bound nature of cryptographic pro-
tocols, we observe good scalability for parallelized network
security protocols. Both packet-level and connection-level
parallelism are appropriate vehicles for servers that need
transfer large amounts of data securely. However, we plan
to investigate more fine-grained approaches in future work.

Acknowledgments

Special thanks to Jim Kurose and Don Towsley for their
advice, support, and comments on earlier drafts of this paper.
Joe Touch also provided useful feedback.

References

[1] A. N. S. I. (ANSI). American national standard data en-
cryption standard. Technical report ANSI X3.92-1981, Dec.
1980.

[2] R. Atkinson. Security architecture for the Internet Protocol.
Request for Comments (Draft Standard) RFC 1825, Internet
Engineering Task Force, Aug. 1995.

[3] M. Björkman and P. Gunningberg. Locking effects in multi-
processor implementations of protocols. In ACM SIGCOMM
Symposium on Communications Architecturesand Protocols,
pages 74–83, San Francisco, CA, Sept. 1993.

[4] D. Borman, R. Braden, and V. Jacobson. TCP extensions
for high performance. Request for Comments (Proposed
Standard) RFC 1323, Internet Engineering Task Force, May
1992.

[5] D. D. Clark. Modularity and efficiency in protocol implemen-
tation. Request for Comments RFC 817, Internet Engineering
Task Force, July 1982.

[6] D. D. Clark. The structuring of systems using upcalls. In Pro-
ceedings of the Tenth ACM Symposium on Operating Systems
Principles, pages 171–180, December 1985.

[7] W. Diffie and M. E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654,
Nov. 1976.

[8] H. Eberle. A high-speed DES implementation for network
applications. Technical Report 90, Digital Equipment Cor-
poration Systems Research Center, Sept. 1992.

[9] M. Cekleov et al. SPARCCenter 2000:Multiprocessing for
the 90’s! In Proceedings IEEE COMPCON, pages 345–353,
San Francisco CA, February 1993.

9

[10] D. M. Fenwick, D. J. Foley, W. B. Gist, S. R. VanDoren, and
D. Wissel. The AlphaServer 8000 series: High-end server
platform development. Digital Technical Journal, 7(1):43–
65, 1995.

[11] M. Galles and E. Williams. Performance optimizations, im-
plementation, and verification of the SGI Challenge multi-
processor. Technical report, Silicon Graphics Inc., Mt. View,
CA, May 1994.

[12] D. Giarrizzo, M. Kaiserswerth, T. Wicki, and R. C.
Williamson. High-speed parallel protocol implementation.
First IFIP WG6.1/WG6.4 International Workshop on Proto-
cols for High-Speed Networks, pages 165–180, May 1989.

[13] M. W. Goldberg, G. W. Neufeld, and M. R. Ito. A par-
allel approach to OSI connection-oriented protocols. Third
IFIP WG6.1/WG6.4 International Workshop on Protocols for
High-Speed Networks, pages 219–232, May 1993.

[14] K. E. Hickman and T. Elgamal. The SSL protocol. Work
in progress, Internet Draft (ftp://ds.internic.net/internet-
drafts/draft-hickman-netscape-ssl-01.txt, June 1995.

[15] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An archi-
tecture for implementing network protocols. IEEE Transac-
tions on Software Engineering, 17(1):64–76, January 1991.

[16] V. Jacobson. Efficient protocol implementation. In ACM SIG-
COMM 1990 Tutorial Notes, Philadelphia, PA, Sept. 1990.

[17] O. G. Koufopavlou and M. Zitterbart. Parallel TCP for high
performance communication subsystems. In Proceedings of
the IEEE Global Telecommunications Conference (GLOBE-
COM), pages 1395–1399, 1992.

[18] S. J. Leffler,M. McKusick, M. Karels, and J. Quarterman.The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[19] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson.
On the self-similar nature of Ethernet traffic. IEEE/ACM
Transactions on Networking, 2(1):1–15, Feb. 1994.

[20] B. Lindgren, B. Krupczak, M. Ammar, and K. Schwan. Par-
allel and configurable protocols: Experience with a prototype
and an architectural framework. In Proceedings of the Inter-
national Conference on Network Protocols, pages 234–242,
San Francisco, CA, Oct. 1993.

