
RC24183 (W0702-053) February 13, 2007
Computer Science

IBM Research Report

Evaluating SIP Server Performance

Erich Nahum, John Tracey, Charles P. Wright
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Evaluating SIP Server Performance
Erich Nahum, John Tracey, Charles P. Wright

IBM T. J. Watson Research Center
Hawthorne, NY, 10532

Abstract
SIP is a protocol of growing importance, with uses for
VoIP, instant messaging, presence, and more. However,
its performance is not well-studied or understood. In
this paper we experimentally evaluate SIP server perfor-
mance using micro-benchmarks meant to capture com-
mon SIP server scenarios: registration, proxying, and
redirection. We use standard open-source SIP software
such as OpenSER and SIPp, running on an IBM Blade-
Center with Red Hat Enterprise Linux with Gigabit Eth-
ernet connectivity.

We show performance varies greatly depending on the
server scenario and how the protocol is used. Depending
on the configuration, throughput can vary from hundreds
to thousands of operations per second. For example, we
observe that the choice of stateless vs. stateful proxying,
using TCP rather than UDP, or including MD5-based au-
thentication can each can affect performance by a factor
of 2-4. We also provide kernel and application profiles
using Oprofile that help explain and illustrate processing
costs. Finally, we provide a simple fix for transaction-
stateful proxying that improves performance by a factor
of 10.

1 Introduction
The Session Initiation Protocol (SIP) is an application-
layer control protocol for creating, maintaining, and
tearing down sessions for various types of media, in-
cluding voice, video, and text. SIP is of growing im-
portance, as it is being used for many media-oriented
applications such as Voice over IP (VoIP), voicemail, in-
stant messaging, presence, IPTV, network gaming, and
more. It is also the core protocol for the IP Multime-
dia Subsystem (IMS), the basis for the 3rd-Generation
Partnership Program (3GPP) for both fixed and wireless
telephone networks. SIP relies on an infrastructure of
servers, which are responsible for maintaining the loca-
tions of users and forwarding SIP messages across the
application-layer SIP routing infrastructure toward their
eventual destinations.

The performance of these SIP servers is thus crucial
to the operation of the infrastructure, as they can have

a primary impact on the latency of media applications,
e.g., for initiating a phone call. However, SIP server
performance is not well-studied or understood. Service
providers clearly require performance information to un-
derstand how to provision their infrastructures to provide
reasonable QoS.

The goal of this paper is to shed more light on how
SIP servers perform under various scenarios and ex-
plain some of the limits to performance. We evaluate
SIP server throughput and latency for several common
SIP server scenarios, using micro-benchmarks on a ded-
icated experimental testbed.

In particular, we are interested in identifying the pri-
mary factors that determine SIP server performance in-
cluding:
• How do different SIP server scenarios (registra-

tion, proxying, and redirection) compare in perfor-
mance?

• Where is the time spent in servicing SIP requests?
• How significant are security costs such as authenti-

cation and encryption?
• How does the choice of stateless vs. stateful prox-

ying affect performance?
• What is the impact of the transport protocol on per-

formance?
We study these issues experimentally with standard

open-source SIP software. We use a common SIP proxy
server, Open SIP Express Router (a.k.a. OpenSER),
running on an IBM BladeCenter with a 3.06 GHz In-
tel Xeon. The blade runs Red Hat Enterprise Linux 4
update 3, with a 2.6.17.8 kernel. Performance is mea-
sured by clients using the SIPp workload generator send-
ing requests over a private copper Gigabit Ethernet. We
measure throughput, average response time, and distri-
butions of response times for a given load level, driving
the system not only to capacity but into overload as well.
We also provide profiling results which illustrate where
the significant processing costs are incurred.

We find that SIP performance, in terms of through-
put, can vary by an order of magnitude, depending on
the scenario and how the server is configured. Reg-
istration, proxying, and redirection can each can vary

1

from hundreds to thousands of operations per second,
depending on whether authentication is used, whether
transactions are stateful or stateless, and whether the un-
derlying transport protocol is UDP or TCP. Authentica-
tion can reduce performance by a factor of 4, depending
on the scenario. Using TCP as the transport can reduce
performance by a factor of 3, and stateful configuration
for proxying can cut performance in half. We show that
the distributions of response time vary radically and de-
grade substantially when the system is under overload.
We also present a simple one-line performance fix to the
transaction stateful timer code, identified by profiling,
that improves stateful proxying by up to a factor of 10.

The result is that organizations deploying SIP tech-
nology must be aware of how their systems are config-
ured and used, as this will have a primary influence on
the performance of their systems, and thus how many
resources must need to be provisioned.

The rest of this paper is organized as follows: Sec-
tion 2 provides more background on SIP and SIP servers.
Section 3 presents the SIP server scenarios that we eval-
uate. Section 4 describes our experimental setup, and
Section 5 presents our results in detail. Section 6 dis-
cusses some related work, and Section 7 provides our
summary and conclusions and briefly presents plans for
future work.

