Evaluating the Impact of Simultaneous Multithreading
on Network Servers Using Real Hardware

Yaoping Ruan Vivek S. Pai

yruan@cs.princeton.edu vivek@cs.princeton.edu

nahum@watson.ibm.com

Erich Nahumt John M. Tracey!

traceyj@us.ibm.com

Department of Computer Science, Princeton University, Princeton, NJ 08544
T IBM T.J.Watson Research Center, Yorktown Heights, NY 10598

ABSTRACT

This paper examines the performance of simultaneous hmatling
(SMT) for network servers using actual hardware, multigework
server applications, and several workloads. Using thresioes
of the Intel Xeon processor with Hyper-Threading, we perfor
macroscopic analysis as well as microarchitectural measents
to understand the origins of the performance bottleneckSkaT
processors in these environments. The results of our di@ua
suggest that the current SMT support in the Xeon is apptinati
and workload sensitive, and may not yield significant besédit
network servers.

In general, we find that enabling SMT on real hardware usually
produces only slight performance gains, and can sometigagkstd
performance loss. In the uniprocessor case, previousstagipear
to have neglected the OS overhead in switching from a ungzsmr
kernel to an SMT-enabled kernel. The performance loss &sdc
with such support is comparable to the gains provided by SNIT.
the 2-way multiprocessor case, the higher number of menedry r

lization than is possible from a single stream. Since thellmare
support for this extra parallelism seems to be minimal, SM$ h
the potential to increase system throughput without sicpifily
affecting system cost. While academic research on SMT proce
sors has been taking place since the mid-1990's [8, 37],abent
availability of SMT-capable Intel Xeon processors allovesfpr-
mance analysts to perform direct measurements of SMT benefit
under a wide range of workloads.

One of the biggest opportunities for SMT is in network sesyer
such as Web, FTP, or file servers, where tasks are naturatiy-pa
lel, and where high throughput is important. While much af th
academic focus on SMT has been on scientific or computation-
intensive workloads, suitable for the High Performance @atimg
(HPC) community, a few simulation studies have explicitham-
ined Web server performance [18, 26]. The difficulty of siatul
ing server workloads versus HPC workloads is in accurataty h
dling operating system (OS) behavior, including deviceats and
hardware-generated interrupts. While processor-evatuatork-

erences from SMT often causes the memory system to become thd22ds like SPEC CPU [33] explicitly attempt to avoid much @S i

bottleneck, offsetting any processor utilization gainsisTeffect

is compounded by the growing gap between processor spedds an

memory latency. In trying to understand the large gains shioyv
simulation studies, we find that while the general trendsfaro-
architectural behavior agree with real hardware, diffeesnn siz-

ing assumptions and performance models yield much more opti
mistic benefits for SMT than we observe.

Categories and Subject Descriptors:C.4 PERFORMANCE OF
SYSTEMS:Design studies

General Terms:Measurement, Performance.
Keywords: Network Server, Simultaneous Multithreading(SMT).

1. INTRODUCTION

Simultaneous multithreading (SMT) has recently moved from
simulation-based research to reality with the advent of mem
cially available SMT-capable microprocessors. Simultarsemulti-
threading allows processors to handle multiple instructsitveams
in the pipeline at the same time, allowing higher functiamait uti-

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMETRICS 05, June 6-10, 2005, Banff, Alberta, Canada.

Copyright 2005 ACM 1-59593-022-1/05/0006$5.00.

teraction, server workloads, like SPECweb [34] often idelmuch
OS, filesystem, and network activity..

While simulations clearly provide more flexibility than aat
hardware, evaluation on real hardware also has its advesitag
cluding more realism and faster evaluation. Using actuati-ha
ware, researchers can run a wider range of workloads (eon-
half heavy workloads) than is feasible in simulation-baesedron-
ments. Particularly for workloads with large data set sibas are
slow to reach steady state, the time difference betweenlziion
and evaluation can be substantial. The drawback of hardweve
ever, is the lack of configuration options that is availahlsimula-
tion. Some flexibility in the hardware analysis can be gaingds-
ing processors with different characteristics, thougk #pproach
is clearly much more constrained than simulators.

This paper makes four contributions:

e \We provide a thorough experimental evaluation of SMT for
network servers, using five different software packages and
three hardware platforms. We believe this study is more com-
plete than any related work previously published.

e We show that SMT has a smaller performance benefit than
expected for network servers, both in the uniprocessor and
dual-processor cases. In each case, we identify the macro-
level issues that affect performance.

e We perform a microarchitectural evaluation of performance
using the Xeon’s hardware performance counters. The re-
sults provide insight into the instruction-level issueattaf-
fect performance on these platforms.

e We compare our measurements with earlier simulation re-
sults to understand what aspects of the simulated prosessor

yielded much larger performance gains. We discuss the fea-
sibility of these simulation models, both in the context of
current hardware, and with respect to expected future srend

Our evaluation suggests that the current SMT support iStsens
to application and workloads, and may not yield significaerds
fits for network servers, especially for OS-heavy workloatige
find that enabling SMT usually produces only slight perfoncel
gains, and can sometimes lead to performance loss. In tipeodni
cessor case, simulations appear to have neglected the @&ate
in switching from a uniprocessor kernel to an SMT-enableddie
The performance loss associated with such support is cailear
to the gains provided by SMT. In the 2-way multiprocessorecas
the higher number of memory references from SMT often causes
the memory system to become the bottleneck, offsetting aoy p
cessor utilization gains. This effect is compounded by tloeving

2.0 or 3.06 GHz

20 stages or 30 stages starting from the
6 pops per cycle

round robin for logical processors

3 pops per cycle

caches, branch predictors, decoder logig
DTLB, execution units, buses

interrupt controller, status registers
ITLB, renaming logic

1op queue, re-ordering buffer

load/store buffer, general instruction buff

clock rate
pipeline
Fetch
Policy
Retirement
Shared
Resources
Duplicated
Resources
Partitioned
Resources

Table 1: Intel Xeon hardware parameters.

gap between processor speeds and memory latency. We find thaknabled processors, instructions from multiple processtiweads

SMT on the Xeon tends to provide better gains when coupleld wit
large L3 caches. By comparing performance gains acrosantari
of the Xeon, we argue that such caches will only become mare cr
cial for SMT as clock rates increase. If these caches coationbe
one of the differentiating factors between commaodity arghéi-
cost processors, then commodity SMT will see eroding gaoirsyy
forward. We believe this observation also applies to aechitres
other than the Xeon, since SMT only yields benefits when ibie a
to utilize more processor resources.

Using these results, we can also examine how simulation sug-
gested a much more optimistic scenario for SMT, and why fiedsf
from what we observe. For example, when calculating spegdup
none of the simulations used a uniprocessor kernel whenuneas
ing the non-SMT base case. Furthermore, the simulationsache
sizes that are larger than anything commonly availableytotiaese
large caches appear to have supported the higher numbeeatith
used, yielding much higher benefits than what we have seen, ev
when comparing with the same number of threads. We do not be-
lieve that the processor models used in the simulation anplgi
more aggressive than what is available today or likely tovzeéla
able in the near-future. Instead, using comparable measunts
from the simulations and existing hardware, we show thatythe
of processors commonly modeled in the simulations are elylito
ever appear as slightly-modified mainstream processorsargves
that they have characteristics that suggest they couldiliespecif-
ically for SMT, and would sacrifice single-thread perforroan

The rest of this paper is organized as follows: we provideesom
background on SMT, the Xeon, and our experimental setupén Se
tion 2. We measure SMT’s effect on throughput and perform a
microarchitectural analysis in Sections 3 and 4. In Sechiane
compare our measurement results to previous simulatiatiestu
The impact of other workloads is discussed in Section 6.i&@eet
discusses related work, and we conclude in Section 8.

2. BACKGROUND

In this section we present an overview of the Intel Xeon psece
sor with Hyper-Threading (Intel's term for SMT), then déberour
experimental platform including hardware parameters ardes
configuration, our workloads and measurement methodology.

