
SIP server performance on
multicore systems

C. P. Wright
E. M. Nahum

D. Wood
J. M. Tracey

E. C. HuThis paper evaluates the performance of a popular open-source
Session Initiation Protocol (SIP) server on three different multicore
architectures. We examine the baseline performance and introduce
three analysis-driven optimizations that involve increasing the
number of slots in hash tables, an in-memory database for user
authentication information, and incremental garbage collection for
user location information. Wider hash tables reduce the search time
and improve multicore scalability by reducing lock contention.
The in-memory database reduces interprocess communication and
locking. Incremental garbage collection smooths out peaks of
both central processing unit and shared memory utilization,
eliminating bursts of failed SIP interactions and reducing lock
contention on the shared memory segment. Each optimization
affects single-core performance and multicore scalability in different
ways. The overall result is an improvement in absolute performance
on eight cores by a factor of 16 and a doubling of multicore
scalability. Results somewhat vary across architectures but follow
similar trends, indicating the generality of these optimizations.

Introduction
Multicore processors have emerged as the norm for
computers that range from laptops to high-end servers.
A multicore processor combines multiple independent
processing cores on a single chip. Each core has its own
functional units, which allows the cores to operate in parallel.
Cores on the same chip share access to memory and
input/output devices. Current multicore processors typically
have two to four cores per chip, and this number is
expected to grow [1].
For decades, improvements in processor performance

resulted largely from increasing the clock frequency.
However, a small increase in frequency typically yields an
even smaller increase in performance but causes a large jump
in power consumption. In one typical example, an increase in
clock speed of 20% improved performance by only 13% and
increased power consumption by 73% [2]. The substantially
increased power consumption, resulting from years of
increasing the clock frequency, has caused power concerns to
become the limiting factor in chip design [3]. This has
motivated designers to pursue other approaches to improve
performance, such as exploiting thread-level parallelism.
Multicore processors are a direct result. Instead of

continuing to increase the clock frequency, designers

decreased the frequency by about 20%. This reduced
power consumption by roughly a factor of two, which
allowed the processing core to be duplicated on the same
chip [4]. The net effect is a substantial (though less than
twofold) increase in processing power with only modest
increases in power consumption and design complexity.
Of course, the multicore approach has its own difficulties.

Harnessing multiple cores requires workloads that can be
processed in parallel. If a workload lacks sufficient
parallelism, cores simply remain idle. Some workloads
consist of a large number of independent tasks that can easily
be run in parallel. Others that consist of a small number of
tasks have successfully been decomposed into multiple
parallel subtasks. Some workloads are inherently serial and
are difficult to effectively code for multicore systems.
Network workloads tend to be well suited to multicore

processors due to the inherent parallelism in processing
individual network packets, particularly across multiple
connections. This paper presents an analysis of one
specific network workload, i.e., the Session Initiation
Protocol (SIP), on three different multicore architectures,
one from each of AMD, Intel, and IBM.
SIP is an Internet standard protocol for establishing

and managing multimedia sessions. It is a protocol
of growing importance with uses in Voice over Internet
Protocol (VoIP), instant messaging, IP television, and

�Copyright 2010 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

Digital Object Identifier: 10.1147/JRD.2009.2036976

C. P. WRIGHT ET AL. 7 : 1IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

0018-8646/10/$5.00 B 2010 IBM

voice and video conferencing. Many VoIP providers such as
Vonage and Gizmo use SIP, as do digital VoIP offerings
from traditional telephone companies such as Verizon and
AT&T, as well as cable companies such as Time Warner and
Comcast. It is also the basis for the IP Multimedia System
standard for the Third Generation Partnership Project.
Industry analyst reports show that North American VoIP
adoption is growing by millions of subscribers a year [5].
The performance characteristics of SIP are not yet as well

understood as traditional workloads such as transaction
processing and Web serving. In addition, SIP has
quality-of-service (QoS) requirements that make its
performance characteristics more complex than other
protocols.
To evaluate the performance of an SIP server, our

approach is to subject the server to a realistic workload that
simulates a large number of telephony users. We analyze the
performance of the server using a number of techniques,
including code profiling and resource monitoring. We
identified several modifications to the SIP server software
that collectively yield substantial improvements in
performance and, more importantly, scalability in terms of
how well the cores are utilized. First, we increased the size of
a synchronized hash table used to store user location
information from 29 to 217 entries. Second, we eliminated the
use of a conventional database (DB) by instead using a
simple in-memory DB for user location and password
information. Third, we implemented incremental garbage
collection (GC) to smooth peaks in both memory and
CPU utilization. Collectively, these optimizations improve
performance by 8.7 times for one core and 16.6 times
for eight cores.
This paper provides two main contributions. The first

contribution is a comprehensive performance analysis of
a realistic SIP workload on three different multicore
architectures. The second is a set of techniques that
substantially improve multicore performance and scalability
for the SIP workload.
The remainder of this paper proceeds as follows. First,

we provide additional background on SIP. Then, we describe
our experimental setup and present our results in detail. Next,
we present related work. Finally, we give our conclusions.

Background
This section provides a short background on SIP. More
details can be found in [6].

Protocol overview
SIP is a protocol designed to create, modify, and destroy
media sessions between two or more endpoints. Request for
Comments (RFC) 3261 [7] is the core SIP specification,
although many additional RFCs extend the protocol.
(An RFC is a memorandum published by the Internet
Engineering Task Force describing information related to the

Internet and Internet-connected systems.) Sessions can be of
various types, including voice, video, and text. SIP handles
control messages (e.g., those involved with creating the
session) and is referred to as a control-plane protocol, but the
transfer of the actual session data is handled by a separate
data-plane protocol. SIP runs over the Transmission Control
Protocol (TCP), User Datagram Protocol (UDP), Stream
Control Transmission Protocol, Secure Sockets Layer, and
Internet Protocol versions 4 and 6. SIP is not a network
resource reservation protocol such as RSVP [8]; the issue
of how to allocate and manage network bandwidth and
transfer media is outside the scope of the protocol. SIP is a
text-based protocol that borrows many of its mechanisms
from the Hypertext Transfer Protocol (HTTP) [9]. Messages
contain headers and, optionally, bodies, depending on the
message type.
As an example, for voice applications, SIP messages

encapsulate an additional protocol, i.e., the Session
Description Protocol [10], which provides an offer/answer
model to negotiate session parameters, such as which voice
codec to use. Once the endpoints agree to the session
characteristics, voice data are typically carried by the
Real-Time Transport Protocol (RTP) [11]. Media protocols
usually directly communicate between endpoints in a
peer-to-peer fashion.

