
Evaluating the Impact of Simultaneous Multithreading
on Network Servers Using Real Hardware

Yaoping Ruan
yruan@cs.princeton.edu

Vivek S. Pai
vivek@cs.princeton.edu

Erich Nahum†

nahum@watson.ibm.com

John M. Tracey†

traceyj@us.ibm.com

Department of Computer Science, Princeton University, Princeton, NJ 08544
† IBM T.J.Watson Research Center, Yorktown Heights, NY 10598

ABSTRACT
This paper examines the performance of simultaneous multithreading
(SMT) for network servers using actual hardware, multiple network
server applications, and several workloads. Using three versions
of the Intel Xeon processor with Hyper-Threading, we perform
macroscopic analysis as well as microarchitectural measurements
to understand the origins of the performance bottlenecks for SMT
processors in these environments. The results of our evaluation
suggest that the current SMT support in the Xeon is application
and workload sensitive, and may not yield significant benefits for
network servers.

In general, we find that enabling SMT on real hardware usually
produces only slight performance gains, and can sometimes lead to
performance loss. In the uniprocessor case, previous studies appear
to have neglected the OS overhead in switching from a uniprocessor
kernel to an SMT-enabled kernel. The performance loss associated
with such support is comparable to the gains provided by SMT.In
the 2-way multiprocessor case, the higher number of memory ref-
erences from SMT often causes the memory system to become the
bottleneck, offsetting any processor utilization gains. This effect
is compounded by the growing gap between processor speeds and
memory latency. In trying to understand the large gains shown by
simulation studies, we find that while the general trends formicro-
architectural behavior agree with real hardware, differences in siz-
ing assumptions and performance models yield much more opti-
mistic benefits for SMT than we observe.

Categories and Subject Descriptors:C.4 PERFORMANCE OF
SYSTEMS:Design studies

General Terms:Measurement, Performance.

Keywords: Network Server, Simultaneous Multithreading(SMT).

1. INTRODUCTION
Simultaneous multithreading (SMT) has recently moved from

simulation-based research to reality with the advent of commer-
cially available SMT-capable microprocessors. Simultaneous multi-
threading allows processors to handle multiple instruction streams
in the pipeline at the same time, allowing higher functionalunit uti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’05, June 6–10, 2005, Banff, Alberta, Canada.
Copyright 2005 ACM 1-59593-022-1/05/0006 ...$5.00.

lization than is possible from a single stream. Since the hardware
support for this extra parallelism seems to be minimal, SMT has
the potential to increase system throughput without significantly
affecting system cost. While academic research on SMT proces-
sors has been taking place since the mid-1990’s [8, 37], the recent
availability of SMT-capable Intel Xeon processors allows perfor-
mance analysts to perform direct measurements of SMT benefits
under a wide range of workloads.

One of the biggest opportunities for SMT is in network servers,
such as Web, FTP, or file servers, where tasks are naturally paral-
lel, and where high throughput is important. While much of the
academic focus on SMT has been on scientific or computation-
intensive workloads, suitable for the High Performance Computing
(HPC) community, a few simulation studies have explicitly exam-
ined Web server performance [18, 26]. The difficulty of simulat-
ing server workloads versus HPC workloads is in accurately han-
dling operating system (OS) behavior, including device drivers and
hardware-generated interrupts. While processor-evaluation work-
loads like SPEC CPU [33] explicitly attempt to avoid much OS in-
teraction, server workloads, like SPECweb [34] often include much
OS, filesystem, and network activity..

While simulations clearly provide more flexibility than actual
hardware, evaluation on real hardware also has its advantages, in-
cluding more realism and faster evaluation. Using actual hard-
ware, researchers can run a wider range of workloads (e.g., bottom-
half heavy workloads) than is feasible in simulation-basedenviron-
ments. Particularly for workloads with large data set sizesthat are
slow to reach steady state, the time difference between simulation
and evaluation can be substantial. The drawback of hardware, how-
ever, is the lack of configuration options that is available in simula-
tion. Some flexibility in the hardware analysis can be gainedby us-
ing processors with different characteristics, though this approach
is clearly much more constrained than simulators.

This paper makes four contributions:

• We provide a thorough experimental evaluation of SMT for
network servers, using five different software packages and
three hardware platforms. We believe this study is more com-
plete than any related work previously published.

• We show that SMT has a smaller performance benefit than
expected for network servers, both in the uniprocessor and
dual-processor cases. In each case, we identify the macro-
level issues that affect performance.

• We perform a microarchitectural evaluation of performance
using the Xeon’s hardware performance counters. The re-
sults provide insight into the instruction-level issues that af-
fect performance on these platforms.

• We compare our measurements with earlier simulation re-
sults to understand what aspects of the simulated processors

yielded much larger performance gains. We discuss the fea-
sibility of these simulation models, both in the context of
current hardware, and with respect to expected future trends.

Our evaluation suggests that the current SMT support is sensitive
to application and workloads, and may not yield significant bene-
fits for network servers, especially for OS-heavy workloads. We
find that enabling SMT usually produces only slight performance
gains, and can sometimes lead to performance loss. In the unipro-
cessor case, simulations appear to have neglected the OS overhead
in switching from a uniprocessor kernel to an SMT-enabled kernel.
The performance loss associated with such support is comparable
to the gains provided by SMT. In the 2-way multiprocessor case,
the higher number of memory references from SMT often causes
the memory system to become the bottleneck, offsetting any pro-
cessor utilization gains. This effect is compounded by the growing
gap between processor speeds and memory latency. We find that
SMT on the Xeon tends to provide better gains when coupled with
large L3 caches. By comparing performance gains across variants
of the Xeon, we argue that such caches will only become more cru-
cial for SMT as clock rates increase. If these caches continue to be
one of the differentiating factors between commodity and higher-
cost processors, then commodity SMT will see eroding gains going
forward. We believe this observation also applies to architectures
other than the Xeon, since SMT only yields benefits when it is able
to utilize more processor resources.

Using these results, we can also examine how simulation sug-
gested a much more optimistic scenario for SMT, and why it differs
from what we observe. For example, when calculating speedups,
none of the simulations used a uniprocessor kernel when measur-
ing the non-SMT base case. Furthermore, the simulations usecache
sizes that are larger than anything commonly available today. These
large caches appear to have supported the higher number of threads
used, yielding much higher benefits than what we have seen, even
when comparing with the same number of threads. We do not be-
lieve that the processor models used in the simulation are simply
more aggressive than what is available today or likely to be avail-
able in the near-future. Instead, using comparable measurements
from the simulations and existing hardware, we show that thetype
of processors commonly modeled in the simulations are unlikely to
ever appear as slightly-modified mainstream processors. Weargue
that they have characteristics that suggest they could be built specif-
ically for SMT, and would sacrifice single-thread performance.

The rest of this paper is organized as follows: we provide some
background on SMT, the Xeon, and our experimental setup in Sec-
tion 2. We measure SMT’s effect on throughput and perform a
microarchitectural analysis in Sections 3 and 4. In Section5 we
compare our measurement results to previous simulation studies.
The impact of other workloads is discussed in Section 6. Section 7
discusses related work, and we conclude in Section 8.

2. BACKGROUND
In this section we present an overview of the Intel Xeon proces-

sor with Hyper-Threading (Intel’s term for SMT), then describe our
experimental platform including hardware parameters and server
configuration, our workloads and measurement methodology.