2 Background
This section provides a short general background on SIP
required to understand and interpret our results. Those
familiar with SIP may wish to skip to Section 3.

2.1 Protocol Overview
As described earlier, SIP is a control-plane protocol de-
signed to create, modify, and destroy media sessions be-
tween two or more parties. RFC 3261 [20] is the core
SIP IETF specification, although there are many RFCs
that augment and extend the protocol. Sessions can be
of various types, including voice, video, and text, which
are carried over a separate data-plane protocol. This de-
coupling of the control plane from the data plane is one
of the fundamental strengths of SIP and contributes to its
flexibility and extensibility. SIP was designed with this
in mind; for example, SIP application routers, known
as proxies, are required to preserve and forward head-
ers that they do not understand. Similarly, SIP runs over
TCP, UDP, SCTP, SSL, IPv4 and IPv6. SIP is not a net-
work resource reservation protocol such as RSVP [29];
the issue of how to allocate and manage network band-
width and transfer media is outside the scope of the pro-
tocol. SIP is a text-based protocol that borrows much of
its mechanics from HTTP [7]. Messages contain headers
and optionally bodies, depending on the message type.

As an example, for voice applications, SIP mes-

sages encapsulate an additional protocol, the Session
Description Protocol (SDP) [21], which provides an of-
fer/answer model to negotiate session parameters, such
as which voice codec to use. Once the end points agree
to the session characteristics, voice data is typically car-
ried by the Real-time Transport Protocol (RTP) [26].
Media protocols usually communicate directly between
end points in a peer-to-peer fashion, although this can,
of course, be complicated by factors such as firewalls
and Network Address Translation (NAT). SIP can aid in
traversing such network middleboxes, however.

2.2 SIP Users, User Agents, Servers
SIP users are usually identified using a SIP URI, e.g.,
sip:user@domain.com. This provides a layer of
indirection that enables features such as mobility and
location-independence.

SIP users employ end points typically referred to as
user agents. These are the entities that initiate and accept
sesions. They include both hardware (e.g., hard VoIP
phones, cell phones, pagers, etc.) and software (e.g., soft
phones, IM clients, voicemail servers). User agents are
further categorized into User Agent Clients (UAC) and
User Agent Servers (UAS), depending on how they are
acting, either making requests (UAC) or responding to
them (UAS). Thus most call flows for SIP messages in-
clude how the UAC and UAS behave for that scenario.

The SIP infrastructure provides several functional net-
work elements in order to deliver messages to their ulti-
mate users; these are the specialized servers that are the
focus of this study. They include:
• The Location Service provides a service to find and

update user location.
• Registrars provide the interface for users to register

their location with the SIP infrastructure. Users can
provide multiple locations. The registrar updates
the location service with the appropriate informa-
tion.

• Proxies route messages towards their eventual des-
tinations. If a message is intended for a user that
the proxy is responsible for (i.e., is in its domain),
the location service is queried to determine the fi-
nal destination for the message. If the proxy is not
responsible for the user, it is fowarded to another
proxy. The next proxy can be chosen via multiple
methods, but a common way to decide is via DNS
location [22].

• Redirectors send a redirect message back to the
source of the message notifying it of the next place
to send the message; the idea is for the redirect
server to take itself ‘out of the loop’ in message for-
warding. The concept is analogous to DNS servers
providing redirect messages rather than recursive
lookups.

2

The above services are described functionally. They
can be co-located in practice. For example, the registrar
and location service are frequently located together.

2.3 Sessions, Transactions and Dialogs
SIP consists of several layers, which define how the pro-
tocol is conceptually and functionally composed, but not
necessarily implemented. The lowest layer is called the
syntax/encoding layer, which defines how messages are
constructed. This layer is conceptually above the IP
transport layer, e.g., UDP or TCP. SIP encodings are
specified using an augmented Bakcus-Naur Form gram-
mar (ABNF). The second layer is called (perhaps unfor-
tunately) the transport layer. This layer specifies how
a SIP client sends requests and handle responses, and
how a server receives requests and sends responses. The
third layer is the transaction layer. This layer is respon-
sible for matching each response to the corresponding
request, SIP application-layer protocol timeouts, and re-
transmissions. All SIP end points (i.e. user agents) have
transaction layers, as do stateful proxies. Stateless prox-
ies do not. The fourth layer is called the transaction user
(TU) layer, which may be thought of as the application
layer in SIP. The TU creates an instance of a client re-
quest transaction and passes it to the transaction layer.

SIP uses HTTP-like request/response transactions. A
transaction consists of a request to perform a particu-
lar method (e.g., INVITE, BYE, CANCEL, etc.) and at
least one response to to that request. Responses may
be provisional, namely, that they provide some short
term feedback to the user (e.g., TRYING, RINGING) to
indicate progress, or they can be final (e.g., OK, 401
UNAUTHORIZED). Final responses complete the trans-
action; provisional responses do not.