SIP user agents and servers
SIP users are usually identified using an SIP Uniform
Resource Identifier (URI), e.g., sip:user@domain.com. This
provides a layer of indirection that enables features such as
location independence and mobility. SIP endpoints are
typically referred to as user agents, which initiate and accept
sessions. They include both hardware (e.g., VoIP phones, cell
phones, and pagers) and software (e.g., software phones,
instant message clients, and voicemail servers). User agents
are further categorized into user agent clients (UACs) and
user agent servers (UASs). A UAC initiates a transaction by
making a request (e.g., making a call or registering a
location), whereas a UAS responds to a request. Within the
same call, a user agent may take on both roles (e.g., if the
callee hangs up or disconnects, it is the UAC during the call
termination). Thus, most call flows for SIP messages
define how the UAC and UAS behave for that scenario. Here,
the term callee refers to the function, subroutine, or
person being called by the caller.
The SIP infrastructure includes two crucial server

components. The first component involves registrars that
provide the service for users to register their location with the
SIP infrastructure. Users can provide multiple locations.
Proxies consult with a registrar to determine a user’s address.
The second component involves proxies that route

messages toward their eventual destinations. If a message is
intended for a user for which the proxy is responsible for
(i.e., is in its domain), the registrar is queried to determine

7 : 2 C. P. WRIGHT ET AL. IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

the final destination for the message. If the proxy is not
responsible for the user, the message is forwarded to another
proxy. The Bnext hop[proxy can be chosen via multiple
methods, but a common approach is via domain name system
lookup [12].
The above services are functionally described. In practice,

they can be colocated. For example, in our experiments,
the server is both a proxy and a registrar.

Transactions
SIP consists of several layers that define how the protocol is
functionally composed but not necessarily implemented.
One such layer is the transaction layer, which is responsible
for matching each response to the corresponding request and
managing SIP application-layer protocol timeouts and
retransmissions. All SIP endpoints (i.e., user agents) have
transaction layers, as do stateful proxies. Stateless proxies do
not have such layers.
SIP uses HTTP-like request/response transactions.

A transaction consists of a request to perform a particular
method (e.g., INVITE, BYE, or CANCEL, etc.) and at least one
response to that request. Responses may be provisional,
namely, they provide some short-term feedback to the user
(e.g., 100 TRYING and 180 RINGING) to indicate progress,
or they can be final (e.g., 200 OK and 401 UNAUTHORIZED).
Final responses complete the transaction, whereas
provisional responses do not.
A transaction stateful proxy is a proxy that maintains state

for each transaction that passes through it, for both the client
and the server. It performs hop-by-hop retransmission and
generates provisional responses (e.g., 100 TRYING) to inform
the previous hop that the proxy has received the message
and takes responsibility for retransmitting it. A stateless
proxy, on the other hand, simply acts as an SIP message
forwarder, does not guarantee delivery, and does not generate
provisional responses.
The transaction state can last seconds and even minutes,

depending on the scenario. The transaction state must be
maintained across messages in global shared memory that is
accessible by any process or thread, since there is no
guarantee that the original servicing process or thread will
handle subsequent messages for that transaction. How the
memory is shared depends on the server architecture
(e.g., process based or event driven), but fundamental to this
sharing is the use of locking primitives to synchronize
access and ensure consistent data.

Authentication and security
SIP security is complex, as described in the RFC [7],
and is an area of ongoing research [13]. Describing all the
approaches to SIP security is outside the scope of this paper,
but we describe SIP authentication since it is used in our
experiments. SIP servers may respond to requests with a
challenge for the calling user agent to authenticate itself.

This is done via a 401 UNAUTHORIZED response (for
registrars) or a 407 UNAUTHORIZED response (for proxies),
which presents a challenge to which the UAC must respond.
The response includes an Authorization: header that
provides a credential derived from an Message-Digest
algorithm 5 (MD5) hash of a nonce (unique identifier),
realm, username, and password [14].
The key user information is thus the user ID and password,

which are each used for authentication. This user information
must also be available for concurrent access in a shared
state that is protected by locks.

SIP registration
A user agent notifies the SIP infrastructure where it can be
located via registration. This allows a proxy to determine
where messages for a particular URI should be routed.
Section 2.1 of RFC 3665 [15] shows a packet call flow
example for SIP registration with authentication enabled.
A client sends a message to the registrar containing its SIP
URI, contact IP address, and port number and an expiration
time that specifies for how long the information is valid.
The registrar then challenges the client to prove its identity
using the 401 UNAUTHORIZED response. The client then
re-retransmits the REGISTER message with an additional
Authorization: header that provides the appropriate
credentials. The registrar then checks the response and, if
correct, saves the contact information for that client’s SIP
URI and responds with a 200 OK message. If authentication
is not enabled by the registrar, the packet flow simply
consists of the REGISTER message from the client followed
by the 200 OK message from the registrar. This case might
occur in an enterprise environment where the network is
secured and users are trusted.
The key information maintained by the SIP server in this

case is the user ID and the corresponding port and IP address.
This must again be available for parallel access in a shared
state guarded by locks.

SIP proxying
Proxying forwards an SIP message toward its eventual
destination in the SIP infrastructure. Figure 1 shows the
SIP call flow for stateful proxying (without authentication).
The first SIP client sends an INVITE message to the proxy to
establish a session with the second SIP client. Since the
proxy is stateful, it responds with a 100 TRYING message to
inform the client that the message has been received and that
the client need not worry about hop-by-hop retransmissions.
The proxy then consults the registrar for the SIP URI of the
second client and, assuming it is available, forwards the
message. The second client, in turn, acknowledges the receipt
of the message and informs the proxy that it is notifying the
user via the 180 RINGING message. The proxy then forwards
that message to the initiator of the INVITE, informing the
client that the end host has received the message and that the

C. P. WRIGHT ET AL. 7 : 3IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

line is Bringing.[The user on the second client machine then
accepts the call, generating a message, which is sent to the
proxy, which forwards it on to the first client. The first client
then generates an acknowledgment. Having established the
session, the two endpoints directly communicate, i.e., in a
peer-to-peer fashion, using a media protocol such as
RTP [11]. By design, however, the media session does not
traverse the proxy. In this paper, we focus solely on the
control-plane behavior of an SIP server, and thus, the media
are not included in our tests. When the conversation is
finished, the first user Bhangs up[(disconnects) and generates
a response that the proxy forwards to the second user.
The second user then responds with a 200 OK, which is
forwarded back to the first user.
The above scenario describes stateful proxying without

authentication. If authentication were enabled, the proxy
would challenge the UAC INVITE and BYE requests with

407 UNAUTHORIZED responses, requiring the UAC to
retransmit the requests with the proper credentials
(not shown in the figure).
Proxying results in numerous transactions being

executed on the proxy server. As described earlier, these
transactions require a shared state that must be guarded by
locks. One key function that any proxy must perform is
user lookup. When a request is received for an SIP URI, the
proxy must resolve that URI into a port and IP address in
order to forward the request to the proper host. This lookup
also requires concurrent access to a shared state that must
be protected by locks.