2.1 SMT Architecture

The SMT architecture was proposed in the mid-1990’s, and has
been an active area for academic research since that tim&8616
37], but the first general-purpose processor with SMT festwas
not shipped until 2003. The main intent of SMT is to convert
thread-level parallelism into instruction-level parifisn. In SMT-

can be fetched together, without context switching, andozaax-
ecuted simultaneously on shared execution resources. &itber
the operating system’s or user program’s perspective, ybeis
appears to have multiple processors. Currently, we areeaofar
only two processors in production that support SMT — thelInte
Xeon with Hyper-Threading and the IBM POWERS5. The Xeon
has been available longer, and since it is available in a vadge

of configurations, it provides us with an opportunity to affably
evaluate the impact of several features.

The Xeon is Intel's server-class x86 processor, designdseto
used in higher-end applications. It is differentiated frtma Pen-
tium 4 by the addition of extra on-chip cache, support for SMT
(though this is now beginning to appear on standard P4 proces
sors), and on-chip support for multiprocessing. It is a ssqadar,
out-of-order processor with a deep pipeline, ranging frant@
30 stages depending on processor version and clock speleds It
two hardware contexts (threads) per processor, which shast
of the resources, such as caches, execution units, braediciar,
control logic, and buses. Its native x86 instruction sehiec-
ture is CISC, but it internally translates instructionoiRISC-like
micro-operations(ops) before executing them. Buffering queues
between major pipeline logic blocks, such;asp queues, and the
reorder buffer, are partitioned when SMT is enabled, butrare
combined when only one software thread is active [17]. Thecha
hardware information for the Xeon can be found in Table 1.

2.2 Experimental setup

To reduce the number of variables in our experiments, alliof o
tests use the same motherboard, an Intel SE7505VB2 with 4GB
memory, which is capable of supporting up to two processots.
processors are the 3.06 GHz Xeon with no L3 cache, the 3.06 GHz
Xeon with a 1MB L3 cache, and the 2.0 GHz Xeon without L3
cache. Using these three processors, we can determinefeice ef
of different clock rates, and the effect of the presence seabe
of an L3 cache. All processors have a 533 MHz front-side bus
(FSB). The 2.0 GHz use a 20-stage pipeline starting fromrteet
cache (TC), while the 3.06 GHz Xeons use a 30-stage pipéiithe.
tests use the same physical motherboard, and we manudteep
processors as needed, in order to reduce the chance thatorzsi
in memory manufacturing, etc., can affect the results. Thmory
hierarchy details for our system are provided in Table 2. nysi
Imbench [19], we find the main memory latencies are 225 cycles
for the 2.0 GHz Xeon, 320 cycles for the 3.06 GHz Xeon with L3,
and 344 cycles for the 3.06 GHz processor without L3 cache.

The increase in memory latency (measured in cycles) for.0@ 3
GHz processors is not surprising, since the cycles are eshiort

Level | Capacity| Associa-| Line Size| Latency

tivity (cycles)

TC | 12K pops 8 way 6 pops N/A

D-L1 8 KB 4way | 64 bytes 2

L2 512 KB 8 way | 128 bytes 18

Memory 4GB N/A N/A | 225 - 344
ITLB 128 entries, 20 cycles miss penalty
DTLB 64 entries, 20 cycles miss penalty

Table 2: Intel Xeon memory hierarchy information. The latency cy-
cles of each level of the memory hierarchy includes the cachmiss time
of the previous level

absolute time. The absolute latency is relatively constarte the

1T-UP | 1IT-SMP | 2T | 2P| 4T

CPUs 1 1 1 2 2
SMP kernel No Yes | Yes | Yes | Yes
SMT enabled No No | Yes| No | Yes

Table 3: Notation used in this paper reflecting different hardware ard
kernel configurations

sumptions: that only one process or thread can be activalyimg
in the kernel at once, and that when the kernel is executingesn
half of that process or thread, the only other source of di@tis
hardware interrupts. The first condition is important footecting
data in the kernel — when the kernel is executing, it genedakes
not have to worry about locking kernel data structures witenay
block on some resource. The only data sharing that remaios is

FSB speed is the same. The impact on bandwidth is 22%, muchdata used by any interrupt servicing code. The existencenlgf o
less than the clock speed difference — the 2.0 GHz system has aone processor also simplifies this code, since it can simphhte
read bandwidth of 1.8 GB/sec while the 3.06 GHz system has a interrupts when manipulating such data, and enable irgesrarf-

value of 2.2 GB/sec. While higher bandwidth is useful foryop
intensive applications, the memory latency is more imptrta
applications that perform heavy pointer-chasing. Earlyp\8&rvers
performed significant numbers of memory copies to transdga,d
but with the introduction of zero-copy [22] support into \gas,
copy bandwidth is less of an issue.

Our testing harness consists of 12 uniprocessor client imash
with AMD Duron processors at 1.6 GHz. The aggregate processo
power of the clients are enough to ensure that the clientaerer
the bottleneck. To ensure adequate network bandwidth |igm@s
are partitioned into four groups of three machines. Eachmis
connected to the server via a separate switched Gigabitrigthe
using four Intel e1000 MT server adapters at the server.

We compare five different OS/processor configurations, dase
on whether a uniprocessor or multiprocessor kernel is used,
whether SMT is enabled or disabled. Using the BIOS suppait an

ter the critical section. Since enabling or disabling inipts is a
single instruction on the x86, this code can be compact.

On multiprocessors (SMP), the invalidation of both assiomst
causes the need to have more synchronization code in thelkern
leading to more overhead. Both processors can be execging k
nel code simultaneously, so any global data in the kernel imeis
protected from race conditions. The simplest approachgusigi-
ant kernel lock” to ensure only one processor is in the keabhel
time, reduces the performance of OS-intensive workloaus$ has
been replaced with fine-grained locking on all major OSeterin
rupt handling must also differ — since interrupts can bevdedid
to a different processor than the one using data shared katmt
terrupt handler, the kernel cannot simply locally disabteiirupts.
Instead, all data accessible by an interrupt handler msst= pro-
tected using locks, to prevent another processor from airup#
simultaneously.

OS boot parameters, we can select between one or two proces- For uniprocessors, running a multiprocessor version dféhneel
sors, and enable or disable SMT. For most of our tests, we use acan therefore cause a much larger performance loss thart bégh

multiprocessor-enabled (SMP) kernel, since the OS seedfh S
enabled processor as two logical processors. However, wigen
run with one physical processor and SMT disabled, we als@tes

a uniprocessor kernel. These combinations yield the fivgama-
tions studied in this paper: one processor with uniprogdssmel
(1T-UP), one processor with SMP kernel (1T-SMP), one proces
sor with SMP kernel and SMT enabled (2T), two processors, (2P)
and two processors with SMT enabled (4T). Key features of the
five configuration and their names used in this paper are slown
Table 3. The operating system on the server is Linux, with ker
nel version 2.6.8.1. This version includes optimizatiomsSMT,
which we enable. The optimizations are described next.

2.3 Kernel Versions and Overheads

In evaluating SMT performance on uniprocessors, it is irtgrar
to understand the distinction between the types of kerneld-a
able, because they affect the delivered performance. bcggsor
kernels, as the name implies, are configured to only suppet o
processor, regardless of how many physical processorsdhei
system. Multiprocessor kernels are configured to take ddgarof
all processors in the system using a single binary imagele/ifini
tended for multiple processors, they are designed to apeiigiout
problems on a single processor.

expected, because instead of one extra lock operation pernsy
call, many lock operations may be necessary for fine-graitsed
sharing. For network servers, this overhead can be signifida
every packet and acknowledgment invokes extra code thattis n
necessary in the uniprocessor case.

Since the OS treats an SMT-enabled processor as two logical
processors, it must use the SMP kernel, with the associated o
heads. Kernel designers have taken steps to reduce sorheagsy
knowing that some operations can be performed more effigient
on an SMT with two logical processors than a multiprocesstr w
two physical processors. However, since SMTs interleaseun-
tions from multiple contexts, these overheads cannot hecestito
the level of uniprocessor kernels. The Linux kernel implataea
number of SMT-specific optimizations, mostly related toqassor
affinity and load balancing [3]. Task run queues are shared be
tween contexts on each physical processor, eliminatingtihace
of one context being idle while the other has multiple taskging.
This balancing occurs whenever a task wakes up or when any oth
task on the same physical processor finishes. Processadtyaffin
tended to minimize cache disruption, is also performed gsighl
processor instead of logical processors.