A transaction stateful proxy is a proxy that maintains
state for each transaction that passes through it, for both
the client and the server. It will generate provisional re-
sponses (i.e., TRYING) to suppress retransmissions. A
stateless proxy simply acts as a SIP message forwarder,
and does not generate provisional responses.

A dialog is a SIP relationship between two user agents
that endures for some period of time. Dialogs aid in mes-
sage sequencing and routing between user agents, and
provide a context in which to interpret messages. For
example, in VoIP, an INVITE message not only cre-
ates a transaction (the sequence of messages for estab-
lishing the INVITE), but also, if the transactions com-
pletes successfully, a dialog (in this case, a phone call).
A BYE message creates a new transaction and, when the
transaction is complete, terminates the dialog. In this ex-
ample, a phone call is the dialog, and the INVITE and
BYE transactions deliniate it. Thus, SIP sessions con-
sist of one or more dialogs, which in turn contain one or
more transactions.

2.4 Authentication and Security
SIP security is complex, as described in the RFC [20],
and is an area of ongoing research. For example, numer-
ous RFCs and Internet-Drafts at the SIP working group
page [12] focus on security issues. While the protocol
does not address all potential security concerns, it does
provide some mechanisms for confidentiality, authentic-
ity and integrity.

SIP authentication is based on HTTP’s MD5 Digest
Authentication [8], providing not only verification of
user identities but also protection against replay attacks.
SIP servers may respond to requests with a challenge for
the calling user agent (UAC) to authenticate itself. This
is done via a 401 UNAUTHORIZED (for registrars and
redirectors) or 407 UNAUTHORIZED (for proxies) re-
sponse, which presents a challenge the UAC must re-
spond to using the Authorization: header. The
server challenge includes a nonce and the realm (e.g.,
domain) for the security region that the UAC wishes to
authenticate itself for. The UAC response includes a
credential which is derived from an MD5 hash of the
nonce, realm, user name, and password. This allows the
UAC to prove to the server that it knows the user’s pass-
word without sending the password in the clear. While
this mechanism allows authentication, it does not pro-
vide privacy; eavesdroppers can, for example, see who a
UAC is calling.

Confidentiality and integrity can be provided by TLS
[6], which is used in a hop-by-hop manner. Servers must
hold a valid public key certificate that can be verified by
user agents when the UAs establish connections to those
servers. User agents may also hold certificates. Secure
proxy-to-proxy communication requires that each side
of the conversation verify the certificate of the other side.
While TLS can have a substantial impact on server per-
formance (see, for example, [3]), it is beyond the scope
of this work. Similarly, SIP messages carry standard
MIME bodies which may be encrypted using S/MIME
[9], but we do not examine those issues here.

3 Scenarios
In this Section, we describe the three common SIP
Server scenarios that we evaluate.

3.1 Registration
Registration is the process by which a SIP client (or user
agent) notifies the SIP infrastructure where it can be lo-
cated. This allows a SIP proxy to determine where mes-
sages for a particular SIP URI should be routed. We
describe two cases of registration: with and without au-
thentication.

Figure 1 shows a packet flow example for SIP regis-
tration with authentication enabled. The hashed circle

3

IBM Research

���
�����	

���

����	

REGISTER

200 OK

����
	�
��������

	�� �

REGISTER w/CREDENTIALS

����
	�

�������

407 Proxy Authentication Req

��
���

�������

Figure 1: Registration with Authentication

surrounding the registrar indicates that this is the com-
ponent we wish to measure in this scenario. In this ex-
ample, the client sends a REGISTER message to the
registrar containing its SIP URI, its contact IP address
and port number, and an expiration time in seconds to
specify the duration for which the registration informa-
tion is valid. Because authentication is enabled, the reg-
istrar challenges the client to prove its identity using the
401 UNAUTHORIZED response. The client then re-
retransmits the REGISTER message with an additional
Authorization: header that provides the newly
formed credentials, as described in Section 2.4. The
registrar then checks the response, and if correct, saves
the contact information for that client’s SIP URI and re-
sponds with a 200 OK message.

In the scenario where registration is performed with-
out authentication, the packet flow consists simply of the
REGISTER message from the client followed by the
200 OK from the Registrar. This case might occur in
an enterprise environment where the network is secured
and users are trusted.

3.2 Proxying
Proxying is the core SIP function of forwarding a SIP
message towards its eventual destination in the SIP in-
frastructure. In this section, we describe 4 potential sce-
narios: stateful vs. stateless proxying, both with and
without authentication.

