
Evaluating SIP Server Performance

[Extended Abstract]

Erich M. Nahum, John Tracey, and Charles P. Wright
IBM T.J. Watson Research Center

Hawthorne, NY, 10532
{nahum,traceyj,cpwright}@us.ibm.com

ABSTRACT
SIP is a protocol of growing importance, with uses for VoIP,
instant messaging, presence, and more. However, its perfor-
mance is not well-studied or understood. In this extended
abstract we overview our experimental evaluation of com-
mon SIP server scenarios using open-source SIP software
such as OpenSER and SIPp running on Linux.

We show performance varies greatly depending on the
server scenario and how the protocol is used. Depending
on the configuration, throughput can vary from hundreds
to thousands of operations per second. For example, we ob-
serve that the choice of stateless vs. stateful proxying, using
TCP rather than UDP, or including MD5-based authentica-
tion can each can affect performance by a factor of 2-4. We
also provide kernel and application profiles using Oprofile
that help explain and illustrate processing costs. Finally,
we provide a simple fix for transaction-stateful proxying that
improves performance by a factor of 10. Full details can be
found in our accompanying technical report [1].

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications; C.5.5 [Computer

System Implementation]: Servers; D.4.8 [Performance]:
Measurements

General Terms
Measurment, Performance, Experimentation

Keywords
SIP, Servers, Performance, Experimental Evaluation

1. EXPERIMENTAL SETUP
Scenarios and Configurations. We evaluate server perfor-

mance for 3 core SIP server scenarios: proxying, registration,
and redirection. We also examine the impact of authenti-
cation and transport protocol on performance, as well as
statefulness vs. statelessness for the proxying scenario.

SIP Server Software. We evaluate OpenSER 1.1.0, an
open source SIP server and employ MySQL 4.1.12-3.RHEL4.1
as a back-end user database. We identified and fixed a flaw
in the OpenSER transaction-stateful processing code, which

Copyright is held by the author/owner(s).
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
ACM 978-1-59593-639-4/07/0006.

resulted in a linear search on timer lists. We use this cor-
rected version for all experiments, which resulted in a per-
formance improvement over the original code of 3X and 6X
with and without authentication, respectively.

Workload Generation. We use SIPp, another open-source
tool, for load generation. We improved SIPp’s performance
so that we could generate high loads on our limited num-
ber of clients. Since we are not only interested in maximum
throughput, but also in behavior under overload, we also
modified SIPp to support open-loop workload generation to
overload the server. These enhancements have been inte-
grated into the mainline SIPp source tree.

Hardware. Our server is a 3.06 GHz Xeon running Red-
Hat Enterprise Linux with a 2.6.17.8 kernel, and has a Gi-
gabit Ethernet connected to a private network. We use 10
clients to generate load on this network; each with a 1.7 GHz
Pentium 4 processor, a Gigabit Ethernet adapter, and SuSE
SLES 9 with a 2.6.5-9 kernel.

Metrics. We measure throughput, success rate, CPU
profiles, and latency (both averages and distributions). Each
experiment lasts for 120 seconds after a 5 second warm-up
time. Values reported are the average of five experiments
and include 95% confidence intervals.

2. SAMPLE RESULTS
Due to space limitations, we only present a small sample

of our complete results. Interested readers are referred to
our technical report [1] for full details and analysis. In this
Section, we present some of our results for proxying.

Throughputs. Figure 1 shows throughput versus offered
load for 8 separate proxying configurations: stateful and
stateless proxying, with and without authentication, and us-
ing UDP and TCP. We report peak throughputs (the max-
imum throughput with at least a 99% success rate) in Fig-
ure 2. The achieved throughputs vary considerably, depend-
ing on the configuration. Starting with the results for state-
less proxying with UDP and no authentication as a “best
case,” we can see how the various features impact perfor-
mance.

The most significant feature that affects performance is
authentication, which can reduce performance anywhere from
60 percent (in the stateful TCP case) to 90 percent (in the
stateless UDP case). The CPU profile (Figure 3) shows that
when authentication is enabled, almost half the cycles are
spent in the MySQL database and C library functions. Nei-
ther of these components are significant when authentication
is not used. The actual MD5 hash calculation typically uses
less than 1 percent of cycles.