2.4 Test & Measurement methodology

Uniprocessor kernels can make assumptions about what-is pos We focus on Web (HTTP) servers and workloads because of

sible during execution, since all sources of activity akérg place
on one processor. Specifically, the OS can make two impoatant

their popularity and the diversity of server implementatiavail-
able. The server applications we use are Apache 2.0 [2]h 243,

TUX [38], and Haboob [40]. Each server has one or more distin- without SMT enabled, and kernels with and without multigec
guishing features which increases the range of systemsudg.st sor support. We first analyze trends at a macroscopic levélren

All of the servers are written in C, except Haboob, which ukes. use microarchitectural information to understand whataigsing
TUX is in-kernel, while all of the others are user-space skland the macroscopic behavior. Our bandwidth result for thedia£i6
Haboob are event-driven, but Haboob also uses threadsleddso GHz Xeon, showing five servers and five OS/processor configura
different steps of request processing. We run Apache in om€ig- tions, can be seen in Figure 2. Results for 2.0 GHz and 3.06 GHz
urations — with multiple-processes (dubbed Apache-MRj,raal- with L3 cache are seen in Figures 1 and 3, respectively. Fadr ea
tiple threads (dubbed Apache-MT) using Linux kernel thegdo- server, the five bars indicate the maximum throughput aehlies-
cause the Linux 2.6 kernel has better support for threads ttie ing the specified number of processors and OS configuration.

2.4 series, and the Xeon has different cache sharing foadleck While bandwidth is influenced by both the server software as
applications. Threaded applications share the same adsipese well as the OS/processor configuration, the server softusually
register while multi-process applications usually ha¥fedént reg- has a large effect (and in this case, dominant effect) onsigitid.

isters. Flash has a main process handling most of the wotk wit Heavily-optimized servers like Flash and TUX are expecteolit-
helpers for disk 10 access. We run the same number of Flagh mai perform Apache, which is designed for flexibility and poiltiap
processes as the number of hardware contexts. TUX usesaalthre instead of raw performance. The relative performance ofchpa

pool model, where multiple threads handle ready eventsh Wi Flash, and Haboob is in-line with previous studies [28]. T&X
exception of Haboob, all of the servers use the zero-cogyfates relative performance is somewhat surprising, since wemnasdwan
available on Linux, reducing memory copy overhead when send in-kernel server would beat all other options. To ensureai$ We-

ing large files. For all of the servers, we take steps dedatribe ing run correctly, we consulted with its author to ensure thaas

the literature to optimize their performance. While pemfance properly configured for maximum performance. We surmisé tha
comparison among the servers is not the focus of this paper, w its performance is due to its emphasis on dynamic conterichwh
are interested in examining performance characteristisdtT on is not exercised in this portion of our testing. Haboob’s |pev-
these different software styles. formance can be attributed both to its use of Java as wellsas it

We use the SPECweb96 [34] benchmark mostly because it waslack of support for Linux’s sendfile system call (and as a ltesu
used in previous simulation studies. Compared to its sgocethe TCP checksum offload). For in-memory workloads, the CPU is at
SPECweh99 benchmark, it spends more time in the kernel becau full utilization, so the extra copying, checksumming, aadduage-
all requests are static, which resembles other server vaaklsuch related overheads consume processor cycles that couldvigbe
as FTP and file servers. We also include SPECwebh99 benchmarkbe spent processing other requests.
results for comparison. SPECweb is intended to measuref-a sel
scaling capacity metric, which means that the workload atter- 3.1 SMP Overhead on Uniprocessor

istics change in several dimensions for different loadlkve We can quantify the overhead of supporting an SMP-capable ke
To simplify this benchmark while retaining many of its desile nel by comparing the 1T-UP (one processor, uniprocessoeRer
properties, we use a more tractable subset when measuritg ba yajue with the 1T-SMP (one processor, SMP kernel) value. The
widths. In particular, we fix the data set size of the workléad |oss from uniprocessor kernel to SMP kernel on the base 36 G
500MB, which fits in the physical memory of our machine. We processor is 10% for Apache, and 13% for Flash and Tux. The

perform measurements only after an initial warm-up phasent losses on the L3-equipped processor and the 2.0 GHz pracesso
sure that all necessary files have been loaded into memonn®u are 149 for Apache and 18% for Flash and Tux, which are a little
the bandwidth tests, no disk activity is expected to occue. dig- higher than our base system. The impact on Haboob is refative
able logging, which causes significant performance losseeme |ow (49%-10%), because it performs the most non-kernel whe
servers. SPECweb99 measures the number of simultaneous conmagnitude of the overhead is fairly large, even though Lihas
nections each server is able to sustain while providing ffegis 5 reputation of being efficient for low-degree SMP configior.

fied quality of service to each connection. The SPECweb@91tli Thjs result suggests that, for uniprocessors, the perfiocmgained
software introduces latency between requests to decreasgeet- from selecting the uniprocessor kernel instead of SMP kerae
connection bandwidth. SPECweb96 does not have this latahcy pe significant for these applications.

lowing all clients to issue requests in a closed loop, infhtiemand The fact that the impacts are larger for both the slowestgzsar
model. We use 1024 simultaneous connections, and repoathe and the processor with L3 are also interesting. Howevergiton-
gregate response bandwidth received by the clients. sider these results in context, it can be explained. Theeer-

We use a modified version of OProfile [20] to measure the uti- heads of SMP are not only the extra instructions, but als@xtra
lization of microarchitectural resources via the Xeon'sf@enance- uncacheable data reads and writes for the locks. The faytstsim
monitoring events. OProfile ships with the Linux kernel andble gets its performance boost from its L3 cache, which makesitia
to report user, kernel or aggregated event values. OPr@fdeates memory seem closer to the processor. However, the L3 previde
similarly to DCPI [1], using interrupt-based statisticahgpling of benefit for synchronization traffic, so the performance lssaore
event counters to determine processor activity withouthmer- pronounced. For the slowest processor, the extra instngtire an

head. We find that for our experiments, the measuremente&eérh jssye when the processor is running at only two-thirds teedmpf
is generally less than 1%. While OProfile supports many event the others.

counts available on the Xeon, we enhance the released cedp-to
port several new events, such as L1 data cache miss, DTLB miss 3 2 Uniprocessor SMT Benefits

memory loads, memory stores, resource stalls, etc. Understanding the benefits of SMT for uniprocessors is le litt

more complicated, because it must be compared against a base

3. SMT PERFORMANCE case. If we compare 1T-SMP to 2T (uniprocessor SMT), the re-
In this section we evaluate the throughput improvement oTSM sulting graphs would appear to make a great case for SMT, with
in both uniprocessor and multiprocessor systems. Peaatieatien- speedups in the 25%-35% range for Apache, Flash and TUX, as

tion is given to the comparison between configurations with a shown in Figure 4. However, if we compare the 2T performance

3000 7——————Throughput (Mb/s) ———— 3000 T———Throughput Mb/s) 1 3000 7—— Throughput (Mb/s) ——————
2500 - 2500 -
2000 - 2000

1500 - 1500 A

1000 1000 |

500 1 500

" Apache- Apache- Flash TUX Haboob a Apache- Apache- Flash ~ TUX Haboob AI;\Z/II?E- A;;\e/t[?e- Flash TUX " Haboob
M irUp @ 1T swp mar mp mar B —— O1T-UP ©1T-SMP B2T 2P M4T

Figure 1. Throughput of Xeon 2.0GHz pro- Figure 2: Throughput of base Xeon 3.06GHz Figure 3: Throughput of Xeon 3.06GHz pro-
cessor without L3 cache processor cessor with 1MB L3 cache