Figure 2 shows an example of stateful proxying with-
out authentication. The hashed circle around the proxy
again illustrates that this is the component we are mea-

IBM Research

���
�����	

���

���

INVITE

	�� �

�	����

���
�����	

100 Trying INVITE

180 Ringing

200 OK

180 Ringing

200 OK

ACK
ACK

BYE
BYE

200 OK
200 OK

�	����
media (e.g., G.711)

Figure 2: Stateful Proxying

suring. In this example, the first SIP client wishes to
establish a session with the second SIP client and sends
an INVITE message to the proxy. Since the proxy is
stateful, it responds with a 100 TRYING message to
inform the client that the message has been received and
that it need not worry about hop-by-hop retransmissions.
It then looks up the contact address for the SIP URI
of the second client and, assuming it is available, for-
wards the message. The second client, in turn, acknowl-
edges receipt of the message and informs the proxy that
it is notifying the user via the 180 RINGING message.
The proxy then forwards that message to the initiator
of the INVITE , informing the client that the end host
has received the message and that the line is “ringing”.
The user on the second client machine then accepts the
call, generating a 200 OK message, which is sent to
the proxy which forwards it on to the first client. The
first client then generates an acknowledgment. Having
established the session, the two endpoints communicate
directly, peer-to-peer, using a media protocol such as
RTP [26]. However, this media session does not traverse
the proxy, by design. When the conversation is finished,
the first user “hangs up” and generates a BYE response
that the proxy forwards to the second user. The second
user then responds with a 200 OK which is forwarded
back to the first user.

The above example is for a transaction-stateful, di-
alog stateful scenario where all SIP messages are
routed through the proxy, using the Record-Route:
header option. However, SIP proxies can be configured
so that not all messages need traverse the proxy. For ex-

4

IBM Research

���

�����	

���

���
��	�

INVITE

302 Moved Temporarily

	� �
ACK

100 Trying

Figure 3: Redirection

ample, the BYE /200 OK exchange could be sent di-
rectly between the two clients. The above scenario is
frequently used, however, since it enables per-call ac-
counting and billing.

The other 3 proxying scenarios are straightforward
extensions of the first.

In the stateless proxying scenario without authentica-
tion, the call flows are the same as in Figure 2, except
that there is no 100 TRYING message sent from the
proxy to the client. In this case, the proxy does not cre-
ate local state based on the transaction and relies on the
endpoints to retransmit lost messages.

In the stateful proxying scenario with authentication,
the proxy responds to the original INVITE with a 407
UNAUTHORIZED message, challenging the client to
provide credentials that verify its claimed identity with
a response based on the challenge. The client then
retransmits the INVITE message with the generated
credentials in the Authorization: header, anal-
ogous to the registration scenario shown in Figure 1.
The proxy also challenges the BYE requests, requir-
ing the UAC to retransmit the BYE with the proper
Authorization: header, to prevent unauthorized
hang-ups.

The stateless proxying scenario with authentication is
similar to the previous scenario, except that there is no
100 TRYING provided to the client and no transaction
or dialog state created on the proxy.

3.3 Redirection
A redirect server is a user-agent server (UAS) that re-
trieves address information about reaching the callee but
returns it to the caller, rather than forwarding a request
as a proxy does. Calling clients are redirected to other
servers using the 3XX response codes. A redirector is
used to reduce processing load on proxy servers by redi-
recting the client to another server. This is analogous to
a DNS server in redirect mode vs. recursive mode; the
redirect server takes itself “out of the loop” of the for-
warding path while still providing some information to
the client. The client can then retransmit the request to
the redirected address. Redirection is used for scalabil-
ity; for example, to propagate URIs from the core of the
network to the edges or to load balance across a cluster
of servers.

Figure 3 shows an example of redirection. In this
scenario, the redirector is operating without authentica-
tion (as a UAS, a redirect server is always transaction-
stateful). The client sends the original INVITE to the
redirector, which immediately responds with the provi-
sional 100 TRYING response. The redirector then re-
trieves the location of the SIP URI from the location ser-
vice, and sends that information to the client via a 302
MOVED TEMPORARILY message. Since the 302 mes-
sage is not a provisional response, it must be acknowl-
edged by the client using the ACK message. The client
then sends the INVITE to the next destination pro-
vided by the 302 MOVED TEMPORARILY message,
not shown in Figure 3 since it does not involve the redi-
rector.

If the redirector is configured to use authentication,
a 407 UNAUTHORIZED response is generated with a
challenge, and the client must retransmit the INVITE
with the proper credentials in the Authorization:
header.

3.4 Choice of Transport Protocol
Since SIP allows the use of multiple transport protocols,
including UDP, TCP, SCTP, and SSL, we also wish to
evaluate the impact of the choice of transport on perfor-
mance. In our experiments, we evaluate UDP and TCP.
In the case of UDP, all requests and responses are routed
through a single connectionless UDP socket. With TCP,
each client machine uses a separate persistent TCP con-
nection to the registrar, proxy, or redirector, as appropri-
ate to the scenario.