2.1 SMT Architecture
The SMT architecture was proposed in the mid-1990’s, and has

been an active area for academic research since that time [16, 36,
37], but the first general-purpose processor with SMT features was
not shipped until 2003. The main intent of SMT is to convert
thread-level parallelism into instruction-level parallelism. In SMT-

clock rate 2.0 or 3.06 GHz
pipeline 20 stages or 30 stages starting from the TC

Fetch 6 µops per cycle
Policy round robin for logical processors

Retirement 3 µops per cycle
Shared caches, branch predictors, decoder logic

Resources DTLB, execution units, buses
Duplicated interrupt controller, status registers
Resources ITLB, renaming logic
Partitioned µop queue, re-ordering buffer
Resources load/store buffer, general instruction buffer

Table 1: Intel Xeon hardware parameters.

enabled processors, instructions from multiple processesor threads
can be fetched together, without context switching, and canbe ex-
ecuted simultaneously on shared execution resources. Fromeither
the operating system’s or user program’s perspective, the system
appears to have multiple processors. Currently, we are aware of
only two processors in production that support SMT – the Intel
Xeon with Hyper-Threading and the IBM POWER5. The Xeon
has been available longer, and since it is available in a widerange
of configurations, it provides us with an opportunity to affordably
evaluate the impact of several features.

The Xeon is Intel’s server-class x86 processor, designed tobe
used in higher-end applications. It is differentiated fromthe Pen-
tium 4 by the addition of extra on-chip cache, support for SMT
(though this is now beginning to appear on standard P4 proces-
sors), and on-chip support for multiprocessing. It is a superscalar,
out-of-order processor with a deep pipeline, ranging from 20 to
30 stages depending on processor version and clock speed. Ithas
two hardware contexts (threads) per processor, which sharemost
of the resources, such as caches, execution units, branch predictor,
control logic, and buses. Its native x86 instruction set architec-
ture is CISC, but it internally translates instructions into RISC-like
micro-operations (µops) before executing them. Buffering queues
between major pipeline logic blocks, such asµop queues, and the
reorder buffer, are partitioned when SMT is enabled, but arere-
combined when only one software thread is active [17]. The basic
hardware information for the Xeon can be found in Table 1.

2.2 Experimental setup
To reduce the number of variables in our experiments, all of our

tests use the same motherboard, an Intel SE7505VB2 with 4GB
memory, which is capable of supporting up to two processors.Our
processors are the 3.06 GHz Xeon with no L3 cache, the 3.06 GHz
Xeon with a 1MB L3 cache, and the 2.0 GHz Xeon without L3
cache. Using these three processors, we can determine the effect
of different clock rates, and the effect of the presence or absence
of an L3 cache. All processors have a 533 MHz front-side bus
(FSB). The 2.0 GHz use a 20-stage pipeline starting from the trace
cache (TC), while the 3.06 GHz Xeons use a 30-stage pipeline.All
tests use the same physical motherboard, and we manually replace
processors as needed, in order to reduce the chance that variations
in memory manufacturing, etc., can affect the results. The memory
hierarchy details for our system are provided in Table 2. Using
lmbench [19], we find the main memory latencies are 225 cycles
for the 2.0 GHz Xeon, 320 cycles for the 3.06 GHz Xeon with L3,
and 344 cycles for the 3.06 GHz processor without L3 cache.

The increase in memory latency (measured in cycles) for the 3.06
GHz processors is not surprising, since the cycles are shorter in

Level Capacity Associa- Line Size Latency
tivity (cycles)

TC 12K µops 8 way 6 µops N/A
D-L1 8 KB 4 way 64 bytes 2

L2 512 KB 8 way 128 bytes 18
Memory 4 GB N/A N/A 225 - 344

ITLB 128 entries, 20 cycles miss penalty
DTLB 64 entries, 20 cycles miss penalty

Table 2: Intel Xeon memory hierarchy information. The latency cy-
cles of each level of the memory hierarchy includes the cachemiss time
of the previous level

absolute time. The absolute latency is relatively constantsince the
FSB speed is the same. The impact on bandwidth is 22%, much
less than the clock speed difference – the 2.0 GHz system has a
read bandwidth of 1.8 GB/sec while the 3.06 GHz system has a
value of 2.2 GB/sec. While higher bandwidth is useful for copy-
intensive applications, the memory latency is more important to
applications that perform heavy pointer-chasing. Early Web servers
performed significant numbers of memory copies to transfer data,
but with the introduction of zero-copy [22] support into servers,
copy bandwidth is less of an issue.

Our testing harness consists of 12 uniprocessor client machines
with AMD Duron processors at 1.6 GHz. The aggregate processor
power of the clients are enough to ensure that the clients arenever
the bottleneck. To ensure adequate network bandwidth, the clients
are partitioned into four groups of three machines. Each group is
connected to the server via a separate switched Gigabit Ethernet,
using four Intel e1000 MT server adapters at the server.

We compare five different OS/processor configurations, based
on whether a uniprocessor or multiprocessor kernel is used,and
whether SMT is enabled or disabled. Using the BIOS support and
OS boot parameters, we can select between one or two proces-
sors, and enable or disable SMT. For most of our tests, we use a
multiprocessor-enabled (SMP) kernel, since the OS sees an SMT-
enabled processor as two logical processors. However, whenwe
run with one physical processor and SMT disabled, we also test on
a uniprocessor kernel. These combinations yield the five configura-
tions studied in this paper: one processor with uniprocessor kernel
(1T-UP), one processor with SMP kernel (1T-SMP), one proces-
sor with SMP kernel and SMT enabled (2T), two processors (2P),
and two processors with SMT enabled (4T). Key features of the
five configuration and their names used in this paper are shownin
Table 3. The operating system on the server is Linux, with ker-
nel version 2.6.8.1. This version includes optimizations for SMT,
which we enable. The optimizations are described next.

2.3 Kernel Versions and Overheads
In evaluating SMT performance on uniprocessors, it is important

to understand the distinction between the types of kernels avail-
able, because they affect the delivered performance. Uniprocessor
kernels, as the name implies, are configured to only support one
processor, regardless of how many physical processors are in the
system. Multiprocessor kernels are configured to take advantage of
all processors in the system using a single binary image. While in-
tended for multiple processors, they are designed to operate without
problems on a single processor.

Uniprocessor kernels can make assumptions about what is pos-
sible during execution, since all sources of activity are taking place
on one processor. Specifically, the OS can make two importantas-

1T-UP 1T-SMP 2T 2P 4T
CPUs 1 1 1 2 2

SMP kernel No Yes Yes Yes Yes
SMT enabled No No Yes No Yes

Table 3: Notation used in this paper reflecting different hardware and
kernel configurations

sumptions: that only one process or thread can be actively running
in the kernel at once, and that when the kernel is executing onbe-
half of that process or thread, the only other source of execution is
hardware interrupts. The first condition is important for protecting
data in the kernel – when the kernel is executing, it generally does
not have to worry about locking kernel data structures unless it may
block on some resource. The only data sharing that remains isfor
data used by any interrupt servicing code. The existence of only
one processor also simplifies this code, since it can simply disable
interrupts when manipulating such data, and enable interrupts af-
ter the critical section. Since enabling or disabling interrupts is a
single instruction on the x86, this code can be compact.