07— 2T ITSMP————— 40 2T vs. IT-UP 40 4T vs. 2P
30 30 4

20 A 20 4

Haboob Haboob

Apache- Apache-
-104 MP MT
02.0GHz ®3.06GHz W3.06GHz L3

Apache- Apache-
-10 MP MT
02.0GHz E3.06GHz W3.06GHz L3

Flash TUX Haboob Flash TUX

Throughput Improvement (%)
S

Apache- Apache-
S04 mp MT Flash TUX

02.0GHz m3.06GHz W3.06GHz L3

Throughput Improvement (%)
= ¢
|
Throughput Improvement (%)
5

-20

Figure 4: SMT speedup on uniprocessor sys- Figure 5: SMT speedup on uniprocessor sys- Figure 6: SMT speedup on dual-processor
tem with SMP kernel tem with different kernels system

versus 1T-UP, then we see that the speedups are much more mod3.3 SMT in Dual-processor systems
est. These comparisons are shown in Figure 5, for all three pr The next reasonable point of comparison for SMT is in dual-

cessor types. In general, the relative gain decreases aessw processor systems, since these systems are particulaytet to
becomes faster (via clock speed or cache). Apache-MT's@ain the server market and are rapidly approaching “commodistus.
the 2.0 GHz processor is the highest at 15%, but this dropseto t Tyg factors responsible for this shift are the falling CPUces

10%-12% range for faster processors. The gains for FlasiildXd and the support for low-degree multiprocessing built inbone

are less, dropping to the 3%-5% range for the faster procethe chips. The Xeon processors are available in two varianésX#on
Haboob numbers show the opposite trend from all other sgrver pp and the Xeon MP, with the distinguishing feature being the
showing a loss at 2.0 GHz improving to a small gain. number of processors that can be used in one system. The DP

We believe that the correct comparison for evaluating @wripr («qual-processor”) line has on-chip support for buildirgueless”
cessor SMT benefits is comparing the bandwidths with 1T-UP. A 2_processor SMP systems that require no extra hardwareate sh

though the kernels are different, the SMP kernel needldsisly the memory bus. The MP (“multiprocessor”) line is intended f
ders uniprocessor performance. For parallel algorithros)pari- systems with more than 2 processors. In addition to the gm-ch
son with the best base case is also a standard speedup measure gje |ogic, the Xeon DP also drives commodification of dualegssor
technique. The performance of a parallel algorithm is caegéo systems via pricing — as of this writing the Xeon DP is rougithg-
the performance of the best sequential algorithm. Simpty the tenth the cost of a Xeon MP at the same clock rate. Whether this
gain from choosing the appropriate kernel is comparabled@ain difference stems from pricing strategies or economies afesis
of upgrading hardware. unclear to us, but it does greatly magnify the price differehe-

In comparing what is known about measured speedups from en-yyeen dual-processor systems and larger multiprocessors.
abling the Xeon’s SMT, our results are comparable to the 2a%- We note that enabling SMT in a dual-processor configuration

gains that Tuck and Tullsen observed using other worklo885 [carries more risk than enabling it for uniprocessors. Wititeac-
Their speedup comparisons are performed using an SMP Kemel 3] gains in uniprocessors may have been comparable toske |
all measurements, which would be similar to comparing our 2T using an SMP kernel, the overall gains were still positives

slightly higher than theirs, if we discount Haboob. Thisuless can cause a performance loss, even though the same keragigs b
in-line with the observation that SMT can potentially hegp\er- used in both cases. Haboob shows a 9%-15% loss on the three dif
style software more than other workloads [26]. The impactsifig ferent processors, when comparing the 2P configurationetath

a uniprocessor kernel on the Tuck and Tullsen results is lear ¢ configuration. Flash and TUX show a loss in the base 3.06 GHz
— their workloads are not OS-intensive, so the performaose 6f case, but show small gains for the other two processor types.

using an SMP kernel may be less than what we observed. specifics of the performance curves lead us to believe treathFl

25 - Apache-MP_ 55 _ Apache-MT__ 55 Flash 25 TUX 25 Haboob
- = - (-
= 20 f---mmmme oo o T 20 F-----mmmmmmmmm— - 20 | 20 |
= —
§ 15 +-——————————[15 A 15 4+ ———-——————————g 15 +--—-—-——--—-—-—- - 15 +---—--——- -
8 I M
= 10 10 +----—-———g - 41+ 10+ 10 A _ 10 A
E
o T T o T T T T o T T T T o T T T T o T T T
S S SRS S S SRS S SR’ S PO S R PN SR
St St See <5 N0
W 2.0GHz 0O 3.06GHz OL3
Figure 7: Bus utilization of three hardware configurations
and TUX are bottlenecked on the memory system — the base 3.06
GHz processor will have more memory traffic than its L3-egeib .
. . } . Cycles BusOccupied) * (ClockSpeed
counterpart. Likewise, the 2 GHz processor has relativabyefr Utilization = (Cy picd) « (peed) @)

memory, measured in CPU cycles, since the processor speed is

slower. So, by taking a 2-processor system whose bottleiseck
already memory, and increasing the memory demand, thelbvera
performance will not improve. By the same reasoning, we o#ar i
that Apache may be processor-bound, since it sees gaing oh al
the processors. The highest gain in this test, both in tefrabsn-
lute bandwidth and in percentage, is seen in the Apache-lgltse

for the L3-equipped 3.06 GHz processor. It gains 16% ovelthe
configuration, jumping from 1371 Mb/s to 1593 Mb/s. The gain f
Apache-MP on this processor is also significant, but smaller

3.4 Understanding Relative Gains

These results are interesting because Apache is neithéette
performer nor the worst — it appears to be in a “sweet spoth wit
respect to the benefits of SMT. This sweet spot may not be very
large, in terms of the variety of configurations for which ibnks
— Apache’s gain on the base 3.06 GHz is only 4%-5%. Going for-
ward, it may be necessary to keep increasing cache sizesveryir
faster processors from being bottlenecked on memory. tfalie
contexts are waiting on memory, SMT may not be able to provide
much benefit.

However, when using the relative gains, one should remember
that they are compared only to the same server software, agd m
only reflect some artifact of that server. For instance, @hpache’s
relative gains are impressive, the absolute performanoebats
may be more important for many people. Those show clearly tha
even the best Apache score for a given processor class rneser b
the worst Flash score, and almost never beats the worst Tobé.sc
So, even with 2 SMT-enabled processors, Apache still dogsete
form as well as Flash (or TUX, generally) on a single processo

3.5 Measuring the Memory Bottleneck

In the previous analysis, we have attempted to ascribe séme o
the performance characteristics of the various serversanfig-
urations to their interaction with the memory system. Torgifia
these effects, we measure the cycles when the memory bustis oc
pied by any one of the threads, including both driving dat@ am
reading data from the bus. Even though the bus utilizatiamdig
do not differentiate “pointer chasing” styles of memory egsing
from bulk data copying, by knowing the particular optiminat
used by the servers, we can use this information to draw ne&t®
conclusions. To normalize the different processor clodesis, bus
utilization is calculated as follows:

(NonHaltedCycles * BusSpeed)

The bus utilization values, broken down by server softweoe;
figuration, and processor type, are shown in Figure 7. SkEfiesia
order trends are visible: bus utilization tends to increeste num-
ber of contexts/processors is increased, is comparabéd &mrvers
except Haboob, and is only slightly lower for L3-equippe-pr
cessors. The trends can be explained using the observétions
the bandwidth study, and provide strong evidence for oulyaisa
about what causes bottlenecks.

The increased bus utilization for a given processor typenas t
number of processors and hardware contexts increase isunot s
prising, and is similar in pattern to the throughput behaissen-
tially, if the system is work-conserving, we expect busizailion to
be correlated with the throughput level. In fact, we see htsern
for the gain from the 2.0 GHz processor to 3.06 GHz — the coeffi-
cient of correlation between the throughput and the buizatibn
is 0.95. The coefficient for the L3-equipped versus base Gla8
Xeon is only 0.62, which is still high, and provides eviderbat
the L3 cache is definitely affecting the memory traffic. A more
complete explanation of the L3 results are provided below.