4 Experimental Testbed
In this Section we describe the software and hardware
utilized in our experiments.

5

4.1 SIP Server Software
We use the Open SIP Express Router (OpenSER) [28],
a freely-available, open source SIP proxy server.
OpenSER is a “fork” of the SIP Express Router
(SER) [13], sharing much of its code base. Both proxies
have large feature sets, considerable user bases, active
mailing lists, and third-party contributions (e.g., from
sip.edu and onsip.org). We chose OpenSER over
SER due its more active development, but we believe
our results will hold with SER as well. We considered
other proxies such as Columbia’s SIPd and the SIP Prox-
ies available from sipfoundry.org, such as sipXProxy
and reSIPprocate. However, these tools were either not
freely available (SIPd is now licensed by SIPQuest) or
did not seem to have the same user community behind
them (sipXproxy and reSIProcate).

We used OpenSER version 1.1.0 for our experiments.
We produced several configuration files depending on
the scenarios that we wished to test, such as registra-
tion, proxying, redirection, and the options we wished to
explore, such as with/without authentication, TCP/UDP,
stateful/stateless, etc. In situations where a user database
was required, we used MySQL [19] 4.1.12-3.RHEL4.1,
which we populated with 10,000 unique user names
and passwords. OpenSER was configured to use a
write-back caching policy, to maintain client state across
restarts but also to achieve close to in-memory DB per-
formance.

4.2 SIP Client Workload Generator
We use the SIPp [10] SIP workload generator, another
freely available open-source tool. SIPp is similar to
SER in that it has an active user community and ap-
pears to be the most frequently used open-source SIP
testing tool, in the same way that httperf [17] is the most
commonly-used HTTP client workload generator. SIPp
allows a wide range of SIP scenarios to be tested, such
as user-agent clients (UAC), user-agent servers (UAS)
and third-party call control (3PCC). SIPp is also exten-
sible by writing third-party XML scripts that define new
call flows; we wrote several new flows that were not in-
cluded with SIPp to handle registration and authentica-
tion. SIPp has many run-time options we took advan-
tage of, such as multiple transport (UDP/TCP/TLS) sup-
port; MD5-based hash digest authentication, and script-
able support to allow calls to be generated from a list of
users. We did not use SIPStone [27], since it is not freely
available and again the license is held by SIPQuest.

We made several modifications to SIPp to improve its
performance, so as to reduce the amount of client re-
sources required to drive the server to saturation. Most
importantly, we removed a restriction on SIPp that limits
the number of outstanding calls to three times the re-
quested load level. This artificially limits the offered

load, effectively making SIPp a closed-loop workload
generator. It is well-known that an open-loop workload
generator is required to decouple the request rate from
the reply rate [1, 17, 25], and thus guarantee the ability
to generate overload. Since we are interested not only in
the maximum capacity of the server but also how well
it behaves under overload, we removed this limitation
in SIPp. Upon publication, we will make our SIPp im-
provements available to ensure reproducibility.

4.3 Client and Server OS Software
The servers in our experiments uses RedHat Enterprise
Linux AS Release 4 update 3, using a locally-built Linux
kernel 2.6.17.8, which is more recent than the 2.6.9 ker-
nel variant that ships with RedHat. Our client machines
use the SuSE SLES 9 release 2 Enterprise distribution,
with a 2.6.5-9 kernel. For application and kernel profil-
ing we use the standard open-source Oprofile [18] tool,
version 0.8.1-21.

4.4 Hardware and Connectivity
The server hardware used is an IBM blade server re-
siding in an IBM BladeCenter. The blade has 2 Intel
Xeon 3.06 GHz processors with 4 GB RAM and 100 GB
Toshiba MK4019GAXB ATA disk drives. However, for
our experiments, we only use one processor. The blade
has 2 Broadcom NetXtreme BCM5704S Copper Gigabit
interfaces; each interface is connected to a separate Nor-
tel Gigabit switch that is included with the BladeCenter.
One switch is connected to our building’s regular LAN,
while the other is connected to our private experimen-
tal network. To minimize experimental perturbation and
variability, all of our measurements are conducted over
the experimental network, where minimal other traffic
occurs (e.g., spanning-tree). Also residing on the private
experimental network are 10 client machines used for
load generation; half as UACs and half as UASs. Each
client machine is an IBM Intellistation with a 1.7 GHz
Intel Pentium 4 processor, 512 MB of RAM, an 18 GB
SCSI disk, and an Intel E1000 Gigabit Ethernet adapter.

4.5 Experiments and Metrics
In our experiments, we wish to measure both throughput
and latency as a function of load on the server. Through-
put is relatively straightforward to define for each sce-
nario, in terms of the number of the appropriate com-
pleted operations per second; e.g., registrations per sec-
ond, calls per second, etc. Latency, however, is more
complex, as it is defined based on the scenario. Latency
is defined in the following ways:
• Registration. For registration, latency is the wall-

clock time as seen by the client between the sending
of the original REGISTER message and the even-
tual 200 OK response. This is the Registration

6

Request Delay (RRD) as defined in the IETF SIP-
PING Working Group Performance Metrics Draft
[16].