On multiprocessors (SMP), the invalidation of both assumptions
causes the need to have more synchronization code in the kernel,
leading to more overhead. Both processors can be executing ker-
nel code simultaneously, so any global data in the kernel must be
protected from race conditions. The simplest approach, using a “gi-
ant kernel lock” to ensure only one processor is in the kernelat a
time, reduces the performance of OS-intensive workloads, and has
been replaced with fine-grained locking on all major OSes. Inter-
rupt handling must also differ – since interrupts can be delivered
to a different processor than the one using data shared with the in-
terrupt handler, the kernel cannot simply locally disable interrupts.
Instead, all data accessible by an interrupt handler must also be pro-
tected using locks, to prevent another processor from accessing it
simultaneously.

For uniprocessors, running a multiprocessor version of thekernel
can therefore cause a much larger performance loss than might be
expected, because instead of one extra lock operation per system
call, many lock operations may be necessary for fine-graineddata
sharing. For network servers, this overhead can be significant, if
every packet and acknowledgment invokes extra code that is not
necessary in the uniprocessor case.

Since the OS treats an SMT-enabled processor as two logical
processors, it must use the SMP kernel, with the associated over-
heads. Kernel designers have taken steps to reduce some overheads,
knowing that some operations can be performed more efficiently
on an SMT with two logical processors than a multiprocessor with
two physical processors. However, since SMTs interleave instruc-
tions from multiple contexts, these overheads cannot be reduced to
the level of uniprocessor kernels. The Linux kernel implements a
number of SMT-specific optimizations, mostly related to processor
affinity and load balancing [3]. Task run queues are shared be-
tween contexts on each physical processor, eliminating thechance
of one context being idle while the other has multiple tasks waiting.
This balancing occurs whenever a task wakes up or when any other
task on the same physical processor finishes. Processor affinity, in-
tended to minimize cache disruption, is also performed on physical
processor instead of logical processors.

2.4 Test & Measurement methodology
We focus on Web (HTTP) servers and workloads because of

their popularity and the diversity of server implementations avail-
able. The server applications we use are Apache 2.0 [2], Flash [21],

TUX [38], and Haboob [40]. Each server has one or more distin-
guishing features which increases the range of systems we study.
All of the servers are written in C, except Haboob, which usesJava.
TUX is in-kernel, while all of the others are user-space. Flash and
Haboob are event-driven, but Haboob also uses threads to isolate
different steps of request processing. We run Apache in two config-
urations – with multiple-processes (dubbed Apache-MP), and mul-
tiple threads (dubbed Apache-MT) using Linux kernel threads, be-
cause the Linux 2.6 kernel has better support for threads than the
2.4 series, and the Xeon has different cache sharing for threaded
applications. Threaded applications share the same address space
register while multi-process applications usually have different reg-
isters. Flash has a main process handling most of the work with
helpers for disk IO access. We run the same number of Flash main
processes as the number of hardware contexts. TUX uses a thread-
pool model, where multiple threads handle ready events. With the
exception of Haboob, all of the servers use the zero-copy interfaces
available on Linux, reducing memory copy overhead when send-
ing large files. For all of the servers, we take steps described in
the literature to optimize their performance. While performance
comparison among the servers is not the focus of this paper, we
are interested in examining performance characteristics of SMT on
these different software styles.

We use the SPECweb96 [34] benchmark mostly because it was
used in previous simulation studies. Compared to its successor, the
SPECweb99 benchmark, it spends more time in the kernel because
all requests are static, which resembles other server workloads such
as FTP and file servers. We also include SPECweb99 benchmark
results for comparison. SPECweb is intended to measure a self-
scaling capacity metric, which means that the workload character-
istics change in several dimensions for different load levels.

To simplify this benchmark while retaining many of its desirable
properties, we use a more tractable subset when measuring band-
widths. In particular, we fix the data set size of the workloadto
500MB, which fits in the physical memory of our machine. We
perform measurements only after an initial warm-up phase, to en-
sure that all necessary files have been loaded into memory. During
the bandwidth tests, no disk activity is expected to occur. We dis-
able logging, which causes significant performance losses in some
servers. SPECweb99 measures the number of simultaneous con-
nections each server is able to sustain while providing the speci-
fied quality of service to each connection. The SPECweb99 client
software introduces latency between requests to decrease the per-
connection bandwidth. SPECweb96 does not have this latency, al-
lowing all clients to issue requests in a closed loop, infinite-demand
model. We use 1024 simultaneous connections, and report theag-
gregate response bandwidth received by the clients.

We use a modified version of OProfile [20] to measure the uti-
lization of microarchitectural resources via the Xeon’s performance-
monitoring events. OProfile ships with the Linux kernel and is able
to report user, kernel or aggregated event values. OProfile operates
similarly to DCPI [1], using interrupt-based statistical sampling of
event counters to determine processor activity without much over-
head. We find that for our experiments, the measurement overhead
is generally less than 1%. While OProfile supports many event
counts available on the Xeon, we enhance the released code tosup-
port several new events, such as L1 data cache miss, DTLB miss,
memory loads, memory stores, resource stalls, etc.

3. SMT PERFORMANCE
In this section we evaluate the throughput improvement of SMT

in both uniprocessor and multiprocessor systems. Particular atten-
tion is given to the comparison between configurations with and

without SMT enabled, and kernels with and without multiproces-
sor support. We first analyze trends at a macroscopic level, and then
use microarchitectural information to understand what is causing
the macroscopic behavior. Our bandwidth result for the basic 3.06
GHz Xeon, showing five servers and five OS/processor configura-
tions, can be seen in Figure 2. Results for 2.0 GHz and 3.06 GHz
with L3 cache are seen in Figures 1 and 3, respectively. For each
server, the five bars indicate the maximum throughput achieved us-
ing the specified number of processors and OS configuration.

While bandwidth is influenced by both the server software as
well as the OS/processor configuration, the server softwareusually
has a large effect (and in this case, dominant effect) on bandwidth.
Heavily-optimized servers like Flash and TUX are expected to out-
perform Apache, which is designed for flexibility and portability
instead of raw performance. The relative performance of Apache,
Flash, and Haboob is in-line with previous studies [28]. TUX’s
relative performance is somewhat surprising, since we assumed an
in-kernel server would beat all other options. To ensure it was be-
ing run correctly, we consulted with its author to ensure that it was
properly configured for maximum performance. We surmise that
its performance is due to its emphasis on dynamic content, which
is not exercised in this portion of our testing. Haboob’s lowper-
formance can be attributed both to its use of Java as well as its
lack of support for Linux’s sendfile system call (and as a result,
TCP checksum offload). For in-memory workloads, the CPU is at
full utilization, so the extra copying, checksumming, and language-
related overheads consume processor cycles that could otherwise
be spent processing other requests.

3.1 SMP Overhead on Uniprocessor
We can quantify the overhead of supporting an SMP-capable ker-

nel by comparing the 1T-UP (one processor, uniprocessor kernel)
value with the 1T-SMP (one processor, SMP kernel) value. The
loss from uniprocessor kernel to SMP kernel on the base 3.06 GHz
processor is 10% for Apache, and 13% for Flash and Tux. The
losses on the L3-equipped processor and the 2.0 GHz processor
are 14% for Apache and 18% for Flash and Tux, which are a little
higher than our base system. The impact on Haboob is relatively
low (4%-10%), because it performs the most non-kernel work.The
magnitude of the overhead is fairly large, even though Linuxhas
a reputation of being efficient for low-degree SMP configurations.
This result suggests that, for uniprocessors, the performance gained
from selecting the uniprocessor kernel instead of SMP kernel can
be significant for these applications.