Experimental setup
In this section, we describe the software and hardware
utilized in our experiments.

Workload and metrics
The main benchmark we use is a preliminary version of
the Standard Performance Evaluation Corporation (SPEC��)
SIP infrastructure benchmark [16]. SPEC is a nonprofit
entity that establishes and publishes various standardized
benchmarks. We briefly describe SPEC SIP here.
In essence, the SPEC SIP benchmark is a user-based

benchmark that models a number of virtual users who
register their location with the proxy–registrar and make
phone calls to one another. The benchmark is an SIP
control-plane benchmark and includes no media. Increasing
the load is accomplished by instantiating more virtual
users. Users behave statistically rather than deterministically.
For example, they have variable Bthink[times before
making calls, variable ring times before answering a call, and
variable hold times for talking on the phone. (The Bthink
time[is the time that a user is idle between making calls.)
This benchmark is much more sophisticated than is
usually the case in other SIP benchmarking studies, which
typically have no ring time, no hold times (or fixed hold
times), and no user lookup.
We parameterized the benchmark software to match the

current SPEC SIP workload definition when we ran the
benchmarks in late 2008. For values that were not yet defined
(e.g., runtime), we chose sensible values based on our
experience with the benchmark and an array of SIP servers.
Registration is relatively simple: each user registers every
10 minutes with a 15-minute timeout at the registrar.
All registrations are authenticated. Phone calls are more
complex. Each user makes a phone call using an
exponentially distributed think time of 1 hour (e.g., the
Bbusy hour call attempt,[i.e., a call attempted while the
server is at its busiest), and the user talks (the Bhold time[)
for a variable amount of time depending on the call type.
There are three call types. Regular calls, called completed
calls by the benchmark, have hold times that are
log-normally distributed with an average of 300 seconds

Figure 1

Stateful proxying call flow. (UAC: user agent client; UAS: user agent
server.)

7 : 4 C. P. WRIGHT ET AL. IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

and make up 65% of the call volume. Voicemail calls, or
calls routed to voicemail when the callee is unavailable, are
30% of the call volume with an exponentially distributed
average call hold time of 30 seconds. Canceled calls, which
make up the remaining 5% of the call volume, are calls in
which the caller hangs up before the call is accepted by the
callee. Thus, each instantiated user makes a call similar to
the flow depicted in Figure 1. All INVITE and BYE messages
are authenticated.
SPEC SIP has certain QoS requirements that must be met

for a run to be considered valid. In our benchmarks,
99.99% of SIP transactions must be successful. When a
server is overloaded, transactions can fail because either
the overloaded server sends an unexpected response
(e.g., timeout) or the maximum number of retransmissions is
exceeded. Thus, the metric for the SPEC SIP benchmark
is the simultaneous number of conforming users, which
represents the number of virtual users instantiated by the
benchmark. The peak throughput is the largest number of
users that the system can support while maintaining the
QoS metrics. We use the term users as a shorthand. UDP is
used as the transport, and a test run lasts for 2 hours
after a 10-minute warm-up time. A warm-up time is simply
used to eliminate any transients that may occur when the
system is first booted.

Hardware end connectivity
We use three server processor architectures in our
experiments, in order to examine the impact of processor
architecture on our results. Each system has a total of eight
processing cores and thus appears to the operating system as
an eight-way system.
The first is an IBM LS41 blade server with four 2.6-GHz

dual-core AMDOpteron�� 8218 Santa Rosa [17] processors.
Each core has a dedicated 1-MB L2 cache. It also has two
Broadcom NetXtreme�� II BCM5706S Copper Gigabit
interfaces.
The second system is an IBM xSeries� 3500 server with

two 3.0-GHz quad-core Intel Xeon�� X5450 Harpertown
processors. Each pair of cores shares a 6,144-KB L2 cache.
It also has two Broadcom NetXtreme II BCM5721 Copper
Gigabit interfaces.
The third is an IBM JS22 blade server with two 4-GHz

dual-core POWER6� [18] processors, each with two

symmetric multithreading (SMT) contexts. Each core has a
4-MB L2 cache. It also has two IBM eHEA Gigabit Ethernet
devices, where HEA stands for host Ethernet adapter.
All of the machines had 16 GB of RAM and Small

Computer System Interface disks. Each machine had two
network interfaces. One was connected to the local area
network of our site, while the other is connected to a
private network dedicated to the benchmark. To minimize
experimental perturbation and variability, all of our
measurements were conducted using the private network,
where minimal other traffic occurs. The server machines are
summarized in Table 1.
Due to the large amounts of load we must generate, we use

up to 47 machines of four types as client workload
generators. For brevity, the systems are summarized in
Table 2. Each client machine has two Gigabit Ethernet
interfaces appropriately connected. We generate such large
loads to ensure that the server is the performance bottleneck
and that no client or network capacity limitations influence
our measurements.

Server software
We use the Open SIP Express Router (OpenSER) [19],
a commonly used freely available open-source SIP
proxy–registrar server. OpenSER has a large feature set and a
considerable user base, and it is associated with an active
mailing list and third-party contributions (e.g., from sip.edu
and onsip.org). We use OpenSER version 1.2.3 for our
experiments. We produced a configuration file that supported
stateful proxying and registration. In situations in which a
user DB was required, we used MySQL�� [20] 5.0.45-7.el5,
which we precisely populated with the required number of
users for a given test. OpenSER was configured to use a
writeback caching policy to maintain the client state across
restarts and also to nearly achieve in-memory DB

Table 1 Benchmark server processors.

Table 2 Client workload generation machines.

C. P. WRIGHT ET AL. 7 : 5IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

performance. For the POWER6 port of OpenSER, we
discovered and fixed a locking bug that caused crashes at
high loads. OpenSER is the predecessor of the OpenSIPS [21]
and Kamailio [22] SIP servers.

Client workload generation
We use the SIPp [23] SIP workload generator, another freely
available open-source tool. SIPp is also associated with an
active user community and appears to be the most frequently
used open-source SIP testing tool. SIPp allows a wide range
of SIP scenarios to be tested, such as scenarios involving
UACs, UASs, and third-party call control. SIPp is also
extensible by writing Extensible Markup Language (XML)
scripts that define new call flows. We wrote several new
flows that were not included with SIPp to implement the
SPEC SIP benchmark. SIPp has many runtime options we
took advantage of, such as MD5-based hash digest
authentication and support to allow calls to be generated from
a list of users.
We use SIPp SVN (subversion) release version r541.