• Proxying. For proxying, latency is the time be-
tween when the INVITE is sent and the eventual
successful 200 OK is received. This is the la-
tency as perceived by the user for initiating a call,
which we believe is of more interest than latency
that includes the call duration or termination (i.e.,
BYE). This is similar to the Session Request De-
lay (SRD) as defined in [16], except that there the
latency timer is stopped when a 180 RINGING
response is received. Since there is negligible delay
between the two messages on the UAS, we believe
the difference is minimal.

• Redirection. For redirection, latency is defined as
the time between the sending of the INVITE and
the receipt of the 302 MOVED TEMPORARILY
response. This is again similar to SRD in [16].

For each metric (throughput, latency, and CPU pro-
file) that we report, the number is the average over 5
runs. Latency and throughput curves include 95th per-
centile confidence intervals. Each run lasts for 120 sec-
onds after a 5 second warm-up time. We also show
the cumulative distribution function (CDF) of response
times for various load levels, to illustrate how response
time varies with load, particularly at 95th and higher
percentiles. Oprofile is configured to report the de-
fault GLOBAL POWER EVENT, which reports time in
which the processor is not stopped (i.e., non-idle profile
events).

4.6 Restrictions, Limitations, and Scope
Note that our setup by no means covers the entire space
of configurations for SIP. We do not consider non-VoIP
scenarios such as Instant Messaging or Presence. In ad-
dition, there are many VoIP situations not measured by
our experiments, including outbound proxying, PSTN
gatewaying, ENUM processing, SSL and SCTP as a
transport layer, or error processing for unregistered or
unauthenticated users. Each of these presents opportu-
nities for future work.

5 Results
In this Section we present our results in detail. Proxying
is discussed in Section 5.1, registration in Section 5.2,
and redirection in Section 5.3.

5.1 Proxying
Before detailing our proxying results, we believe it is
necessary to describe a significant performance fix for
transaction-stateful proxying that influences many of the
results in our paper.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

NewOriginal

CP
U

Ev
en

ts

4223793.6

1157011

Authentication
Forwarding

Crypto
User Location

Stateless
Record Route

Other
Stateful

Database
C Library

OpenSER Core
Kernel

Figure 4: CPU Profiles: Transaction-Stateful Proxying, UDP,
No Authentication, Load 1000 CPS

While examining the CPU profiling results gener-
ated using oprofile, one problem we observed very
quickly was the extremely large amounts of CPU cy-
cles being spent in the OpenSER module responsible
for transaction-stateful processing. Figure 4 shows the
CPU profile for the transaction-stateful proxying sce-
nario without authentication running over UDP, as re-
ported by oprofile. As can be seen, about 75 percent of
the cycles are spent in the transaction-stateful module
(the bar marked ‘Original’ in the Figure).

Looking more closely, we saw that this
time was coming from a single function,
insert timer unsafe(), which inserted new
transactions into a timer structure for retransmissions in
the future. This list is sorted by expiration time, yet the
routine needlessly searched through the list even though
the timer needed only to be appended to the end of the
list. This function becomes a bottleneck because, at
high loads, each new call results in two new transactions
(the INVITE and the BYE), each of which requires
a timer to be set and canceled in the common case.
A one-line fix corrected this problem, reducing the
cost from linear time based on the number of calls to
constant time. Figure 4 also shows the CPU profile for
the same configuration after the fix has been applied.
Observe that the spent in the transaction stateful module
falls dramatically.

Figure 5 shows how this fix improves performance.
This graph shows offered versus achieved load for the
transaction-stateful proxying scenario, both with and
without authentication, for the original and the fixed ver-
sion of OpenSER using UDP as the transport. Note that
both the X and Y axes are in log scale. Throughputs
increase with load until saturation is reached, then fall
as the server is overloaded. Peak throughputs for each
curve are also reported in Figure 6. Peak throughputs are
calculated as the maximum throughput achieved while

7

 100

 1000

 100 1000 10000

Th
ro

ug
hp

ut
 (C

al
ls/

se
c)

Offered Load

Stateful Proxy NoAuth (New)
Stateful Proxy NoAuth (Orig)

Stateful Proxy Auth (New)
Stateful Proxy Auth (Orig)

Figure 5: Throughputs vs. Offered Load: Transaction-Stateful
Proxying, Original vs. New

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Stateful
UDP
Auth

(New)

Stateful
UDP
Auth
(Old)

Stateful
UDP

NoAuth
(New)

Stateful
UDP

NoAuth
(Old)

Th
ro

ug
hp

ut
 (C

al
ls/

se
c)

400.138

4012.950

300.133

701.688

Figure 6: Peak Throughputs: Transaction-Stateful Proxying,
Original vs. New

maintaining at least a 99 percent success rate. As can be
seen, peak throughput increases by over a factor of ten
in the scenario without authentication, from 400 to 4012
calls per second. Performance increases by 250 percent
for the scenario with authentication, from 300 to 701.

In the case where authentication is used, the time
spent in the transaction stateful module is less signifi-
cant, only about 14 percent, yet a three-fold performance
improvement is obtained. We believe that this is because
of indirect effects due to cache behavior; by needlessly
walking the timer chains, the original timer code evicted
code and data used by other functions, causing them to
take longer time than necessary.