The fact that the impacts are larger for both the slowest processor
and the processor with L3 are also interesting. However, if we con-
sider these results in context, it can be explained. The extra over-
heads of SMP are not only the extra instructions, but also theextra
uncacheable data reads and writes for the locks. The fastestsystem
gets its performance boost from its L3 cache, which makes themain
memory seem closer to the processor. However, the L3 provides no
benefit for synchronization traffic, so the performance lossis more
pronounced. For the slowest processor, the extra instructions are an
issue when the processor is running at only two-thirds the speed of
the others.

3.2 Uniprocessor SMT Benefits
Understanding the benefits of SMT for uniprocessors is a little

more complicated, because it must be compared against a base
case. If we compare 1T-SMP to 2T (uniprocessor SMT), the re-
sulting graphs would appear to make a great case for SMT, with
speedups in the 25%-35% range for Apache, Flash and TUX, as
shown in Figure 4. However, if we compare the 2T performance

Figure 1: Throughput of Xeon 2.0GHz pro-
cessor without L3 cache

Figure 2: Throughput of base Xeon 3.06GHz
processor

Figure 3: Throughput of Xeon 3.06GHz pro-
cessor with 1MB L3 cache

Figure 4: SMT speedup on uniprocessor sys-
tem with SMP kernel

Figure 5: SMT speedup on uniprocessor sys-
tem with different kernels

Figure 6: SMT speedup on dual-processor
system

versus 1T-UP, then we see that the speedups are much more mod-
est. These comparisons are shown in Figure 5, for all three pro-
cessor types. In general, the relative gain decreases as processor
becomes faster (via clock speed or cache). Apache-MT’s gainon
the 2.0 GHz processor is the highest at 15%, but this drops to the
10%-12% range for faster processors. The gains for Flash andTUX
are less, dropping to the 3%-5% range for the faster processor. The
Haboob numbers show the opposite trend from all other servers,
showing a loss at 2.0 GHz improving to a small gain.

We believe that the correct comparison for evaluating unipro-
cessor SMT benefits is comparing the bandwidths with 1T-UP. Al-
though the kernels are different, the SMP kernel needlesslyhin-
ders uniprocessor performance. For parallel algorithms, compari-
son with the best base case is also a standard speedup measurement
technique. The performance of a parallel algorithm is compared to
the performance of the best sequential algorithm. Simply put, the
gain from choosing the appropriate kernel is comparable to the gain
of upgrading hardware.

In comparing what is known about measured speedups from en-
abling the Xeon’s SMT, our results are comparable to the 20%-24%
gains that Tuck and Tullsen observed using other workloads [35].
Their speedup comparisons are performed using an SMP kernelfor
all measurements, which would be similar to comparing our 2T
results to the 1T-SMP values. In fact, our observed speedupsare
slightly higher than theirs, if we discount Haboob. This result is
in-line with the observation that SMT can potentially help server-
style software more than other workloads [26]. The impact ofusing
a uniprocessor kernel on the Tuck and Tullsen results is not clear
– their workloads are not OS-intensive, so the performance loss of
using an SMP kernel may be less than what we observed.

3.3 SMT in Dual-processor systems
The next reasonable point of comparison for SMT is in dual-

processor systems, since these systems are particularly targeted to
the server market and are rapidly approaching “commodity” status.
Two factors responsible for this shift are the falling CPU prices
and the support for low-degree multiprocessing built into some
chips. The Xeon processors are available in two variants, the Xeon
DP and the Xeon MP, with the distinguishing feature being the
number of processors that can be used in one system. The DP
(“dual-processor”) line has on-chip support for building “glueless”
2-processor SMP systems that require no extra hardware to share
the memory bus. The MP (“multiprocessor”) line is intended for
systems with more than 2 processors. In addition to the on-chip
glue logic, the Xeon DP also drives commodification of dual-processor
systems via pricing – as of this writing the Xeon DP is roughlyone-
tenth the cost of a Xeon MP at the same clock rate. Whether this
difference stems from pricing strategies or economies of scale is
unclear to us, but it does greatly magnify the price difference be-
tween dual-processor systems and larger multiprocessors.

We note that enabling SMT in a dual-processor configuration
carries more risk than enabling it for uniprocessors. Whilethe ac-
tual gains in uniprocessors may have been comparable to the loss
in using an SMP kernel, the overall gains were still positive. As
shown in Figure 6, enabling SMT in dual-processor configurations
can cause a performance loss, even though the same kernel is being
used in both cases. Haboob shows a 9%-15% loss on the three dif-
ferent processors, when comparing the 2P configuration to the 4T
configuration. Flash and TUX show a loss in the base 3.06 GHz
case, but show small gains for the other two processor types.The
specifics of the performance curves lead us to believe that Flash

Figure 7: Bus utilization of three hardware configurations

and TUX are bottlenecked on the memory system – the base 3.06
GHz processor will have more memory traffic than its L3-equipped
counterpart. Likewise, the 2 GHz processor has relatively faster
memory, measured in CPU cycles, since the processor speed is
slower. So, by taking a 2-processor system whose bottleneckis
already memory, and increasing the memory demand, the overall
performance will not improve. By the same reasoning, we can infer
that Apache may be processor-bound, since it sees gains on all of
the processors. The highest gain in this test, both in terms of abso-
lute bandwidth and in percentage, is seen in the Apache-MT results
for the L3-equipped 3.06 GHz processor. It gains 16% over the2P
configuration, jumping from 1371 Mb/s to 1593 Mb/s. The gain for
Apache-MP on this processor is also significant, but smaller.

3.4 Understanding Relative Gains
These results are interesting because Apache is neither thebest

performer nor the worst – it appears to be in a “sweet spot” with
respect to the benefits of SMT. This sweet spot may not be very
large, in terms of the variety of configurations for which it works
– Apache’s gain on the base 3.06 GHz is only 4%-5%. Going for-
ward, it may be necessary to keep increasing cache sizes to prevent
faster processors from being bottlenecked on memory. If allof the
contexts are waiting on memory, SMT may not be able to provide
much benefit.

However, when using the relative gains, one should remember
that they are compared only to the same server software, and may
only reflect some artifact of that server. For instance, while Apache’s
relative gains are impressive, the absolute performance numbers
may be more important for many people. Those show clearly that
even the best Apache score for a given processor class never beats
the worst Flash score, and almost never beats the worst TUX score.
So, even with 2 SMT-enabled processors, Apache still does not per-
form as well as Flash (or TUX, generally) on a single processor.

3.5 Measuring the Memory Bottleneck
In the previous analysis, we have attempted to ascribe some of

the performance characteristics of the various servers andconfig-
urations to their interaction with the memory system. To quantify
these effects, we measure the cycles when the memory bus is occu-
pied by any one of the threads, including both driving data onto or
reading data from the bus. Even though the bus utilization figures
do not differentiate “pointer chasing” styles of memory accessing
from bulk data copying, by knowing the particular optimizations
used by the servers, we can use this information to draw reasonable
conclusions. To normalize the different processor clock speeds, bus
utilization is calculated as follows:

Utilization =
(CyclesBusOccupied) ∗ (ClockSpeed)

(NonHaltedCycles ∗ BusSpeed)
(1)

The bus utilization values, broken down by server software,con-
figuration, and processor type, are shown in Figure 7. Several first-
order trends are visible: bus utilization tends to increaseas the num-
ber of contexts/processors is increased, is comparable forall servers
except Haboob, and is only slightly lower for L3-equipped pro-
cessors. The trends can be explained using the observationsfrom
the bandwidth study, and provide strong evidence for our analysis
about what causes bottlenecks.