During the course of this study, we made several
modifications to SIPp to improve its performance so as to
reduce the amount of client resources. All of these extensions
have been incorporated into the current SIPp SVN tree.

Client and server operating system software
Our servers run Red Hat�� Enterprise Linux�� AS Release 5
update 2. On the AMD and Intel servers, this includes a
2.6.18-92.1.1.el5 kernel. On the POWER6 server,
a 2.6.18-92.1.10.el5 kernel is used. The client machines
use either Red Hat EL AS Release 5 update 2 or
Red Hat EL AS Release 4 update 4.
For application and kernel profiling, we use the standard

open-source OProfile [24] tool, version 0.9.3. OProfile is
configured to report the default GLOBAL POWER EVENT,
which reports the time in which the processor is not stopped
(i.e., idle time is not reported).

Results
In this section, we present several performance and
scalability bottlenecks in OpenSER that we identified and
corrected on an eight-way AMD LS41 blade. We also present
performance measurements of a baseline OpenSER server
and a server with our optimizations on eight-way Intel and
POWER6 machines.

OpenSER baseline
A baseline OpenSER configuration on one core supports
350,000 users. Adding a core improves performance by 28%,
resulting in 450,000 users, and eight cores yield only an
additional 150,000 users or an overall improvement of 71%
when eight times the processing resources are available.
We define multicore scalability for a configuration as the

ratio of the performance on a given number of cores to the

performance of the same configuration on one core. Thus,
the two-core case has a scalability of 1.28, or 128%, and the
eight-core case has a multicore scalability of 1.71, or 171%.
As the default OpenSER configuration only uses four

processes, it is not surprising that scalability is limited for
higher numbers of cores. Thus, we increased the number of
OpenSER processes to eight. An additional statically
configured limit to performance is the size of the shared
memory region of OpenSER, which is used to ensure that the
independent worker processes have coherent transaction
and user location states. We increased the size of this
memory region to 12 GB, which still leaves 4 GB remaining
for the per-process private memory of OpenSER, MySQL,
the operating system, and other processes that run on the
machine. These results are shown in Figure 2 with the label
B9 hash bits, MySQL database, standard garbage collection.[
The maximum capacity increased by 50,000 users for one
and two cores. For four cores, the maximum capacity
increased by 33% to 600,000 users, and the capacity was
identical to that for eight cores. We use these options
(i.e., eight OpenSER processes and 12 GB of shared
memory) in all further tests, because they are essential for the
scalability of other configurations, and we wish to remove
their effect from the analysis of other optimizations.

Hash table lookup
We used the OProfile whole-system profiler to gain insight
into the behavior of the system. A summary of the profiles at
peak throughput is shown in Figure 3. We categorized the
profiled functions by modules (MySQL, Kernel, OpenSER,
C Library, and Other). We further subdivided OpenSER
into the time spent in the get urecord function and all other
times. The get urecord function accounts for between
11.9% and 16.2% of the total profile or 42.6%–54.7% of the
CPU cycles spent in OpenSER. The get urecord function

Figure 2

OpenSER optimizations on an AMD LS41 blade.

7 : 6 C. P. WRIGHT ET AL. IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

is used to retrieve a user’s location information (sent via
registration) from the in-memory user location cache of
OpenSER. The cache is stored as a 512-bucket hash table
using chaining to resolve collisions. As we are storing
between 400,000 and 600,000 users in these configurations,
the average chain length is roughly 1,000 users. Not only
is this linear scan CPU intensive, but it also limits
concurrence since each hash chain is protected by a lock.
We increased the hash table size (via an OpenSER
configuration parameter) to 217 entries, labeled as B17 hash
bits, MySQL database, standard garbage collection[in
Figure 2. Our new profile shows that only 1.1%–1.9% of
the time is now spent in the get urecord function.
Reducing this time significantly improved performance by
2.6, 3.1, 4.5, and 3.9 times for one, two, four, and eight cores,
respectively. In addition to improving absolute performance,
multicore scalability improved as well: from 1.25 to
1.55 for two cores, from 1.50 to 2.27 for four cores,
and from 1.50 to 2.61 for eight cores.
A better solution than simply configuring OpenSER with a

fixed number of hash bits would be to modify OpenSER to
automatically tune its hash table size based on the number
of entries. This could be implemented using one of several
well-known methods for dynamically sizing hash tables,
including linear hashing or spiral storage [25].

Database access
The next avenue of research that we explored was converting
DB accesses to in-memory data structures. In the original
profile, MySQL used 30%–37% of the CPU time, and in the
new profile, the use was in excess of 40% of the CPU cycles.
Moreover, we know from prior work that a significant portion

of the C Library computational cycles can be attributed to the
use of MySQL [26]. In our configuration, OpenSER uses the
MySQL DB for two distinct functions. First, it is used as a
repository for user location information (i.e., the port and
IP address where a user can be reached). Second, it is used to
store user authentication information (i.e., usernames and
passwords). Eliminating the use of the DB for user location is
straightforward; OpenSER provides an entirely in-memory
user location mode (essentially, the DB cache is loaded upon
start-up and never flushed).
Eliminating the authentication DB is not as simple.

OpenSER is structured such that the authentication module
depends on a DB module. Although a flat-text Bdatabase[
module (called dbtext) is included with OpenSER, it is
designed for demonstration purposes and is not suitable for
use in a scalable SIP server. The OpenSER DB interface
that dbtext follows requires the interface to be a
general-purpose DB access application programming
interface, with arbitrary tables and column names, which are
parsed out from the text file. Moreover, each dbtext access
locks the entire in-memory representation of the DB while
linearly scanning it. Our module, which we call auth mem,
is derived from the higher level OpenSER auth db module.
It is relatively simple, consisting of only 240 lines of new
code that loads a Comma Separated Values file of
username–password pairs on start-up, and replaces calls to
back-end DB modules with an in-memory hash table lookup
(we used a width of 217, as we did in the user location
module).
The results of removing the DB can be seen in Figure 2 as

the curve labeled B17 hash bits, in-memory database, standard
garbage collection.[To isolate the effects of each DB, we also
evaluated removing them individually and in combination;
however, for clarity, we do not display the results in the graph.
Compared to the 17-hash-bit MySQL DB configuration,
in-memory user location improved performance by 33% for
one core, 57% for two cores, 53% for four cores, and 34% for
eight cores. In-memory authentication increased performance
by 76%, 90%, 34%, and 19% for one, two, four, and eight
cores, respectively. We would expect that eliminating the
authentication MySQL DB would provide a greater
improvement than eliminating the MySQL user location DB.
The user location DB includes an in-memory cache that is
updated by registration and consulted by other transactions
(e.g., INVITE or BYE). The MySQL DB is only updated every
minute during a periodic writeback phase and is only read
upon start-up. However, the authentication DB has no
caching, so each SIP transaction must consult the DB.
As expected, removing the authentication DB improved
performance more for one and two cores; however,
for four and eight cores, removing the user location DB
provided a greater improvement.
The combined performance improvement is a factor of

3.6, 3.5, 3.3, and 3.1 for one, two, four, and eight cores.