[21] J. Mogul, R. Rashid, and M. Accetta. The packet filter: An
efficient mechanism for user-level network code. In Proceed-
ings 11th Symposium on Operating System Principles, pages
39–51, Austin, TX, November 1987.

[22] J. C. Mogul. Network locality at the scale of processes.
ACM Transactions on Computer Systems, 10(2):81–109,
May 1992.

[23] E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel. To-
wards high-performance cryptographic software. In Pro-
ceedings of the Third IEEE Workshop on the Architecture
and Implementation of High Performance Communications
Subsystems (HPCS), Mystic, Conn, Aug. 1995.

[24] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley.
Performance issues in parallelized network protocols. In
First USENIX Symposium on Operating Systems Design and
Implementation, pages 125–137, Monterey, CA, Nov. 1994.

[25] A. N. Netravali, W. D. Roome, and K. Sabnani. Design and
implementation of a high-speed transport protocol. IEEE
Transactions on Communications, 38(11):2010–2024, Nov.
1990.

[26] H. Orman, S. O’Malley, R. Schroeppel, and D. Schwartz.
Paving the road to network security, or the value of small
cobblestones. In Proceedings of the 1994 Internet Society
Symposium on Network and Distributed System Security,Feb.
1994.

[27] V. Paxson and S. Floyd. Wide-area traffic: The failure of
poisson modeling. IEEE/ACM Transactions on Networking,
3(3):226–244, June 1995.

[28] T. F. L. Porta and M. Schwartz. Performance analysis of MSP:
Feature-rich high-speed transport protocol. IEEE Transac-
tions on Networking, 1(6):740–753, Dec. 1993.

[29] D. Presotto. Multiprocessor Streams for Plan 9. In Proceed-
ings United Kingdom UNIX Users Group, Jan. 1993.

[30] E. Rescorla and A. M. Schiffman. The secure hy-
pertext transfer protocol. Work in progress, Inter-
net Draft (ftp://ds.internic.net/internet-drafts/draft-ietf-wts-
shttp-00.txt, July 1995.

[31] R. Rivest. The MD5 message-digest algorithm. Request for
Comments (Informational) RFC 1321, Internet Engineering
Task Force, Apr. 1992.

[32] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Com-
munications of the ACM, pages 120–126, Feb. 1978.

[33] S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krish-
nan. Pitfalls in multithreading SVR4 STREAMS and other
weightless processes. In Winter 1993 USENIX Technical
Conference, pages 85–96, San Diego, CA, Jan. 1993.

[34] D. C. Schmidt and T. Suda. Measuring the impact of alterna-
tive parallel process architectures on communication subsys-
tem performance. Fourth IFIP WG6.1/WG6.4 International
Workshop on Protocols for High-Speed Networks,Aug. 1994.

[35] D. C. Schmidt and T. Suda. Measuring the performance of
parallel message-based process architectures. In Proceed-
ings of the Conference on Computer Communications (IEEE
Infocom), Boston, MA, Apr. 1995.

[36] B. Schneier. Applied Cryptography. John Wiley and Sons,
Inc., New York, NY, 1994.

[37] J. Touch. Performance analysis of MD5. In ACM SIGCOMM
Symposium on Communications Architecturesand Protocols,
Boston MA, Aug. 1995.

[38] D. J. Yates, E. M. Nahum, J. F. Kurose, and D. Towsley.
Networking support for large scale multiprocessor servers
(extended abstract). In Proceedings of the Third IEEE Work-
shop on the Architecture and Implementation of High Perfor-
mance Communications Subsystems (HPCS), Mystic, Conn,
Aug. 1995. A full version of this paper is available as Tech-
nical Report CMPSCI 95-83, University of Massachusetts.

10

Copyright Notice

Copyright (c) 1996 Institute of Electrical and Electronics
Engineers. Reprinted from The Proceedings of the 1996
Symposium on Network and Distributed Systems Security.

This material is posted here with permission of the
IEEE. Internal or personal use of this material is permit-
ted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be ob-
tained from the IEEE by sending a blank email message to
info.pub.permission@ieee.org.

By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

11