Since transaction-stateful behavior is integral not only
to proxying but also to registration and redirection, all
subsequent results reported below include our timer fix.

 100

 1000

 100 1000 10000

Th
ro

ug
hp

ut
 (C

al
ls/

se
c)

Offered Load

Stateless UDP NoAuth
Stateful UDP NoAuth

Stateless TCP NoAuth
Stateful TCP NoAuth
Stateless UDP Auth

Stateful UDP Auth
Stateless TCP Auth

Stateful TCP Auth

Figure 7: Throughputs vs. Offered Load: Proxying

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Stateful
TCP
Auth

Stateless
TCP
Auth

Stateful
UDP
Auth

Stateless
UDP
Auth

Stateful
TCP

NoAuth

Stateless
TCP

NoAuth

Stateful
UDP

NoAuth

Stateless
UDP

NoAuth

Th
ro

ug
hp

ut
 (C

al
ls/

se
c)

6996.463

4012.950

2495.082

1698.065

799.642 701.688
400.515 400.748

Figure 8: Peak Throughputs: Proxying

8

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

Stateful
 TCP
 Auth

Stateless
 TCP
 Auth

Stateful
 UDP
 Auth

Stateless
 UDP
 Auth

Stateful
 TCP

 NoAuth

Stateless
 TCP

 NoAuth

Stateful
 UDP

 NoAuth

Stateless
 UDP

 NoAuth

CP
U

Ev
en

ts

792365.8

1157011

1502403.6

2053077.2

4237710.2 4293730
4500508 4580777.8

Authentication
Forwarding

Crypto
User Location

Stateless
Record Route

Other
Stateful

Database
C Library

OpenSER Core
Kernel

Figure 9: CPU Profiles: Proxying

Throughputs
Figure 7 shows throughputs versus offered load for state-
ful and stateless proxying, with and without authentica-
tion, using both UDP and TCP as transport protocols.
Again, X and Y axes are in log scale. Peak through-
puts for each curve are also reported in Figure 8. Peak
throughputs are calculated as the maximum throughput
achieved while maintaining at least a 99 percent success
rate. Figure 9 presents the CPU profiles for the 8 config-
urations at a load of 1000 CPS.

As can be seen in Figures 7 and 8, the achieved
throughputs vary considerably, depending on on how
the systems are configured. Starting with the results for
stateless proxying with UDP and no authentication as a
“best case,” we can illustrate how the various features
and functions influence performance.

The most significant feature that influences perfor-
mance is whether authentication is used. Depending
on the configuration, enabling authentication can reduce
performance anywhere from 60 percent (in the stateful
TCP case) to 90 percent (in the stateless UDP case).
Figure 9 illustrates why performance degrades with au-
thentication. Observe that when authentication is en-
abled, almost half the cycles are spent in the MySQL
database and the standard C library functions. Neither
of these components are significant when authentication
is not enabled; thus, we attribute the C library usage
to MySQL. The actual MD5 hash calculation, shown
in the profile under the ‘Crypto’ heading, is typically
less than 1 percent. The reason is that the database is
consulted much more aggressively when authentication
is used, even though OpenSER is configured to use a
write-back caching policy, as described in Section 4.1.
A straightforward solution would, of course, be to lo-
cate the DB on a separate machine, but that would be
increasing the resources available, and we wish to study
the performance limits of a single node in this work.

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000

Re
sp

on
se

 T
im

e
(m

s)

Offered Load

Stateless UDP NoAuth
Stateful UDP NoAuth

Stateless TCP NoAuth
Stateful TCP NoAuth
Stateless UDP Auth

Stateful UDP Auth
Stateless TCP Auth

Stateful TCP Auth

Figure 10: Average Response Time: Proxying

The next most significant performance feature is
which transport protocol is used, TCP or UDP. Using
TCP can reduce performance anywhere from 43 percent
(the stateful proxying scenario with authentication) to
65 percent (stateless proxying without authentication).
Looking at Figure 9, one can see that the time spent
in the OpenSER core goes up significantly, and that the
time spent in the kernel almost doubles. TCP is a much
more complex protocol than UDP, providing much more
functionality, and thus requires significantly larger code
paths.

Finally, we see that the choice of stateless vs. stateful
processing can also have a significant impact on perfor-
mance, depending on the configuration. Enabling state-
ful processing can reduce performance by as much as
60 percent (for the proxying configuration using TCP
with no authentication) to having effectively no impact
on performance (in the configuration using TCP with au-
thentication).

Observe also that OpenSER does not preserve
throughput under overload, as achieved throughput falls
quickly when load exceeds the capacity for that config-
uration. Ideally, a system should maintain maximum
throughput even when subjected to overload; this is dif-
ficult to achieve in practice, of course, and is the sub-
ject of active research. This demonstrates that overload
management and control are issues in OpenSER for the
future.