Figure 3

OpenSER CPU profiling. Standard GC uses the GC mechanism of
OpenSER. Incremental GC uses our improved GC mechanism
described in the section on incremental GC.

C. P. WRIGHT ET AL. 7 : 7IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

Interestingly, removing both DBs improves performance
more than the sum of individually removing each DB.
As the number of cores increases, the relative performance
increase is reduced, resulting in worse scalability. This
demonstrates that simply improving performance does not
necessarily increase multicore scalability. The largest
reduction in scalability is for eight cores, which went from
2.6 with MySQL to 2.2 with the in-memory DB. In many
deployments, it may not be practical to entirely eliminate
traditional DBs; for example, in clustered servers, the
DB server can act as a coherency mechanism. Nevertheless,
these results serve as an upper bound of the gains possible
from optimizing DB access. One possibility is to cache the
authentication information from the DB in-memory;
however, care must be taken to maintain coherency between
the cache and the DB (otherwise, revoked credentials
could still be valid).

Incremental garbage collection
The final optimization we identified concerns improving the
garbage collection behavior of OpenSER. An in-memory
hash table of user location entries is stored in a shared
memory segment, for both the DB and entirely in-memory
configurations. As SIP is a soft-state protocol, these entries
periodically expire and must be pruned.
During our test, we used nmon [27] to collect a variety of

system performance information every 5 seconds. Using
these data, we generated timelines, and when focusing on a
small region of the timeline, we noticed that the CPU
utilization had a periodic behavior. An example of one of
these timelines is shown as the curve B17 hash bits, MySQL
database, standard garbage collection[in Figure 4. We
noticed that the gap between each CPU spike was roughly
60 seconds, and we correlated this to a timer with that same

period that is responsible for pruning expired records from
the OpenSER shared memory segment. When this timer is
triggered, OpenSER iterates through all of the records in
shared memory and frees those that are no longer needed.
This behavior has two deleterious effects on performance.
First, the CPU utilization is quite high during this scan
period, and thus, calls are more likely to fail. Second,
because shared memory can often be a bottleneck and this
method leaves expired entries in shared memory longer than
necessary, unnecessary call failures can result from shared
memory allocation requests that fail.
We improved this behavior by changing the OpenSER GC

so that it ran every second but only cleaned 1/60 of the
shared memory region. This does not reduce the total amount
of work, nor does it significantly increase the amount of
work. In fact, in this example, the average CPU utilization is
within 1% of the original value. However, this change to GC
does more uniformly spread the work. As can be seen in
Figure 4, the CPU utilization is much smoother in the
improved curves labeled B17 hash bits, MySQL database,
incremental garbage collection.[We also analyzed the same
timelines for shared memory, and we noticed that shared
memory usage was also markedly smoother.
This approach translated into actual performance

improvements, as shown in Figure 2. For a single core with a
DB, peak performance decreased by 22% but increased by
7.1%, 31.7%, and 63.8% for two, four, and eight cores,
respectively. With the in-memory DB, performance was
improved for all numbers of cores: 7.3%, 7.6%, 14.3%, and
37.2% for one, two, four, and eight cores, respectively.
Collectively, on the AMD architecture, our optimizations

improved performance by 8.7 times for a single core and
16.6 times for eight cores. This results in scalability
improving from 1.5 to 2.84 on eight cores.

Other architectures
Our next set of experiments compare the effect of our
optimizations on SIP server performance across three
architectural platforms described in the section on hardware
and connectivity: the Intel, AMD, and POWER6 processors.
In this section, we focus on scalability as the metric.
Figure 5 shows the peak throughput for each of our three

platforms for two configurations each: the baseline (before
applying our optimizations) and optimized (after applying all
optimizations discussed in the prior sections on hash table
lookup, DB access, and incremental GC) configurations.
As can be seen in the figure, the optimizations improved
absolute performance in all cases ranging from a factor
of 4.5 to a factor of 20.8. We now turn our attention to
scalability.
Table 3 presents the eight-core scalability for each

platform and configuration. We are interested in observing
how scalable the system is before and after applying our
optimizations. Scalability is defined here as the relative

Figure 4

OpenSER CPU utilization timeline for four cores and 800,000 users.

7 : 8 C. P. WRIGHT ET AL. IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

performance compared to the single-core case; thus, by
definition, each value for a single core is 1. The most
striking result is the difficulty in achieving linear speedup:
the highest scaling is only 3.86 with eight processors,
for the optimized POWER6 curve. The lowest corresponds to
the baseline AMD curve, with a speedup of 1.50.
Another interesting result is that for the baseline

configurations, scalability was relatively low in all cases.
Intel is the only platform with a scalability greater than
2 (2.13). As no platform scaled particularly well, there was
no change in the order of relative performance as the
number of cores changed. For the optimized case, scalability
varied much more widely, from 1.74 on the Intel platform
to 3.86 on the POWER� platform. Indeed, the relative
performance on eight cores is opposite the performance on a
single core. The POWER platform was fastest on eight cores
and slowest on a single core, and the Intel platform was
fastest on a single core and slowest on eight.
Our optimizations improved absolute performance for all

architectures, but our optimizations were clearly more
effective at improving scalability for the AMD and POWER
platforms than for the Intel platform. Although none of these
optimizations are processor specific, we gathered profiles for
these optimizations on an AMD platform; thus, it is not
surprising that the AMD platform would derive greater benefit

than another platform. One similarity between AMD and
POWER chips is that they both provide dedicated L2 caches
for each core, whereas Intel does not. Additionally, the AMD
and POWER chips integrate the memory controller in the
CPU, whereas the Intel memory controller is off chip and
accessed via the front-side bus. Thus, while the Intel platform
is, in some respects, superior to AMD and POWER platforms
in the optimized single-core case by 25% and 63%,
respectively, it is 30% and 36% slower in the eight-core case.
It is also interesting to note that Intel was almost three times as
fast as POWER and AMD in the eight-core baseline case but
was slower for the optimized case. To better understand this,
we applied only the 17-hash-bit optimization and found that
the relative performance gap was significantly reduced,
with Intel having an improvement of only 10% over AMD
and 33% over POWER for eight cores.

Related work
Due to space limitations, we only briefly mention related
work in the SIP server performance area.