The fact that Haboob’s bus utilization looks different frothers
is explained by its lack of zero-copy support, and in turnlaxs
its relatively odd behavior in Figures 5 and 6. The bulk dataye
ing that occurs during file transfers will increase the biilgzation
for Haboob, since the processor is involved in copying aféexd
performing TCP checksums. However, the absolute utitiraal-
ues mask a much larger difference — while Haboob'’s bus atitin
is roughly 50% higher than that of Flash or TUX, its throughisu
one-half to one-third the value achieved by those servesmhih-
ing those figures, we see that Haboob has a per-request bes-uti
tion that is three to four times higher than the other servers

The same explanation applies to the bus utilization for tBe L
equipped processors, and to Apache’s relative gain from.9v@

L3 cache absorbs memory traffic, reducing bus utilizatiarn,for
Flash and TUX, the L3 numbers are only slightly below the h8n-
numbers. However, the absolute throughput for the L3-qupdp
processors are as much as 50% higher, indicating that the per
request bus utilization has actually dropped. The diffeesrin bus
utilization then provide some insight into what is happeniifror
Flash and TUX, the L3 bus utilizations are very similar to tioa-

L3 values, suggesting that the request throughput incseast!
the memory system again becomes the bottleneck. For Aptighe,
L3 utilization is lower than the non-L3, suggesting that lehhe
memory system is a bottleneck without the L3 cache, somgthin

CPu (Cycles per micro-ops) 20% A
15% A

10% ~

5% A

0%

Apache- Apache- Flash TUX Haboob

MP MT
O1T-UP O 1T-SMP B 2T W 2P W4T

Apache-
MP

Apache-
MT

Figure 8: Cycles per micro-op (CRu)

L1-I Miss Rate

Flash

O1T-UP O 1T-SMP @2T W2P W4T

Figure 9: L1 instruction cache (Trace Cache)

10% - L1-D Miss Rate
8% I
o I
4%
2%
0% -
TUX Haboob Apache- Apache- Flash TUX Haboob
MP MT

O1T-UP O1T-SMP @2T W2P W4T

Figure 10: L1 data cache miss rate

miss rate

10% L2 Miss Rate 6% ITLB Miss Rate 6% DTLB Miss Rate
8% - 3% |

4% |
6% A

3% A
4%

2%
2% 1 19% 1
0% - 0%

Apache- Apache- Flash TUX Haboob Apache- Apache- Flash TUX Haboob Apache- Apache- Flash TUX Haboob
MP MT MP MT MP MT

O1T-UP O1T-SMP B2T 2P W4T

Figure 11: L2 cache miss rate, including both
instruction and data

Apache-MP| Apache-MT | Flash| Tux | Haboob
uPB 12.5 13.0 57| 6.0 20.7
IPB 6.8 7.1 32| 34 10.7

Table 4: Average Instructions and p.ops per byte for all servers

else becomes the bottleneck with it. Since we know the mem-
ory system is capable of higher utilization, we can concltids
CPU processing is the bottleneck. The explanation addsdxsta
Apache’s benefit with a second processor as well as with SMT en
abled. Since Apache has more non-memory operations thah Fla
or TUX, it can benefit from the additional CPU capacity.

4. MICROARCHITECTURAL ANALYSIS

To understand the underlying causes of the performance we o
served, we use the hardware events available on the XeorseThe
events can monitor various microarchitectural activjtiexlud-
ing cache misses, TLB misses, pipeline stalls, etc. Whiseh
counts discover low level resource utilization, their effeare hard
to quantify since the Xeon'’s long pipeline overlaps manyhefse
events’ occurrence. We examine cycles per instruction sauk t
various causes of these cycles spent. At a high level, CPlésyc
can be modeled by three factors: cycles required to gradbate
given instruction, instruction related stalls caused bgvailable
instructions or data, and stalls due to pipeline resournédi For
instruction-related stalls caused by cache or TLB missesare
able to calculate the individual numbers of cycles for eagme
type based on the known miss penalties. For pipeline ressurc
the Xeon only provides the number of stalls caused by alwcat
buffer shortages. Stalls from other sources, such as lackhefr
buffers or decode-execute interlocks, are not available.

O1T-UP O1T-SMP E2T H2P W4T

Figure 12: Instruction TLB miss rate

O1T-UP O1T-SMP @ 2T W2P W4T

Figure 13: Data TLB miss rate

We next describe a number of important metrics from a micro-
architectural standpoint. We show measurements on ourhésée
GHz processors since all of our processors have exactlyatine s
resources such as cache size, TLB lines, buffers, etc., andow
not observe radical differences between them for the nsete
present here.

e Cycles per instruction (CPI). We measure the number of non-
halted cycles and the number of instructions retired toutate
CPI. Since the Xeon decodes each instruction into multipteon
ops (ops), we report CPI or GPwhere appropriate. The ratio of
£0ps to instructions in our application ranges between 11785.
Figure 8 shows cycles pgrop on each logical processor base for
all of the servers. Network servers demonstrate much hiGRar
than other workloads, with the minimum value of 2.15, whiie t
Xeon's optimal CR is 0.33, with threg.ops graduating per cycle.

b While CPI is commonly used for indicating processor exexuti

quality or efficiency, it is not a perfect metric for some gaof

our study. Because of the varying code bases, the number of in
structions used to deliver a single byte of content alsediff For
this reason, we may also report counts in terms of applicdéeel
bytes transferred, shown in Table 4 as instructions @opls per
byte (IPB andu:PB). We discuss some of the event results below.

e Cache behavior.In SMTs, the multiple contexts share all of the
cache resources. This sharing may cause extra cache gréssur
cause of conflicts, but may also reinforce each other. By comg
miss rates, we are able to detect whether cache conflictsrer re
forcement dominates. Figures 9, 10, and 11 show miss ratésfo
L1 instruction (trace) cache, the L1 data cache, and the twdb
L2 cache, respectively.

When SMT is enabled (in 2T and 4T), both the L1 instruction
and data caches show significantly higher miss rates, itidgcex-
tra pressure, but the L2 miss rates improve, indicatingfitsrisom

14% -
12% -
10% -
8%
6% -

Branch Mispredict Rate 50

40 A

30 A

20 14

Fetch Stalls (Cycles per Byte)

Buffer Stalls (Cycles per Byte)

4%
2% A
0% -

Apache- Apache- Flash TUX Haboob

MP MT
O1T-UP O1T-SMP E2T H2P W4T

Apache-
MP
OI1T-UP O1T-SMP E2T H2P W4T

Apache-
MT

Figure 14: Branch misprediction rate

0.30 1

Flash

Figure 15: Trace delivery engine stalls

TUX Haboob Flash TUX Haboob

Apache-
MP
OIT-UP O1T-SMP E2T H2P W4T

Apache-
MT

Figure 16: Stalls due to lack of store buffers

Pipeline Clears per Byte
0.25 4
0.20 1
0.15 7
0.10 4
0.05 7

0.00 -

Apache- Apache- Flash TUX Haboob
MP MT

O1T-UP O1T-SMP E2T H2P W4T

Figure 17: # of pipeline clears per byte

1 Aliasing Conflicts per Byte
0.8 1
0.6
04 1 |
0241]

0 l

Apache- Apache- Flash TUX Haboob
MP MT

O1T-UP O1T-SMP E2T H2P W4T

Figure 18: # of aliasing conflicts per byte

sharing. In comparing Apache-MT to Apache-MP, we do see some e Resource Stalls.While the value of instruction delivery stalls

reduction in the 4T L1 miss rate, but the miss rate is stilhkigthan
the 2P cases. Thus, while the multithreaded code helps edtiac
pressure, the SMT ICache pressure is still significant. Theniss
rate drops in all cases when SMT is enabled, indicating teatwo
contexts are reinforcing each other. The relatively highmi®s rate
for TUX is due to its lower L1 ICache miss rate — in absolutetsr

measures performance in the front-end of the pipelinelsstady
also occur during pipeline execution stages. This eventsorea
the occurrence of stalls in the allocator caused by storiebrs-
strictions. In the Xeon, buffers between major pipelingetare
partitioned when SMT is enabled. Figure 16 shows cyclesestal
per byte due to lack of the store buffer in the allocator. Hngb

TUX has a lower number of L2 accesses. The interactions on CPl SMT exhibits a doubling of the number of stall cycles for ebgte
are complex — the improved L2 miss rates can reduce the impacttransfered. Unfortunately, stalls due to other buffer dotsf] such
of main memory, but the much worse L1 miss rates can inflate the as the renaming buffer, are not available on existing pevémce-
impact of L2 access times. We show the breakdowns later when monitoring counters. We expect similar pressure is also see

calculating overall CPI values.

e TLB misses. In the current Xeon processor, the Instruction
Translation Lookaside Buffer (ITLB) is duplicated and theased
DTLB is tagged with each logical processor’s ID. Enabling BM
drops the ITLB miss rate (shown in Figure 12) while incregsin
the DTLB miss rate (shown in Figure 13). The DTLB miss rate is
expected, since the threads may be operating in differgione

of the code. We believe the drop in ITLB stems from the intgtrru
handling code executing only on the first logical processfiec-
tively halving its ITLB footprint.

e Mispredicted branches. Branches comprise 15% - 17% of in-
structions in our applications. Each mispredicted brarahd 20
cycle penalty. Even though all of the five servers show 50%dtig
misprediction rates with SMT, the overall cost is not sigifit
compared to cache misses, as we show in the breakdowns later.

e |Instruction delivery stalls. The cache misses and mispredicted
branches result in instruction delivery stalls. This eveesures
the number of cycles halted when there are no instructioadyre
to issue. Figure 15 shows the average cycles stalled for legeh
delivered. For each server, we observe a steady increaselffo
UP to 4T, suggesting that with more hardware contexts, theben

of cycles spent stalled increases.

other buffers.

e Pipeline clears.Due to the Xeon's design, there are conditions
in which all non-retiring stages of the pipeline need to hecedled.