The increased bus utilization for a given processor type as the
number of processors and hardware contexts increase is not sur-
prising, and is similar in pattern to the throughput behavior. Essen-
tially, if the system is work-conserving, we expect bus utilization to
be correlated with the throughput level. In fact, we see thispattern
for the gain from the 2.0 GHz processor to 3.06 GHz – the coeffi-
cient of correlation between the throughput and the bus utilization
is 0.95. The coefficient for the L3-equipped versus base 3.06GHz
Xeon is only 0.62, which is still high, and provides evidencethat
the L3 cache is definitely affecting the memory traffic. A more
complete explanation of the L3 results are provided below.

The fact that Haboob’s bus utilization looks different fromothers
is explained by its lack of zero-copy support, and in turn explains
its relatively odd behavior in Figures 5 and 6. The bulk data copy-
ing that occurs during file transfers will increase the bus utilization
for Haboob, since the processor is involved in copying buffers and
performing TCP checksums. However, the absolute utilization val-
ues mask a much larger difference – while Haboob’s bus utilization
is roughly 50% higher than that of Flash or TUX, its throughput is
one-half to one-third the value achieved by those servers. Combin-
ing those figures, we see that Haboob has a per-request bus utiliza-
tion that is three to four times higher than the other servers.

The same explanation applies to the bus utilization for the L3-
equipped processors, and to Apache’s relative gain from SMT. The
L3 cache absorbs memory traffic, reducing bus utilization, but for
Flash and TUX, the L3 numbers are only slightly below the non-L3
numbers. However, the absolute throughput for the L3-equipped
processors are as much as 50% higher, indicating that the per-
request bus utilization has actually dropped. The differences in bus
utilization then provide some insight into what is happening. For
Flash and TUX, the L3 bus utilizations are very similar to thenon-
L3 values, suggesting that the request throughput increases until
the memory system again becomes the bottleneck. For Apache,the
L3 utilization is lower than the non-L3, suggesting that while the
memory system is a bottleneck without the L3 cache, something

Figure 8: Cycles per micro-op (CPµ) Figure 9: L1 instruction cache (Trace Cache)
miss rate

Figure 10: L1 data cache miss rate

Figure 11: L2 cache miss rate, including both
instruction and data

Figure 12: Instruction TLB miss rate Figure 13: Data TLB miss rate

Apache-MP Apache-MT Flash Tux Haboob
µPB 12.5 13.0 5.7 6.0 20.7
IPB 6.8 7.1 3.2 3.4 10.7

Table 4: Average Instructions andµops per byte for all servers

else becomes the bottleneck with it. Since we know the mem-
ory system is capable of higher utilization, we can concludethat
CPU processing is the bottleneck. The explanation addresses both
Apache’s benefit with a second processor as well as with SMT en-
abled. Since Apache has more non-memory operations than Flash
or TUX, it can benefit from the additional CPU capacity.

4. MICROARCHITECTURAL ANALYSIS
To understand the underlying causes of the performance we ob-

served, we use the hardware events available on the Xeon. These
events can monitor various microarchitectural activities, includ-
ing cache misses, TLB misses, pipeline stalls, etc. While these
counts discover low level resource utilization, their effects are hard
to quantify since the Xeon’s long pipeline overlaps many of these
events’ occurrence. We examine cycles per instruction and track
various causes of these cycles spent. At a high level, CPU cycles
can be modeled by three factors: cycles required to graduatethe
given instruction, instruction related stalls caused by unavailable
instructions or data, and stalls due to pipeline resource limits. For
instruction-related stalls caused by cache or TLB misses, we are
able to calculate the individual numbers of cycles for each event
type based on the known miss penalties. For pipeline resources,
the Xeon only provides the number of stalls caused by allocator
buffer shortages. Stalls from other sources, such as lack ofother
buffers or decode-execute interlocks, are not available.

We next describe a number of important metrics from a micro-
architectural standpoint. We show measurements on our base3.06
GHz processors since all of our processors have exactly the same
resources such as cache size, TLB lines, buffers, etc., and we do
not observe radical differences between them for the metrics we
present here.

• Cycles per instruction (CPI). We measure the number of non-
halted cycles and the number of instructions retired to calculate
CPI. Since the Xeon decodes each instruction into multiple micro-
ops (µops), we report CPI or CPµ where appropriate. The ratio of
µops to instructions in our application ranges between 1.75 -1.95.
Figure 8 shows cycles perµop on each logical processor base for
all of the servers. Network servers demonstrate much higherCPµ

than other workloads, with the minimum value of 2.15, while the
Xeon’s optimal CPµ is 0.33, with threeµops graduating per cycle.

While CPI is commonly used for indicating processor execution
quality or efficiency, it is not a perfect metric for some parts of
our study. Because of the varying code bases, the number of in-
structions used to deliver a single byte of content also differs. For
this reason, we may also report counts in terms of application-level
bytes transferred, shown in Table 4 as instructions andµops per
byte (IPB andµPB). We discuss some of the event results below.

• Cache behavior.In SMTs, the multiple contexts share all of the
cache resources. This sharing may cause extra cache pressure be-
cause of conflicts, but may also reinforce each other. By comparing
miss rates, we are able to detect whether cache conflicts or rein-
forcement dominates. Figures 9, 10, and 11 show miss rates for the
L1 instruction (trace) cache, the L1 data cache, and the combined
L2 cache, respectively.

When SMT is enabled (in 2T and 4T), both the L1 instruction
and data caches show significantly higher miss rates, indicating ex-
tra pressure, but the L2 miss rates improve, indicating benefits from

Figure 14: Branch misprediction rate Figure 15: Trace delivery engine stalls Figure 16: Stalls due to lack of store buffers

Figure 17: # of pipeline clears per byte Figure 18: # of aliasing conflicts per byte

sharing. In comparing Apache-MT to Apache-MP, we do see some
reduction in the 4T L1 miss rate, but the miss rate is still higher than
the 2P cases. Thus, while the multithreaded code helps reduce the
pressure, the SMT ICache pressure is still significant. The L2 miss
rate drops in all cases when SMT is enabled, indicating that the two
contexts are reinforcing each other. The relatively high L2miss rate
for TUX is due to its lower L1 ICache miss rate – in absolute terms,
TUX has a lower number of L2 accesses. The interactions on CPI
are complex – the improved L2 miss rates can reduce the impact
of main memory, but the much worse L1 miss rates can inflate the
impact of L2 access times. We show the breakdowns later when
calculating overall CPI values.

• TLB misses. In the current Xeon processor, the Instruction
Translation Lookaside Buffer (ITLB) is duplicated and the shared
DTLB is tagged with each logical processor’s ID. Enabling SMT
drops the ITLB miss rate (shown in Figure 12) while increasing
the DTLB miss rate (shown in Figure 13). The DTLB miss rate is
expected, since the threads may be operating in different regions
of the code. We believe the drop in ITLB stems from the interrupt
handling code executing only on the first logical processor,effec-
tively halving its ITLB footprint.

• Mispredicted branches. Branches comprise 15% - 17% of in-
structions in our applications. Each mispredicted branch has a 20
cycle penalty. Even though all of the five servers show 50% higher
misprediction rates with SMT, the overall cost is not significant
compared to cache misses, as we show in the breakdowns later.

• Instruction delivery stalls. The cache misses and mispredicted
branches result in instruction delivery stalls. This eventmeasures
the number of cycles halted when there are no instructions ready
to issue. Figure 15 shows the average cycles stalled for eachbyte
delivered. For each server, we observe a steady increase from 1T-
UP to 4T, suggesting that with more hardware contexts, the number
of cycles spent stalled increases.