Multicore SIP server performance
Perhaps the most closely related SIP work is that of
Zou et al. [28]. They also study multicore scalability of the
OpenSER SIP server, not only on a Linux on Intel platform,
but also using Solaris�� on Niagara, a system developed by
Sun Microsystems. They additionally consider TCP as a
transport protocol. They encountered scalability bottlenecks
in both the Linux and Solaris operating systems, such as
those caused by a single lock protecting access to a socket,
and propose using multiple sockets (and port numbers) in
response to avoid the problem. They also noticed a problem
involving contention in the shared memory segment used by
OpenSER. Their response is to hash a shared state by call ID
and use multiple shared memory segments to partition the
global state and have a lock per segment, reducing the
contention. They improved scalability by up to a factor of
four, depending on the scenario.
Our work, in contrast, did not encounter these problems.

This is primarily because our workload is user based, rather
than a scale-up of a simple microbenchmark. Thus, the
bottlenecks we encounter tend to be more focused on scaling
structures to support users. We also observed problems
resulting from insufficient shared memory space, but our
solution was simply to increase the segment to 12 GB.

Multicore Web serve performance
Ruan et al. [29] examine Web server performance using a
Linux system and using several servers on an Intel Xeon
hyperthreaded processor. They find that network server
workloads do not scale well on the Xeon processor due to
insufficient cache resources available to each thread.
Veal and Foong [30] examined Web server scalability

using Linux, Apache, SPECWeb2005��, and a server with

Table 3 Eight-core scalability.

Figure 5

Optimizations on multiple architectures: AMD, Intel, and IBM
POWER6.

C. P. WRIGHT ET AL. 7 : 9IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

two Intel Clovertown quad-core processors. After
considering and dismissing several potential bottlenecks,
they conclude that the address bus is the primary obstacle to
performance scaling of network applications.
Willmann et al. [31] compare two approaches to

network protocol stack parallelization using a TCP
microbenchmark. They find that parallelizing at the
connection level performs better than parallelizing at the
message level.
Zeldovich et al. [32] present an asynchronous

programming library to enable parallelized event-driven
programs. They show a 50% speedup on a nonstandard
Web benchmark using four cores.

Single-core SIP server performance
Nahum et al. [26, 33] study SIP server performance in several
scenarios: registration and proxying, transaction stateful
versus stateless, and using UDP or TCP for the transport.
They show that performance significantly varies depending
on how the SIP server is configured and used.
Ram et al. [34] extend the above work, showing how to

improve the performance of OpenSER when using TCP.
Janak’s thesis [35] describes many of the performance
optimizations that are used by the SIP Express Router
(and, by implication, OpenSER). Examples include using
counted strings, lazy parsing of headers, and incremental
parsing within each header. Salsano et al. [36] conduct an
experimental performance analysis of SIP security
mechanisms using an open-source Java�� SIP proxy
server. Cortes et al. [37] measured the capacity of four
transaction stateful SIP proxies using a suite of five
microbenchmark tests.

SIP benchmarking
The SPEC SIP benchmark [16] is described in the section on
workload and metrics. SIPStone [38] is an early SIP
benchmark designed to evaluate SIP registrar, redirect, and
proxy servers. The benchmark is the weighted average of ten
SIP microbenchmark call flows.

Multicore network processors
A recent trend has been to utilize multiple processors for core
network workloads such as routing and deep packet
inspection. Examples are discussed in [39–46].

Conclusion
We have evaluated and improved the performance and
scalability of an open-source SIP proxy on three different
multicore platforms: AMD Santa Rosa, Intel Harpertown,
and IBM POWER6. We have identified two performance and
scalability bottlenecks using whole-system profiling:

• OpenSER relied on a statically dimensioned hash
table for user location lookup. By increasing the width of

this hash table, we have improved performance by a
factor of four. Additionally, scalability improved
by 121%.

• DB accesses require context switches and socket
operations, which reduce performance. By changing
DB accesses to use memory, performance increased
by a factor of 3. However, scalability was slightly
reduced from 2.6 to 2.2 with eight cores.

We have identified a third optimization by examining CPU
utilization timelines and correlating the peaks with timers in
the OpenSER code. Here, OpenSER performed GC for the
entire shared memory region at once. This resulted in
alternating periods of very high CPU and shared memory
utilization and periods of much lower utilization. These
resource utilization spikes would then result in call failures.
By incrementally garbage collecting the shared memory
region, we have eliminated these spikes and increased
performance up to 63%.
Collectively, our optimizations improved performance by

8.7 times for a single core and 16.6 times for eight cores.
This results in an eight-core scalability improvement from
1.5 to 2.84.
When comparing CPU architectures, note that the

single-core performance did not predict the relative
eight-core performance for our optimized version of
OpenSER. In fact, the performance ranking for a single core
was the opposite of the ranking for eight cores.
One result manifested throughout this work is that

improving the single-core performance is not the same as
improving scalability. Often, improving the performance
actually makes it more difficult to scale the single-core case,
since system resources that were not previously a bottleneck
become constrained. We have also noticed that there are
many static configuration parameters for SIP servers. For
example, to achieve acceptable performance, OpenSER
must have the user location hash table and shared memory
region correctly sized by the system administrator. OpenSER
is not alone in this regard; for example, Java-based servers
must have correctly sized heaps. For the system to be
scalable in practice, it must adapt to the load to which it is
subjected. In the case of OpenSER, this means that its data
structures must scale in near-constant time and that the
shared memory region should grow and shrink along with the
load. One mechanism to achieve this effect would be to
use threads and heap space instead of processes and shared
memory.

Future work
Several avenues of research exist that would help to
further improve the scalability of OpenSER. Our analysis
mainly relied on whole-system CPU profiling of CPU cycles
and CPU utilization. Performing a similar analysis using
lower level counters to gather the cycles per instruction, as

7 : 10 C. P. WRIGHT ET AL. IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

well as cache hits and misses, would help expose scalability
problems. Moreover, this would allow us to analyze the
varying effect of our optimizations on different architectures.
We also did not focus on lock contention. OpenSER locks
are very similar to spin locks in the Linux kernel. This means
that employing a tool or methodology similar to lockmeter

may highlight lock contention. In addition, our analysis
focused entirely on OpenSER. OpenSER is dependent on the
performance of both the DB and the kernel; improvements in
either could yield significant capacity gains. Finally, we
studied a proxy–registrar workload that models an enterprise
environment on a particular SIP server. Changing either the
workload or the system under tests will yield new scalability
limitations that must be addressed.

Acknowledgment
The authors would like to thank L. Shao for his useful
comments.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of the Standard
Performance Evaluation Corporation, Advanced Micro Devices, Inc.,
Broadcom Corporation, Intel Corporation, MySQL AB, Red Hat
Software, Inc., Linus Torvalds, or Sun Microsystems, Inc., in the
United States, other countries, or both.