This event measures the number of these flushes. When this hap
pens, all of the execution resources are idle while the deewrs.
Figure 17 shows the average number of pipeline clears per byt
of content. The SMT rate is a factor of 4 higher, suggestirag th
pipeline clears caused by one thread can affect other threes
cuting simultaneously. Profiling on this event indicatest tmore
than 70% are caused by interrupts. Haboob’s high clear ma4d i
mode may be responsible for some of its performance degoadat

e 64K aliasing conflicts. This event occurs when the address of a
load or store conflicts with another reference which is irgpess.
When this happens, the second reference cannot beginhenfiist
one is evicted from the cache. This type of conflict existshia t
first-level cache and may incur significant penalties fodothat
alias to preceding stores. The number of conflicts per bytkda/n

in Figure 18. All of the servers show fairly high number of eon
flicts, suggesting an effective direction for further optiation.

e Putting cycles together.We estimate the aggregated cycles per
instruction of these negative events and compare them tméaze
sured CPI. While itis possible to estimate the penalty oheaent,

[Buffer 16 —— Apache-MP——— 16 T———Apache-MT—— 16 Flash 16 TUX — 16 Haboob
OClear 144 14 1 14 + 144+------- - 44—
B Branch 124 12 1 —112 Rt 124
EDTLB |~ 07T " ----11 101 {1 J [0 J S 10
OITLB S 8- L § 8 f - - 8 _ 8
OL2 61 67 6 1 6= =| P 6t -
mLI 41 47 4+ i‘ IR sEs %
Huops 2T 21 27 27N . 24
0 I B 0 L L 0 e 0 I L 0 L
SEEEE FE8FTIS g8FRE SEFFS S8 S
\&\&’ x&\&' \&\&:5 \&\&, \/\\&5

Figure 19: Non-overlapped CPI accumulated by cache miss, TLB miss, misedicted branches and pipeline clear. Labels shown here sh as L1,
L2 etc. are misses, and components in each bar from top to batin are in the same order as in the legend. Measured CPlIs are sha as small dashes.

some have aggregated effects and thus are not included-eFi§u
shows breakdowns of non-overlapped CPls calculated frgmt ei
events, with measured CPI| shown as dashes. The breakdowns in
dicate that L1 and L2 misses are responsible for most of thiesy
consumed. Pipeline clears and buffer stalls also have d#isamt
portion when SMT is enabled, as shown in Flash, Tux and Ha-

boob’s 2T and 4T cases. Other events such as TLB misses and

mispredicted branches are not major factors in our worldoad

Our microarchitectural analysis provides quantitativplana-
tions of the observed performance and discovers a numbeviof S
resource bottlenecks. Quantifying performance changedbas
processor events for our-of-order superscalar processar our
goal, nor do we think it is feasible. However, by examining th
aggregated CPl and measured CPI, we can estimate the gipelin
overlapping if the measured CPl is lower than the calculadae,

Type sim sim sim | Xeon | Xeon
Year 1996 | 2000(2003| 2003 | 2004
Clock rate (Mhz)| 600° | 800" | 800" | 2000 | 3060
Contexts 8 8 8 2 2
Stages 9 9 9 20 30
L1 ICache (KB) 32 128 64 8" 8"
L1 DCache (KB) 32 128 64 8 8
L2 size (KB) 256 | 16384 | 16384| 512| 512
L2 cycles 6 20 20 18 18
L3 size (KB) 2048 - - - | 1024
L3 cycles 12 - - - 46
Memory (cycles) 62 90 90| 225| 344

Table 5: Processor parameters in simulation and current products.

and how many cycles are taken by other sources if measured CPlvalues marked with an asterisk are approximate or derived.

is higher. With this microscopic information and observexdfor-
mance improvement, we can compare to similar studies ugimg s
ulation which we describe in the next section.

5. EVALUATING THE SIMULATIONS

Our measurements present a much less optimistic assessiment
SMT performance benefits than many of the simulation-batset s
ies — most of our gains are in the 5%-15% range for 2 threads,
while the simulations show speedups in the 200%-400% ramge f
4-8 threads. Intuitively, the number of threads might bedhese
of this speedup gap. However, studies also show that thddirst
threads usually exhibit more performance gain than the[8&§t
Thus, the simulated speedup for 2 threads would be in theerang
of 70-100%, which is still much higher than what we observe.
While none of the published simulations modeled the Xeos, th
significant disparity in the gains warrants analyzing theiuse.

We have not found any simulations specifically regardingtipnd-
cessor systems, although such systems are popular in tverket
server market. None of the simulations appear to have cereid
the cost of using an SMP-enabled kernel instead of a unipsoce
kernel, and we have shown this cost to be significant. However
we believe the other significant differences are hardwelated,
which we discuss below.

The most prominent area of difference between the Xeon and
the simulated processors is the structure of the memorgiuiey,
and the associated latencies. The Xeon has an 8KB L1 data cach
and a 12Kuops trace cache (TC), which is equivalent to an 8KB
- 12KB conventional instruction cache. Detailed hardwaamm-

eters and latencies for our experimental platform are ptedein
Table 5. The 1996 study is a proposal for practical SMT proces
sors [36], while the 2000 paper examines SMT OS and Web server
performance [26], and the 2003 one examines SMT searchengin
performance [18]. The processor models were derived fropha\|
and have shorter pipelines and slower clock speeds thanrmode
processors. While the 1996 design had caches that are calphpar
to what is available today, the others are much more aggeettsin
what is currently available.

The issue of cache size is significant, because of its dimect i
pact on processor cycle time. Larger caches slow access, tand
the Xeon’s L1 caches are small in order to support its higkkclo
frequencies. For comparison, if we triple the clock frequies,
stages, and main memory latencies for the 2000 and 2003estudi
then those values are in line with the current Xeons, but the L
cache sizes are 8-16 times higher, and the L2 cache sizeim&2 t
larger. If we assume the simulated L2 caches are really Le3) th
they are more than twice as fast as the Xeon’s L3 latencieite wh
still being 4 times larger than the L3 caches of any Xeon imthe-
ket at the time this study was performed. Even if we compatk wi
high-end processors, the simulated processors are giiésgjve.
For example, the IBM POWERS5 has a 64KB instruction and 32
KB data L1 cache, 1.9MB L2 cache, 36MB of shared L3 cache per
2 processors, 2 SMT contexts, a 16-stage pipeline, and tegea
1.5 GHz [11]. Compare to the scaled version of the simulated p
cessors, it has one-fourth the SMT contexts, and operatesfaif
the clock speed. We conclude that not only are the simulatad-m

5000 T—2.0GHz 5000 3.06 GHzno L3 5000 - 3.06 GHz IMB L3
=
f: 4000 - 4000 - - 44000 - -
=
& 3000 A 3000 - m 3000 A
g 2000 - 2000 - 2000 +---= MW ------ -
Z 1000 { — - 1000 | [T 1000 -
ONN |

0 ; ‘ 0 ; ‘ 0 ‘

Apache-MP Apache-MT Flash

Apache-MP Apache-MT Flash

O1T-UP O1T-SMP E2T E2P W4T

Apache-MP Apache-MT

Figure 20: SPECweb99 scores of three servers. The metric is number ofhsilltaneous connections.