• Resource Stalls.While the value of instruction delivery stalls
measures performance in the front-end of the pipeline, stalls may
also occur during pipeline execution stages. This event measures
the occurrence of stalls in the allocator caused by store buffer re-
strictions. In the Xeon, buffers between major pipeline stages are
partitioned when SMT is enabled. Figure 16 shows cycles stalled
per byte due to lack of the store buffer in the allocator. Enabling
SMT exhibits a doubling of the number of stall cycles for eachbyte
transfered. Unfortunately, stalls due to other buffer conflicts, such
as the renaming buffer, are not available on existing performance-
monitoring counters. We expect similar pressure is also seen in
other buffers.

• Pipeline clears.Due to the Xeon’s design, there are conditions
in which all non-retiring stages of the pipeline need to be cancelled.
This event measures the number of these flushes. When this hap-
pens, all of the execution resources are idle while the clearoccurs.
Figure 17 shows the average number of pipeline clears per byte
of content. The SMT rate is a factor of 4 higher, suggesting that
pipeline clears caused by one thread can affect other threads exe-
cuting simultaneously. Profiling on this event indicates that more
than 70% are caused by interrupts. Haboob’s high clear rate in 4T
mode may be responsible for some of its performance degradation.

• 64K aliasing conflicts.This event occurs when the address of a
load or store conflicts with another reference which is in progress.
When this happens, the second reference cannot begin until the first
one is evicted from the cache. This type of conflict exists in the
first-level cache and may incur significant penalties for loads that
alias to preceding stores. The number of conflicts per byte isshown
in Figure 18. All of the servers show fairly high number of con-
flicts, suggesting an effective direction for further optimization.

• Putting cycles together.We estimate the aggregated cycles per
instruction of these negative events and compare them to themea-
sured CPI. While it is possible to estimate the penalty of each event,

Figure 19: Non-overlapped CPI accumulated by cache miss, TLB miss, mispredicted branches and pipeline clear. Labels shown here such as L1,
L2 etc. are misses, and components in each bar from top to bottom are in the same order as in the legend. Measured CPIs are shown as small dashes.

some have aggregated effects and thus are not included. Figure 19
shows breakdowns of non-overlapped CPIs calculated from eight
events, with measured CPI shown as dashes. The breakdowns in-
dicate that L1 and L2 misses are responsible for most of the cycles
consumed. Pipeline clears and buffer stalls also have a significant
portion when SMT is enabled, as shown in Flash, Tux and Ha-
boob’s 2T and 4T cases. Other events such as TLB misses and
mispredicted branches are not major factors in our workloads.

Our microarchitectural analysis provides quantitative explana-
tions of the observed performance and discovers a number of SMT
resource bottlenecks. Quantifying performance change based on
processor events for our-of-order superscalar processorsis not our
goal, nor do we think it is feasible. However, by examining the
aggregated CPI and measured CPI, we can estimate the pipeline
overlapping if the measured CPI is lower than the calculatedvalue,
and how many cycles are taken by other sources if measured CPI
is higher. With this microscopic information and observed perfor-
mance improvement, we can compare to similar studies using sim-
ulation which we describe in the next section.

5. EVALUATING THE SIMULATIONS
Our measurements present a much less optimistic assessmentof

SMT performance benefits than many of the simulation-based stud-
ies – most of our gains are in the 5%-15% range for 2 threads,
while the simulations show speedups in the 200%-400% range for
4-8 threads. Intuitively, the number of threads might be thecause
of this speedup gap. However, studies also show that the firstfew
threads usually exhibit more performance gain than the rest[36].
Thus, the simulated speedup for 2 threads would be in the range
of 70-100%, which is still much higher than what we observe.
While none of the published simulations modeled the Xeon, the
significant disparity in the gains warrants analyzing theircause.
We have not found any simulations specifically regarding multipro-
cessor systems, although such systems are popular in the network
server market. None of the simulations appear to have considered
the cost of using an SMP-enabled kernel instead of a uniprocessor
kernel, and we have shown this cost to be significant. However,
we believe the other significant differences are hardware-related,
which we discuss below.

The most prominent area of difference between the Xeon and
the simulated processors is the structure of the memory hierarchy,
and the associated latencies. The Xeon has an 8KB L1 data cache
and a 12Kµops trace cache (TC), which is equivalent to an 8KB
- 12KB conventional instruction cache. Detailed hardware param-

Type sim sim sim Xeon Xeon
Year 1996 2000 2003 2003 2004
Clock rate (Mhz) 600∗ 800∗ 800∗ 2000 3060
Contexts 8 8 8 2 2
Stages 9 9 9 20 30
L1 ICache (KB) 32 128 64 8∗ 8∗

L1 DCache (KB) 32 128 64 8 8
L2 size (KB) 256 16384 16384 512 512
L2 cycles 6 20 20 18 18
L3 size (KB) 2048 - - - 1024
L3 cycles 12 - - - 46
Memory (cycles) 62 90 90 225 344

Table 5: Processor parameters in simulation and current products.
Values marked with an asterisk are approximate or derived.

eters and latencies for our experimental platform are presented in
Table 5. The 1996 study is a proposal for practical SMT proces-
sors [36], while the 2000 paper examines SMT OS and Web server
performance [26], and the 2003 one examines SMT search engine
performance [18]. The processor models were derived from Alpha,
and have shorter pipelines and slower clock speeds than modern
processors. While the 1996 design had caches that are comparable
to what is available today, the others are much more aggressive than
what is currently available.

The issue of cache size is significant, because of its direct im-
pact on processor cycle time. Larger caches slow access times, and
the Xeon’s L1 caches are small in order to support its high clock
frequencies. For comparison, if we triple the clock frequencies,
stages, and main memory latencies for the 2000 and 2003 studies,
then those values are in line with the current Xeons, but the L1
cache sizes are 8-16 times higher, and the L2 cache size is 32 times
larger. If we assume the simulated L2 caches are really L3, then
they are more than twice as fast as the Xeon’s L3 latencies, while
still being 4 times larger than the L3 caches of any Xeon in themar-
ket at the time this study was performed. Even if we compare with
high-end processors, the simulated processors are still aggressive.
For example, the IBM POWER5 has a 64KB instruction and 32
KB data L1 cache, 1.9MB L2 cache, 36MB of shared L3 cache per
2 processors, 2 SMT contexts, a 16-stage pipeline, and operates at
1.5 GHz [11]. Compare to the scaled version of the simulated pro-
cessors, it has one-fourth the SMT contexts, and operates athalf of
the clock speed. We conclude that not only are the simulated mem-

Figure 20: SPECweb99 scores of three servers. The metric is number of simultaneous connections.

Figure 21: SMT speedups on SPECweb99 scores for the three servers.

ory hierarchies more aggressive than what current hardwarecan
support, but the memory latencies are also much faster than what
might be reasonably expected from their size. Given the sensitiv-
ity to cache sizes and memory speeds we have seen in our evalua-
tions, it is not surprising that the simulations yield more optimistic
speedup predictions.