References
1. P. Gepner and M. Kowalik, BMulti-core processors: A new way to

achieve high system performance,[in Proc. Int. Symp. Parallel
Comput. Elect. Eng., Sep. 2006, pp. 9–13.

2. J. Rattner. (2006). BWhy multi-core?[in Intel Developer Forum.
[Online]. Available: http://www.intel.com/pressroom/kits/events/
idfspr_2006/20060307_rattnertranscript.pdf

3. R. Ronen, A. Mendelson, K. Lai, S. Lu, F. Pollack, and J. Shen,
BComing challenges in microarchitectures and architecture,[
Proc. IEEE, vol. 89, no. 3, pp. 325–339, Mar. 2001.

4. S. Naffziger, BHigh-performance processors in a power-limited
world,[in Proc. IEEE Symp. VLSI Circuits, Honolulu, HI,
Jun. 2006, pp. 93–97.

5. P. Arora. (2001, May). Residential Gazing Into the Crystal Ball of
Tomorrow’s Residential Voice Services, Analyst Report,
Frost & Sullivan. [Online]. Available: http://www.frost.com/prod/
servlet/market-insight-top.pag?Src=RSS&docid=97662447

6. R. Sparks, BSIP: Basics and beyond,[Queue, vol. 5, no. 2,
pp. 22–33, Mar. 2007.

7. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. J. ston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, SIP: Session initiation
protocol, Internet Engineering Task Force, RFC 3261, Jun. 2002.

8. L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala,
BRSVP: A new resource reservation protocol,[IEEE Netw. Mag.,
vol. 7, no. 5, pp. 8–18, Sep. 1993.

9. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
Hypertext Transfer ProtocolVHTTP/1.1, Internet Engineering
Task Force, RFC 2068, Jan. 1997.

10. J. Rosenberg and H. Schulzrinne, An offer/answer model with
session description protocol (SDP), Internet Engineering Task
Force, RFC 3264, Jun. 2002.

11. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
RTP: A transport protocol for real-time applications,
Internet Engineering Task Force, RFC 3550, Jul. 2003.

12. J. Rosenberg and H. Schulzrinne, Session Initiation Protocol
(SIP): Locating SIP Servers, Internet Engineering Task Force,
RFC 3263, Jun. 2002.

13. Internet Engineering Task Force (IETF), SIP Working Group
Charter. [Online]. Available: http://www.ietf.org/html.charters/
sip-charter.html

14. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stewart, HTTP Authentication: Basic and
Digest Access Authentication, Internet Engineering Task
Force, RFC 2617, Jun. 1999.

15. A. Johnston, S. Donovan, R. Sparks, C. Cunningham, and
K. Summers, Session Initiation Protocol (SIP) Basic Call
Flow Examples, Internet Engineering Task Force, RFC 3665,
Dec. 2003.

16. Systems Performance Evaluation Corporation (SPEC), SPEC SIP
Subcommittee. [Online]. Available: http://www.spec.org/specsip/

17. C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway,
BThe AMD opteron processor for multiprocessor servers,[
IEEE Micro, vol. 23, no. 2, pp. 66–76, Mar./Apr. 2003.

18. H. Q. Le, W. J. Starke, J. S. Fields, F. P. OConnell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden,
BIBM POWER6 microarchitecture,[IBM J. Res. & Dev., vol. 51,
no. 6, pp. 639–662, Nov. 2007.

19. The Open SIP Express Router (OpenSER). [Online]. Available:
http://www.openser.org

20. The MySQL Project, The MySQL Database Server. [Online].
Available: http://www.mysql.org

21. OpenSIPS (Open SIP Server). [Online]. Available:
http://www.opensips.org

22. KamailioVThe Open Source SIP Server. [Online]. Available:
http://www.kamailio.org

23. R. Gayraud and O. Jacques, SIPp. [Online]. Available:
http://sipp.sourceforge.net

24. OProfile, A System Profiler for Linux. [Online]. Available:
http://oprofile.sourceforge.net/

25. P. Larson, BDynamic hash tables,[Commun. ACM, vol. 31, no. 4,
pp. 446–457, Apr. 1988.

26. E. Nahum, J. Tracey, and C. P. Wright, BEvaluating SIP proxy
server performance,[in Proc. 17th Int. Workshop NOSSDAV,
Urbana-Champaign, IL, Jun. 2007.

27. N. Griffiths, nmon Performance: A Free Tool to Analyze AIX and
Linux Performance. [Online]. Available: http://www.ibm.com/
developerworks/aix/library/au-analyze_aix/

28. J. Zou, Z. Liang, and Y. Dai, BScalability evaluation and
optimization of multi-core SIP proxy server,[in Proc. 37th ICPP,
Portland, OR, Sep. 2008, pp. 43–50.

29. Y. Ruan, V. S. Pai, E. M. Nahum, and J. M. Tracey, BEvaluating
the impact of simultaneous multithreading on network servers
using real hardware,[in Proc. ACM Sigmetrics Conf. Meas.
Model. Comput. Syst., Banff, AB, Canada, Jun. 2005,
pp. 315–326.

30. B. Veal and A. Foong, BPerformance scalability of a multi-core
web server,[in Proc. ACM/IEEE Symp. ANCS, Orlando, FL,
Dec. 2007, pp. 57–66.

31. P. Willmann, S. Rixner, and A. L. Cox, BAn evaluation of
network stack parallelization strategies in modern operating
systems,[in Proc. USENIX Annu. Tech. Conf., Boston, MA,
Jun. 2006, p. 8.

32. N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazières, and
M. F. Kaashoek, BMultiprocessor support for event-driven
programs,[in Proc. USENIX Annu. Tech. Conf., San Antonio, TX,
Jun. 2003, pp. 239–252.

33. E. Nahum, J. Tracey, and C. P. Wright, BEvaluating SIP server
performance,[IBM T.J. Watson Res. Center, Yorktown Heights,
NY, Research Rep. 24183, Feb. 2007.

34. K. K. Ram, I. C. Fedeli, A. L. Cox, and S. Rixner, BExplaining
the impact of network transport protocols on SIP proxy
performance,[in Proc. IEEE ISPASS, Austin, TX, Apr. 2008,
pp. 75–84.

35. J. Janak, BSIP server proxy effectiveness,[M.S. thesis,
Dept. Comput. Sci., Czech Tech. Univ., Prague, Czech Republic,
May 2003.