 100

 1000

 100 1000 10000

T
hr

ou
gh

pu
t (

C
al

ls
/s

ec
)

(lo
g

sc
al

e)

Offered Load (log scale)

Stateless UDP NoAuth
Stateful UDP NoAuth

Stateless TCP NoAuth
Stateful TCP NoAuth
Stateless UDP Auth

Stateful UDP Auth
Stateless TCP Auth

Stateful TCP Auth

Figure 1: Throughputs vs. Offered Load: Proxying

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Stateful
TCP
Auth

Stateless
TCP
Auth

Stateful
UDP
Auth

Stateless
UDP
Auth

Stateful
TCP

NoAuth

Stateless
TCP

NoAuth

Stateful
UDP

NoAuth

Stateless
UDP

NoAuth

T
hr

ou
gh

pu
t (

C
al

ls
/s

ec
)

6996

4012

2495

1698

799 701
400 400

Figure 2: Peak Throughputs: Proxying

The next most significant performance feature is whether
TCP or UDP is used. Using TCP can reduce performance
anywhere from 43 percent (stateful proxying with authenti-
cation) to 65 percent (stateless proxying without authenti-
cation). CPU profiles show that time spent in the OpenSER
core goes up significantly, and the time spent in the kernel
almost doubles. As TCP is a much more complex proto-
col that provides more functionality than UDP, it requires
significantly larger code paths.

We also see that stateless vs. stateful processing can also
have a significant performance impact. Enabling stateful
processing can reduce performance by as much as 42 per-
cent (UDP without authentication) to having effectively no
impact on performance (TCP with authentication).

Finally, OpenSER does not preserve throughput under
overload: throughput falls quickly after load exceeds capac-
ity. Of course, maintaining peak throughput even under
overload is difficult, and is the subject of active research.

Latencies. Figure 4 shows the response time CDF mea-
sured at several loads for stateful authenticated UDP prox-
ying. As SIPp has a 1 millisecond timer resolution, any re-
sponses that occur within less than a millisecond are treated
as zero. An obvious and expected result is that, as the loads
increase, the response times increase as well (i.e., the curves
shift to the right on the graph). There are, however two
other interesting features of the graphs.

First, the curves cluster in two clearly different regions of
the graph: one, towards the upper left of the graphs, and
other, closer to the center and lower right. The characteris-
tic that differentiates these two regions is whether the loads
are below or above capacity, i.e., whether the system is over-
loaded. When overloaded, the response time distributions

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

Stateful
 TCP
 Auth

Stateless
 TCP
 Auth

Stateful
 UDP
 Auth

Stateless
 UDP
 Auth

Stateful
 TCP

 NoAuth

Stateless
 TCP

 NoAuth

Stateful
 UDP

 NoAuth

Stateless
 UDP

 NoAuth

C
P

U
 E

ve
nt

s

792365

1157010
1502403

2053077

4237710 4293730
4500508 4580777Authentication

Forwarding
Crypto

User Location
Stateless

Record Route
Other

Stateful
Database
C Library

OpenSER Core
Kernel

Figure 3: CPU Profile: Proxying 1000 CPS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096 16384 65536
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

F
un

ct
io

n
Response Time (ms) (log scale)

100 calls/sec
300 calls/sec
500 calls/sec
600 calls/sec
700 calls/sec
800 calls/sec

1000 calls/sec
2000 calls/sec
3000 calls/sec

Figure 4: Response Time CDF: Stateful Proxying,

UDP, with Authentication

become significantly worse, and not linearly in proportion
to the load. For example, the gap between the 700 curve
and the 800 curve is significant. This response time behav-
ior is particularly important for SIP servers, which need to
provide service quickly and smoothly, as they are used for
real-time media such as voice and video.

Second, observe that several significant jumps occur at
certain response times (e.g., 64 ms, 500 ms, 1000 ms, 2000
ms, etc.). These are due to the retransmission timers used by
SIP for reliability when using UDP. SIP’s primary retrans-
mission timer, called Timer A, uses an exponential backoff
starting at 500 milliseconds and doubles each subsequent
time that it fires. When the system is overloaded, we see
the manifestations of these timers firing by the jumps in
response time at those timer values.

3. FUTURE WORK
Based on our results, we believe many potential future

research issues exist for SIP-servers, including: OpenSER
and Linux optimizations based on profiling; maintaining
throughput under overload; and improving database per-
formance. There are also many important aspects of SIP-
server performance not yet studied, including user-model
based benchmarking; instant messaging and presence; and
using SSL. Again, details are available in the tech report.

4. REFERENCES
[1] E. Nahum, J. Tracey, and C. P. Wright. Evaluating SIP

Server Performance. Research report RC24183, IBM T.
J. Watson Research Center, February 2007.