While these differences indicate that SMT in the Xeon may not
yield significant benefit on the workloads we studied, it doesnot
imply that SMT in general is not useful. If a company were to
design a processor specifically suitable for SMT, it may choose
a larger number of contexts and larger caches while consciously
sacrificing cycle time. Such a system may have poor performance
for single-threaded applications, but would be suitable for highly-
parallel tasks. Sun Microsystems has discussed their upcoming
“Niagara” processor, which has 8 cores with 4 contexts per core [23].
They project it to have 15 times the performance of today’s cur-
rent processors, while a dual-core UltraSparc V microprocessor tar-
geted for the same timeframe was expected to have 5 times the per-
formance of today’s processors. Using these numbers, each context
on Niagara will perform at one-fifth the performance of one Ultra-
Sparc V context. This approach is similar to the Denelcor HEP[24]
and the Tera MTA [30] which were designed for high throughput
instead of high single-thread performance. Whether this approach
will be more successful for a higher-volume processor remains an
open question.

In broader terms, though, the simulations identified a number of
trends that we can confirm via our evaluation. Table 6 compares
our measured results versus the simulation study of the samework-
load [26]. While the magnitude of the values between the simulated
and actual processor is large due to the differences in cachesizes,
etc., the direction of change is the same for each metric.

6. SMT ON SPECWEB99 BENCHMARK
While static Web workloads are useful to compare with previ-

ous studies, dynamic content is an important part of currentWeb
traffic, and is captured in the SPECweb99 benchmark. In orderto
compare with results discussed in previous sections, we runthe full

Simulation Measurement
Contexts 8 2
Speedup 4-fold 5-15%

SMT ST SMT ST
IPC 5.6 2.6 0.43 0.33
Branch Mispredict (%) 9.3 5.0 12.0 8.0
L1-I miss (%) 2.0 1.3 17.1 10.5
L1-D miss (%) 3.6 0.5 5.7 4.7
L2 miss (%) 1.4 1.8 3.9 5.1
ITLB miss (%) 0.0 0.0 3.7 5.1
DTLB miss (%) 0.6 0.05 3.5 2.9

Table 6: Results comparison between related simulation work and our
measurements. We use ST (Single Threaded) to indicate the non-SMT
performance.

benchmark but also limit the data set size to 500 MB.
SPECweb99 introduces changes to both the workload and method-

ology of the SPECweb96 benchmark. The benchmark consists of
70% static and 30% dynamic requests. The dynamic requests at-
tempt to model commercial Web servers performing ad rotation,
customization, etc., and require some computation. Ratherthan re-
porting rates in requests per second, SPECweb99 reports thenum-
ber of simultaneous connections the server can handle whilemeet-
ing a specified latency requirement.

The dynamic portion of SPECweb99 consists of a specification
which must be implemented for each server. Because we do not
have versions of this specification for all of our servers, wecan
only evaluate it for three of our five systems. We run Flash as well
as both versions of Apache on the three hardware configurations.
While TUX has SPECweb99 scores, we have been unable to get
the dynamic content support to work on the free version of Linux
with SMT support. We are investigating its performance on the Red
Hat Enterprise distribution since it is more stable and is the distri-
bution for which most TUX results are reported. Haboob is not
included because we did not find its dynamic API for SPECweb99.
Since we focus on the differences stemming from SMT, we are not

overly concerned about the missing servers. For Apache, we use
the modspecweb99 module which is available on the Apache Web
site. Similarly, for Flash, we use its built-in SPECweb99 module
that handles dynamic requests.

Figure 20 shows the SPECweb99 scores of the three servers on
the three different hardware configurations, and Figure 21 calcu-
lates the speedups. The trends are generally consistent with what
we observed in Section 3, but some interesting differences emerge.
On uniprocessor systems, SMT has a speedup of 4% to 15% when
comparing to the uniprocessor kernel, and a speedup of 15% to
30% when comparing to the SMP kernel. On dual-processor sys-
tems, the improvements range from 1% to 15%. In comparing Fig-
ure 21 with Figures 5 and 6, we see some interesting differences.
The gains for Apache on SPECweb99 are almost always worse than
those on the static-only test. Flash’s gains are worse at oneproces-
sor, but better at two processors. The additional computation in
SPECweb99 appears to help utilize the processor better whenthe
memory system is very taxed, but seems to be causing more imbal-
ance in Apache, which already does more computation than Flash.

This result also leads to another general observation. While
SMT is intended to hide memory reference latency by overlap-
ping the use of idle processor resources, application threads hav-
ing similar resource utilization characteristics such as Web servers
serving static content may have little to overlap. Using dissimi-
lar workloads to achieve better SMT utilization has been explored
for the CINT (integer component of SPEC CPU) benchmark pro-
grams [33], but not for network server software. Even with this mix
of programs, the benefits we see in the network server environment
are lower than in the CPU-only tests.

7. RELATED WORK
In this section we discuss related work not already covered.When

investigating SMT performance, operating systems were notin-
cluded in simulations until Redstone et al. [26] ported the SMT-
SIM simulator [37] into the SimOS framework [27]. They discov-
ered that although ignoring operating systems behavior maynot
result in misleading predictions for SPEC CINT, it has significant
impact on evaluation of server applications such as Apache.Mc-
Dowell et al. [18] used the same simulator and studied memory
allocation and synchronization strategies for a search engine appli-
cation. Similarly, many studies focus on user-level and compute-
intensive applications, including SPEC CINT and CFP [32, 36, 37],
parallel ray-tracing applications [10], SPLASH-2 benchmarks [16],
MPEG-2 decompression [7, 29], and other scientific application
workloads [13, 31]. Lo et al. [15] analyzed SMT performance with
database workloads, which spend 70% of their time in user space.

Our approach differs from previous performance evaluations in
several ways. While direct measurement on real hardware gives ac-
curate results and does not need model validation, as is required by
simulation, it is limited by the available hardware configurations.
By making small changes to the hardware and exploring kernelop-
tions, we obtain a reasonable space for comparison. More impor-
tantly, compared to the work which studies server applications, our
evaluation has a broader range of server software, OS support and
hardware configurations. Our results on uniprocessor kernels and
dual-processor systems discover new SMT performance character-
istics. In contrast to other works, we focus on server workloads
since it is one of the biggest markets for SMT-enabled processors.

Performance evaluation and characterization on currentlyavail-
able SMT-enabled processors is still an ongoing research area. Tuck
and Tullsen [35] evaluated the implementation and effectiveness of
SMT in a Pentium 4 processor, particularly in the context of prior
published research in SMT. They measured SPEC CPU2000 and

other parallel benchmarks, and concluded that this processor im-
plementation matches the promise of the published SMT research.
Bulpin and Pratt [6] extended Tuck et al.’s evaluation by comparing
an SMT system to a comparable SMP system, but did not investi-
gate SMT on SMP systems as we do in this paper. Chen et al. [7]
also only evaluated performance of SMT and SMP individually.
Vianney [39] measured a single Xeon processor and reported that
Hyper-Threading on the Linux kernel can improve throughputof
a multi-threaded application (namely, chat [14]) as much as60%.
Our study not only differs in target testbed and workloads, but also
provides low level microarchitectural characteristics toreveal de-
tailed resource utilization pertinent to SMT.

SMT’s microarchitectural performance is always one of the main
concerns in SMT design. In addition to work discussed earlier in
this section, Grunwald and Ghiasi [9] examined the Xeon proces-
sor and discovered a possible microarchitectural denial ofservice
attack for the SMT processor. Snavely et al. [31, 32] observed sym-
biotic features in SMT architectures and proposed a specialsched-
uler to exploit it. Raasch and Reinhardt [25] studied the impact of
resource partitioning on SMT processors. Our microarchitectural
analysis using the performance counters focuses on the comparison
between when SMT is enabled and disabled, instead of evaluating
the performance of different SMT design options.