C. P. WRIGHT ET AL. 7 : 11IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

http://www.intel.com/pressroom/kits/events/idfspr_2006/20060307_rattnertranscript.pdf
http://www.intel.com/pressroom/kits/events/idfspr_2006/20060307_rattnertranscript.pdf
http://www.frost.com/prod/servlet/market-insight-top.pag?Src=RSS&docid=97662447
http://www.frost.com/prod/servlet/market-insight-top.pag?Src=RSS&docid=97662447
http://www.ietf.org/html.charters/sip-charter.html
http://www.ietf.org/html.charters/sip-charter.html
http://www.ibm.com/developerworks/aix/library/au-analyze_aix/
http://www.ibm.com/developerworks/aix/library/au-analyze_aix/

36. S. Salsano, L. Veltri, and D. Papalilo, BSIP security issues:
The SIP authentication procedure and its processing load,[
IEEE Netw., vol. 16, no. 6, pp. 38–44, Nov./Dec. 2002.

37. M. Cortes, J. R. Ensor, and J. O. Esteban, BOn SIP performance,[
Bell Labs Tech. J., vol. 9, no. 3, pp. 155–172, 2004.

38. H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle,
SIPstoneVBenchmarking SIP Server Performance, Apr. 2002.
[Online]. Available: http://www.sipstone.org

39. J. Giacomoni, J. K. Bennett, A. Carzaniga, D. C. Sicker,
M. Vachharajani, and A. L. Wolf, BFrame shared memory:
Line-rate networking on commodity hardware,[in Proc.
ACM/IEEE Symp. ANCS, New York, Dec. 2007, pp. 27–36.

40. X. Hu, X. Tang, and B. Hua, BHigh-performance IPv6 forwarding
algorithm for multi-core and multithreaded network processor,[in
Proc. 11th ACM SIGPLAN Symp. PPoPP, New York,
Mar. 2006, pp. 168–177.

41. D. Liu, B. Hua, X. Hu, and X. Tang, BHigh-performance
packet classification algorithm for many-core and multithreaded
network processor,[in Proc. Int. Conf. CASES, Seoul, Korea,
Oct. 2006, pp. 334–344.

42. A. Mallik, Y. Zhang, and G. Memik, BAutomated task distribution
in multicore network processors using statistical analysis,[in Proc.
ACM/IEEE Symp. ANCS, Dec. 2007, pp. 67–76.

43. P. Piyachon and Y. Luo, BEfficient memory utilization on network
processors for deep packet inspection,[in Proc. ACM/IEEE
Symp. ANCS, New York, Dec. 2006, pp. 71–80.

44. R. Smith, D. Gibson, and S. Kong, BTo CMP or not to CMP:
Analyzing packet classification on modern and traditional parallel
architectures,[in Proc. ACM/IEEE Symp. ANCS, Dec. 2007,
pp. 43–44.

45. Y. Qi, B. Xu, F. He, B. Yang, J. Yu, and J. Li, BTowards
high-performance flow-level packet processing on multi-core
network processors,[in Proc. ACM/IEEE Symp. ANCS,
Dec. 2007, pp. 17–26.

46. Y. Qi, B. Xu, F. He, X. Zhou, J. Yu, and J. Li, BTowards optimized
packet classification algorithms for multi-core network
processors,[in Proc. 36th ICPP, Xi’An, China, Sep. 2007, p. 2.

Received December 8, 2008; accepted for publication
January 11, 2009

Charles P. Wright IBM Research Division, Thomas J. Watson
Research Center, Hawthorne, NY 10532 USA (cpwright@us.ibm.com).
Dr. Wright received the B.S., M.S., and Ph.D. degrees from the State
University of New York at Stony Brook in 2003, 2004, and 2006,
respectively. He subsequently joined the IBM Thomas J. Watson
Research Center, where he worked in the Network Server Systems
Software Department investigating SIP workload generation and server
performance and is currently a Research Staff Member. Recently,
his focus has changed to high-performance computing. He is the
author or a coauthor of 21 technical papers.

Erich M. Nahum IBM Research Division, Thomas J. Watson
Research Center, Hawthorne, NY 10532 USA (nahum@us.ibm.com).
Dr. Nahum received the B.A. degree in computer science from the
University of Wisconsin–Madison in 1988 and the M.S. and
Ph.D. degrees in computer science from the University of
Massachusetts, Amherst, in 1991 and 1996, respectively.
He subsequently joined IBM at the T. J. Watson Research Center,
where he has worked on networked systems performance and is a
currently a Research Staff Member in the Computer Sciences
Department. In 2000, he received an IBM Outstanding Technical
Achievement Award for his work on AIX� server performance.
He is the author or a coauthor of 32 technical papers. He is the
holder or a coholder of three patents.

David Wood IBM Research Division, Thomas J. Watson Research
Center, Hawthorne, NY 10532 USA (dawood@us.ibm.com). Mr. Wood
received the B.A. degree in physics from the University of California,
San Diego, La Jolla, in 1985 and the Master’s degree in computer

science from New York University, New York, in 1989. He works at
the IBM T. J. Watson Research Center, where he focuses on policy
technologies and parallel computing. He has been with IBM
since 1992, working in areas that include parallel computing,
data visualization, visual and spoken user interfaces, and location-based
services and architectures. He is the author or a coauthor of
seven papers and journal articles. He is the co-holder of five patents.

John M. Tracey IBM Research Division, Thomas J. Watson
Research Center, Hawthorne, NY 10532 USA (traceyj@us.ibm.com).
Dr. Tracey received the B.S. degree in electrical engineering and the
M.S. and Ph.D. degrees in computer science from the University of
Notre Dame, Notre Dame, IN, in 1990, 1992, and 1996, respectively.
In 1996, he joined IBM as a Software Engineer at the IBM T. J. Watson
Research Center, Hawthorne, NY, where he is currently a Senior
Technical Staff Member and Manager. From 2001 to 2008, he managed
the Network Server System Software Department, which focused on
performance analysis and improvement of various network servers.
In 2009, he began managing a new team developing system software
for massively parallel systems. He is a coauthor on more than a dozen
technical publications. He is a coholder of seven issued patents.

Elbert C. Hu IBM Research Division, Thomas J. Watson Research
Center, Hawthorne, NY 10532 USA (elbert@us.ibm.com). Mr. Hu
received the B.A. degree in computer science from Queens College,
City University of New York, New York, in 1979 and the M.S. degree
in computer science from the Polytechnic Institute of New York
University, Brooklyn, in 1981. He joined the IBM Research Division in
1982 and has been involved in projects that focused on VM/Control
Program, TCP/IP, network management, distributed computing,
high-performance computing, and SIP performance. He was the
recipient of three Research Division Awards, an IBM Outstanding
Technical Achievement Award for his work on Advanced Fast Path
Architecture in IBM HTTP server products, and an IBM Outstanding
Contribution Award for his work on IBM VM and MVS�

TCP/IP products.

7 : 12 C. P. WRIGHT ET AL. IBM J. RES. & DEV. VOL. 54 NO. 1 PAPER 7 JANUARY/FEBRUARY 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