Flash

02.0GHz m3.06GHz M 3.06GHz L3

Figure 21: SMT speedups on SPECweb99 scores for the three servers.

ory hierarchies more aggressive than what current hardeame
support, but the memory latencies are also much faster theat w
might be reasonably expected from their size. Given theitbens

ity to cache sizes and memory speeds we have seen in our €valua
tions, it is not surprising that the simulations yield mopgimistic
speedup predictions.

While these differences indicate that SMT in the Xeon may not
yield significant benefit on the workloads we studied, it dnes
imply that SMT in general is not useful. If a company were to
design a processor specifically suitable for SMT, it may ceoo
a larger number of contexts and larger caches while conslgiou

S 40 1 2T vs. IT-SMP 40 2T vs. 1T-UP 40 4T vs. 2P

=

2 30 30 30

o

-

% 20+-| - - - 20 - 20 -

g

g

'g 10 10 “ 10 +

=

=

g o ‘ ‘ 0 ‘ \ll ~ml j—Ldj—L
** Apache-MP Apache-MT Flash Apache-MP Apache-MT Flash Apache-MP Apache-MT Flash

Simulation | Measurement
Contexts 8 2
Speedup 4-fold 5-15%

SMT | ST | SMT ST
IPC 56| 26| 0.43]| 0.33
Branch Mispredict (%) 9.3 | 5.0 12.0 8.0
L1-I miss (%) 20| 13| 17.1| 105
L1-D miss (%) 36| 05 5.7 4.7
L2 miss (%) 14| 1.8 3.9 5.1
ITLB miss (%) 0.0 0.0 3.7 5.1
DTLB miss (%) 0.6 | 0.05 35 2.9

sacrificing cycle time. Such a system may have poor perfocman
for single-threaded applications, but would be suitabtehighly-
parallel tasks. Sun Microsystems has discussed their upgom
“Niagara” processor, which has 8 cores with 4 contexts per [28].
They project it to have 15 times the performance of todayls cu
rent processors, while a dual-core UltraSparc V microfsscetar-
geted for the same timeframe was expected to have 5 timegthe p
formance of today’s processors. Using these numbers, eattxt

on Niagara will perform at one-fifth the performance of on& &l
Sparc V context. This approach is similar to the Denelcor P
and the Tera MTA [30] which were designed for high throughput
instead of high single-thread performance. Whether thisagch
will be more successful for a higher-volume processor reman
open question.

In broader terms, though, the simulations identified a nurobe
trends that we can confirm via our evaluation. Table 6 congpare
our measured results versus the simulation study of the saime
load [26]. While the magnitude of the values between the Eited
and actual processor is large due to the differences in csizhs,
etc., the direction of change is the same for each metric.

6. SMT ON SPECWEB99 BENCHMARK

While static Web workloads are useful to compare with previ-
ous studies, dynamic content is an important part of cuveéslh
traffic, and is captured in the SPECweb99 benchmark. In doder
compare with results discussed in previous sections, weheufull

Table 6: Results comparison between related simulation work and our
measurements. We use ST (Single Threaded) to indicate the m&MT
performance.

benchmark but also limit the data set size to 500 MB.

SPECwebh99 introduces changes to both the workload and dietho
ology of the SPECweb96 benchmark. The benchmark consists of
70% static and 30% dynamic requests. The dynamic requests at
tempt to model commercial Web servers performing ad ratatio
customization, etc., and require some computation. R#therre-
porting rates in requests per second, SPECweh99 repontsithe
ber of simultaneous connections the server can handle wigitt-
ing a specified latency requirement.

The dynamic portion of SPECweb99 consists of a specification
which must be implemented for each server. Because we do not
have versions of this specification for all of our servers, caa
only evaluate it for three of our five systems. We run Flash el$ w
as both versions of Apache on the three hardware configngatio
While TUX has SPECweh99 scores, we have been unable to get
the dynamic content support to work on the free version ofikin
with SMT support. We are investigating its performance @aRled
Hat Enterprise distribution since it is more stable and ésdistri-
bution for which most TUX results are reported. Haboob is not
included because we did not find its dynamic API for SPECweb99
Since we focus on the differences stemming from SMT, we are no

overly concerned about the missing servers. For Apache,see u
the modspecweb99 module which is available on the Apache Web
site. Similarly, for Flash, we use its built-in SPECweb99dule
that handles dynamic requests.

other parallel benchmarks, and concluded that this process
plementation matches the promise of the published SMT relsea
Bulpin and Pratt [6] extended Tuck et al.’s evaluation by panng

an SMT system to a comparable SMP system, but did not investi-

Figure 20 shows the SPECweb99 scores of the three servers orgate SMT on SMP systems as we do in this paper. Chen et al. [7]

the three different hardware configurations, and Figure &#due
lates the speedups. The trends are generally consisténimivét
we observed in Section 3, but some interesting differencesge.

also only evaluated performance of SMT and SMP individually
Vianney [39] measured a single Xeon processor and repdnged t
Hyper-Threading on the Linux kernel can improve throughgpiut

On uniprocessor systems, SMT has a speedup of 4% to 15% whena multi-threaded application (namely, chat [14]) as muclbG.
comparing to the uniprocessor kernel, and a speedup of 15% toOur study not only differs in target testbed and workloads abso

30% when comparing to the SMP kernel. On dual-processor sys-

tems, the improvements range from 1% to 15%. In comparing Fig

ure 21 with Figures 5 and 6, we see some interesting diffeenc

The gains for Apache on SPECweb99 are almost always wonse tha

those on the static-only test. Flash’s gains are worse apaees-

sor, but better at two processors. The additional compmurtati

SPECweb99 appears to help utilize the processor better tigen

memory system is very taxed, but seems to be causing mord-imba

ance in Apache, which already does more computation thahFla
This result also leads to another general observation. aVhil

SMT is intended to hide memory reference latency by overlap-

ping the use of idle processor resources, application disreéav-

ing similar resource utilization characteristics such ab\dervers

serving static content may have little to overlap. Usingsidis-

lar workloads to achieve better SMT utilization has beer@xpol

for the CINT (integer component of SPEC CPU) benchmark pro-

grams [33], but not for network server software. Even wifh thix

of programs, the benefits we see in the network server emaiean

are lower than in the CPU-only tests.

7. RELATED WORK

In this section we discuss related work not already covenduen
investigating SMT performance, operating systems wereimot
cluded in simulations until Redstone et al. [26] ported thTS
SIM simulator [37] into the SimOS framework [27]. They diseo
ered that although ignoring operating systems behavior nuty
result in misleading predictions for SPEC CINT, it has digant
impact on evaluation of server applications such as Apathe.
Dowell et al. [18] used the same simulator and studied memory
allocation and synchronization strategies for a searcmerappli-
cation. Similarly, many studies focus on user-level and [oate-
intensive applications, including SPEC CINT and CFP [32,338,
parallel ray-tracing applications [10], SPLASH-2 benclnksg16],
MPEG-2 decompression [7, 29], and other scientific appboat
workloads [13, 31]. Lo et al. [15] analyzed SMT performandthw
database workloads, which spend 70% of their time in userespa

Our approach differs from previous performance evaluation
several ways. While direct measurement on real hardwaes gie-
curate results and does not need model validation, as igeeduy
simulation, it is limited by the available hardware confafions.
By making small changes to the hardware and exploring kemel
tions, we obtain a reasonable space for comparison. Morerimp
tantly, compared to the work which studies server appbceti our
evaluation has a broader range of server software, OS sugpar
hardware configurations. Our results on uniprocessor leara
dual-processor systems discover new SMT performance cieara
istics. In contrast to other works, we focus on server waé
since it is one of the biggest markets for SMT-enabled pismrss

Performance evaluation and characterization on currevdyl-
able SMT-enabled processors is still an ongoing reseaezh auck
and Tullsen [35] evaluated the implementation and effeatss of
SMT in a Pentium 4 processor, particularly in the context ridmp

provides low level microarchitectural characteristicgegeal de-
tailed resource utilization pertinent to SMT.