Performance analysis using hardware provided event counters
has been an effective approach in previous studies. Bhandarkar et
al. [4] and Keeton et al. [12] characterized performance of Pentium
Pro systems and studied latency components of the CPI. More re-
cently, Blackburn et al. [5] used some of the Pentium 4 performance
counters to study impact of garbage collection. Given the com-
plexity of Xeon microarchitecture, interpreting the performance-
monitoring events on these systems is more difficult than with pre-
vious Pentium family processors or RISC processors. Moreover,
we are unaware of any non-simulation work in this area that pro-
vides the breadth of event coverage that we do in this paper.

8. CONCLUSION
This paper provides a performance analysis of simultaneousmulti-

threading for server applications, using five software implementa-
tions and three hardware platforms. We find that the performance
benefits of SMT are much more modest when compared to the
uniprocessor kernel, suggesting non-negligible amounts of OS over-
head when supporting SMT. This cost was mostly ignored in previ-
ous studies. Our evaluation in dual-processor configurations indi-
cates that the benefits of SMT are harder to achieve in these sys-
tems, unless memory reference latency is shorter or a large L3
cache is used, a finding that may aid SMT design and purchasing.

Our microarchitectural analysis provides quantitative explana-
tions of the observed performance and discovers a number of SMT
resource bottlenecks. Using this information, future processor de-
signers can understand how to better serve this important class
of applications. With this detailed, low-level information and ob-
served performance improvement, we are able to compare our re-
sults to similar studies performed using simulation. We believe that
simulation correctly predicts the direction of change for processor
resources, but yields much more optimistic estimates of resource
contention and overall speedup.

Acknowledgments
This work was partially supported by an NSF CAREER Award. We
would like to thank our shepherd, Geoff Voelker, and our anony-
mous reviewers for their feedback and insight.

References
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,

S. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have all the cycles
gone. InProc. of the 16th SOSP.

[2] Apache Software Foundation. The Apache Web server.
http://www. apache.org/.

[3] P. Benmowski. Hyper-Threading Linux.LinuxWorld, Aug.
2003.

[4] D. Bhandarkar and J. Ding. Performance characterization of
the Pentium Pro processor. InProc. of the 3rd IEEE Symp. on
High-Performance Computer Architecture (HPCA ’97), Feb.
1997.

[5] S. Blackburn, P. Cheng, and K. McKinley. Myths and reali-
ties: The performance impact of garbage collection. InProc.
of the SIGMETRICS ’04, June 2004.

[6] J. Bulpin and I. Pratt. Multiprogramming performance ofthe
Pentium 4 with Hyper-Threading. InWorkshop on Duplicat-
ing, Deconstructing, and Debunking (WDDD04), June 2004.

[7] Y.-K. Chen, E. Debes, R. Lienhart, M. Holliman, and M. Ye-
ung. Evaluating and improving performance of multimedia
applications on simultaneous multi-threading. In9th Intl.
Conf. on Parallel and Distributed Systems, Dec. 2002.

[8] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tullsen.
Simultaneous multithreading: A platform for next-generation
processors.IEEE Micro, Sept. 1997.

[9] D. Grunwald and S. Ghiasi. Microarchitectural denial ofser-
vice: insuring microarchitectural fairness. InProc. of the 35th
Intl. Symp. on Microarchitecture, 2002.

[10] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elementary
processor architecture with simultaneous instruction issuing
from multiple threads. InProc. of the 19th ISCA, 1992.

[11] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: A
dual-core multithreaded processor.IEEE Micro, March 2004.

[12] K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Baker.
Performance charaterization of a Quad Pentium Pro SMP us-
ing OLTP workloads. InProc. of the 25th ISCA.

[13] H. Kwak, B. Lee, A. Hurson, S.-H. Yoon, and W.-J. Hahn.
Effects of multithreading on cache performance.IEEE Trans.
Comput., 48(2), 1999.

[14] Linux Benchmark Suite Homepage. A GPL’d chat room
benchmark. http://lbs.sourceforge.net/.

[15] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and
S. Parekh. An analysis of database workload performance on
simultaneous multithreaded processors. InProc. of the 25th
ISCA.

[16] J. Lo, J. Emer, H. Levy, R. Stamm, and D. Tullsen. Converting
thread-level parallelism to instruction-level parallelism via si-
multaneous multithreading.ACM Transactions on Computer
Systems, 15(3).

[17] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A. Miller,
and M. Upton. Hyper-threading technology architecture and
microarchitecture.Intel Technology Journal, 6(1).

[18] L. McDowell, S. Eggers, and S. Gribble. Improving server
software support for simultaneous multithreaded processors.

[19] L. McVoy and C. Staelin. lmbench: Portable tools for perfor-
mance analysis. InUSENIX 1996 Annual Technical Confer-
ence.

[20] OProfile. A system profiler for Linux.
http://oprofile.sourceforge.net/.

[21] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient
and portable web server. InUSENIX 1999 Annual Technical
Conference.

[22] V. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified I/O
buffering and caching system.ACM Transactions on Com-
puter Systems, 18(1).

[23] G. Papadopoulos and D. Yen. Throughput computing: Driv-
ing down the cost of network computing. http://www.sun.com
/events/analyst2003/presentations/PapadopoulosYen WWAC
022503.pdf.

[24] R. E. Hiromoto, O. M. Lubeck, and J. Moore. Experiences
with the Denelcor HEP. InParallel Computing.

[25] S. Raasch and S. Reinhardt. The impact of resource parti-
tioning on SMT processors. In12th Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT’03), New
Orleans, Louisiana, Sept. 2003.

[26] J. Redstone, S. Eggers, and H. Levy. An analysis of operat-
ing system behavior on a simultaneous multithreaded archi-
tecture. InProc. of the 9th ASPLOS.

[27] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Com-
plete computer system simulation: The SimOS approach.
IEEE parallel and distributed technology: systems and ap-
plications, 3(4), Winter.

[28] Y. Ruan and V. Pai. Making the “Box” transparent: System
call performance as a first-class result. InUSENIX 2004 An-
nual Technical Conference, Boston, MA, June 2004.

[29] U. Sigmund and T. Ungerer. Memory hierarchy studies of
multimedia-enhanced simultaneous multithreaded processors
for mpec-2 video decompression. InWorkshop on Multi-
Threaded Execution, Architecture and Compilation, January
2000.

[30] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin,
N. Mitchell, J. Feo, and B. Koblenz. Multi-processor perfor-
mance on the tera mta. InProc. of the 1998 ACM/IEEE con-
ference on Supercomputing, 1998.

[31] A. Snavely and D. Tullsen. Symbiotic job scheduling fora
simultaneous multithreaded processor. InProc. of the 9th AS-
PLOS, 2000.

[32] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job-
scheduling with priorities for a simultaneous multithreading
processor. InProc. of the SIGMETRICS’02.

[33] Standard Performance Evaluation Corporation.
http://www.spec.org/benchmarks.html.

[34] Standard Performance Evaluation Corporation. SPEC
Web Benchmarks. http://www.spec.org/web99/
http://www.spec.org/web96.

[35] N. Tuck and D. Tullsen. Initial observations of a simultane-
ous multithreading processor. In12th Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT’03), Sept.
2003.

[36] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor. InProc. of
the 23th ISCA.

[37] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. InProc. of the
22th ISCA, 1995.

[38] TUX Web Server. http://www.tux.org/.

[39] D. Vianney. Hyper-Threading speeds Linux.IBM developer-
Works, Jan. 2003.

[40] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned, scalable internet services. InProc. of
the 18th SOSP, Oct.