SMT’s microarchitectural performance is always one of tlaém
concerns in SMT design. In addition to work discussed aairiie
this section, Grunwald and Ghiasi [9] examined the Xeon ggoc
sor and discovered a possible microarchitectural deniakofice
attack for the SMT processor. Snavely et al. [31, 32] obsksyen-
biotic features in SMT architectures and proposed a spscied-
uler to exploit it. Raasch and Reinhardt [25] studied thedntf
resource partitioning on SMT processors. Our microarchital
analysis using the performance counters focuses on theazsop
between when SMT is enabled and disabled, instead of ewrzduat
the performance of different SMT design options.

Performance analysis using hardware provided event caunte
has been an effective approach in previous studies. Bhiauder
al. [4] and Keeton et al. [12] characterized performanceesftim
Pro systems and studied latency components of the CPI. Mere r
cently, Blackburn et al. [5] used some of the Pentium 4 peréorce
counters to study impact of garbage collection. Given tha-co
plexity of Xeon microarchitecture, interpreting the penfiance-
monitoring events on these systems is more difficult thah piie-
vious Pentium family processors or RISC processors. Maeov
we are unaware of any non-simulation work in this area that pr
vides the breadth of event coverage that we do in this paper.

8. CONCLUSION

This paper provides a performance analysis of simultanelis-
threading for server applications, using five software enptnta-
tions and three hardware platforms. We find that the perfooma
benefits of SMT are much more modest when compared to the
uniprocessor kernel, suggesting non-negligible amour@Smover-
head when supporting SMT. This cost was mostly ignored inipre
ous studies. Our evaluation in dual-processor configuratindi-
cates that the benefits of SMT are harder to achieve in these sy
tems, unless memory reference latency is shorter or a lagge L
cache is used, a finding that may aid SMT design and purchasing

Our microarchitectural analysis provides quantitativplasa-
tions of the observed performance and discovers a numbeviof S
resource bottlenecks. Using this information, future pesor de-
signers can understand how to better serve this importasscl
of applications. With this detailed, low-level informati@nd ob-
served performance improvement, we are able to compareseur r
sults to similar studies performed using simulation. Wedvel that
simulation correctly predicts the direction of change foygessor
resources, but yields much more optimistic estimates aues
contention and overall speedup.

Acknowledgments

This work was partially supported by an NSF CAREER Award. We
would like to thank our shepherd, Geoff Voelker, and our gnron

published research in SMT. They measured SPEC CPU2000 andmous reviewers for their feedback and insight.

References

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,
S. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have all the cycles
gone. InProc. of the 16th SOSP.

Apache Software Foundation.
http://www. apache.org/.

P. Benmowski. Hyper-Threading LinuxLinux\World, Aug.
2003.

D. Bhandarkar and J. Ding. Performance characterimatio
the Pentium Pro processor. Bnoc. of the 3rd IEEE Symp. on

High-Performance Computer Architecture (HPCA '97), Feb.

1997.

S. Blackburn, P. Cheng, and K. McKinley. Myths and reali-
ties: The performance impact of garbage collectionProc.
of the SGMETRICS' 04, June 2004.

J. Bulpin and I. Pratt. Multiprogramming performancetioé
Pentium 4 with Hyper-Threading. Mébrkshop on Duplicat-
ing, Deconstructing, and Debunking (WDDDO04), June 2004.

Y.-K. Chen, E. Debes, R. Lienhart, M. Holliman, and M. Ye-
ung. Evaluating and improving performance of multimedia
applications on simultaneous multi-threading. 9t Intl.
Conf. on Parallel and Distributed Systems, Dec. 2002.

S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tullsen
Simultaneous multithreading: A platform for next-genemat
processorslEEE Micro, Sept. 1997.

D. Grunwald and S. Ghiasi. Microarchitectural deniakef-
vice: insuring microarchitectural fairness. fnoc. of the 35th
Intl. Symp. on Microarchitecture, 2002.

H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elementary
processor architecture with simultaneous instructioniigs
from multiple threads. IfProc. of the 19th ISCA, 1992.

R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip
dual-core multithreaded processtEEE Micro, March 2004.

K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Baker.
Performance charaterization of a Quad Pentium Pro SMP us-
ing OLTP workloads. IrProc. of the 25th ISCA.

H. Kwak, B. Lee, A. Hurson, S.-H. Yoon, and W.-J. Hahn.
Effects of multithreading on cache performanteEE Trans.
Comput., 48(2), 1999.

[14] Linux Benchmark Suite Homepage.
benchmark. http://Ibs.sourceforge.net/.

[15] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levyl a
S. Parekh. An analysis of database workload performance on
simultaneous multithreaded processors.Ptoc. of the 25th
ISCA.

[16] J.Lo, J. Emer, H. Levy, R. Stamm, and D. Tullsen. Corngrt
thread-level parallelism to instruction-level paraketi via si-
multaneous multithreadingACM Transactions on Computer
Systems, 15(3).

[17] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A. Mer,
and M. Upton. Hyper-threading technology architecture and
microarchitecturelntel Technology Journal, 6(1).

[18] L. McDowell, S. Eggers, and S. Gribble. Improving serve
software support for simultaneous multithreaded proassso

[19] L. McVoy and C. Staelin. Imbench: Portable tools forfper
mance analysis. I[WSENIX 1996 Annual Technical Confer-
ence.

[20] OProfile. A system
http://oprofile.sourceforge.net/.

[21] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficie
and portable web server. WSENIX 1999 Annual Technical
Conference.

(2]
(3]
[4]

The Apache Web server.

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

A GPLd chat room

profiler ~ for Linux.

[22] V. Pai, P. Druschel, and W. Zwaenepoel. 10-Lite: a unifi®©

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

buffering and caching systemACM Transactions on Com-
puter Systems, 18(1).

G. Papadopoulos and D. Yen. Throughput computing: Driv
ing down the cost of network computing. http://www.sun.com
/events/analyst2003/presentations/PapadopotosWWAC _
022503.pdf.

R. E. Hiromoto, O. M. Lubeck, and J. Moore. Experiences
with the Denelcor HEP. IParallel Computing.

S. Raasch and S. Reinhardt. The impact of resource- parti
tioning on SMT processors. |h2th Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT’ 03), New
Orleans, Louisiana, Sept. 2003.

J. Redstone, S. Eggers, and H. Levy. An analysis of ¢pera
ing system behavior on a simultaneous multithreaded archi-
tecture. InProc. of the 9th ASPLOS

M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Com-
plete computer system simulation: The SimOS approach.
IEEE parallel and distributed technology: systems and ap-
plications, 3(4), Winter.

Y. Ruan and V. Pai. Making the “Box” transparent: System
call performance as a first-class result. USBENIX 2004 An-
nual Technical Conference, Boston, MA, June 2004.

U. Sigmund and T. Ungerer. Memory hierarchy studies of
multimedia-enhanced simultaneous multithreaded procgss
for mpec-2 video decompression. Wbrkshop on Multi-
Threaded Execution, Architecture and Compilation, January
2000.

A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. StliBa
N. Mitchell, J. Feo, and B. Koblenz. Multi-processor pesffor
mance on the tera mta. Rroc. of the 1998 ACM/IEEE con-
ference on Supercomputing, 1998.

A. Snavely and D. Tullsen. Symbiotic job scheduling éor
simultaneous multithreaded processorPtoc. of the 9th AS:
PLOS 2000.

A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job-
scheduling with priorities for a simultaneous multithrizag
processor. IrProc. of the SGMETRICS 02.

Standard Performance Evaluation
http://www.spec.org/benchmarks.html.

Standard Performance Evaluation Corporation.
Web Benchmarks.
http://www.spec.org/web96.

N. Tuck and D. Tullsen. Initial observations of a sinauie-
ous multithreading processor. 12th Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT' 03), Sept.
2003.

D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. $tam
Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processoPrit. of

the 23th ISCA.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. Proc. of the
22th ISCA, 1995.

TUX Web Server. http://www.tux.org/.

D. Vianney. Hyper-Threading speeds Linu®M devel oper-
Works, Jan. 2003.

M. Welsh, D. Culler, and E. Brewer. SEDA: An architecur
for well-conditioned, scalable internet services. Hroc. of
the 18th SOSP, Oct.

Corporation.

SPEC
http://www.spec.org/web99/