Latencies
Figure 10 shows average response times versus load.
Note that both X and Y axes use log scales. SIPp has
a 1 millisecond timer granularity; thus, any responses
that occur within less than a millisecond are treated as
zero. Thus, many latencies are not observable on the
graph until the load on the server approaches its maxi-
mum capacity. At those points, latencies rise rapidly, but

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096 16384 65536

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

Response Time (ms)

100 calls/sec
300 calls/sec
500 calls/sec
600 calls/sec
700 calls/sec
800 calls/sec

1000 calls/sec
2000 calls/sec
3000 calls/sec

Figure 11: Response Time CDF: Stateful Proxying, UDP, with
Authentication

the slope of the response times changes once the server
is in an overloaded state. Recall that response times are
only tracked for successful calls.

Figures 11 and 12 show the cumulative distributions
of the response times measured at several loads for two
sample configurations: stateful proxying using authen-
tication with UDP and TCP, respectively. Note that the
X axis is in log scale. An obvious and expected result
is that, as the loads increase, the response times increase
as well (i.e., the curves shift to the right on the graph).
There are, however two other interesting features of the
graphs.

First, curves tend to cluster in two clearly different
regions of the Figures: One, towards the upper left of
the graphs, and other, closer to the center and lower
right. The characteristic that differentiates these two re-
gions is whether the loads are below or above capac-
ity, i.e., whether the system is under overload. We can
see that, when overloaded, the response time distribu-
tions become significantly worse, and very quickly (i.e.,
not linearly in proportion to the load). For example, the
stateful UDP auth configuration has a peak throughput
of 700 calls/second, yet the gap between the 700 curve
and the 800 curve is significant, especially considering
the log scale. The TCP curve exhibits a similar gap be-
tween 400 and 500 calls/second, as the TCP configu-
ration peaks at 400 CPS. This response time behavior
is particularly important for SIP servers, which need to
provide service quickly and smoothly, as they are used
for real-time media such as voice and video.

Second, observe that several significant jumps occur
in the UDP curve at certain response times (e.g., 64 ms,
500 ms, 1000 ms, 2000 ms, etc.). The TCP curve, how-
ever, does not show these jumps, and is much smoother.
These are due to the various retransmission timers used
by SIP for reliability when UDP is used as the transport
protocol. SIP’s primary packet retransmission timer,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096 16384 65536

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

Response Time (ms)

100 calls/sec
200 calls/sec
300 calls/sec
400 calls/sec
500 calls/sec
600 calls/sec

Figure 12: Response Time CDF: Stateful Proxying, TCP, with
Authentication

 100

 1000

 10000

 100 1000 10000

Th
ro

ug
hp

ut
 (R

eg
ist

ra
tio

ns
/s

ec
)

Offered Load

Register UDP with No Authentication
Register TCP with No Authentication

Register UDP with Authentication
Register TCP with Authentication

Figure 13: Throughputs: Registration

called Timer A, uses an exponential backoff starting at
500 milliseconds and doubles each subsequent time that
it fires. When the system is overloaded, we see the mani-
festations of these timers firing by the jumps in response
time at those timer values. We do not see this behavior
in the TCP graph, however. This is because when SIP
runs over TCP, it leverages TCP’s packet reliability and
retransmission behavior rather than using its own as is
done with UDP. However, higher-level timers, e.g., the
transaction timeout timer, are used with both transport
protocols.

Both of these above phenomena are consistent across
all our configurations, not only for Figures 11 and 12.
Due to space constraints, not all our data can be shown.
However, more data is available for the interested reader
in the Appendix.

10

 0

 1000

 2000

 3000

 4000

 5000

TCP
Auth

UDP
Auth

TCP
NoAuth

UDP
NoAuth

Th
ro

ug
hp

ut
 (R

eg
ist

ra
tio

ns
/s

ec
)

4995.782

4003.212

991.682 1000.998

Figure 14: Peak Throughputs: Registration

5.2 Registration
Throughputs
Figure 13 shows throughput versus offered load for reg-
istration, with and without authentication, with both
UDP and TCP. As in Section 5.1, both X and Y axes
are in log scale. Peak throughput is shown in Fig-
ure 14, again defined as the highest maximum through-
put achieved while maintaining a 99% registraton suc-
cess rate. Figure 15 shows the percentage of success-
ful registrations versus offered load. Figure 16 presents
the CPU profiles for all four registration configurations,
given a load of 1000 registrations/second.

We see that again, authentication has the most sig-
nificant impact on registration performance, as with the
proxying results in Section 5.1. Using authentication de-
creases peak throughput by 80% for UDP and 75% for
TCP. The CPU profiles in Figure 16 again illustrate why:
CPU usage increases by a factor of 2.5 when authentica-
tion is enabled. Of this increase, 58.4% can be attributed
to the increase in the database and C library. The other
major contributors to the increase are the OpenSER core
and kernel, which account for 11.7% and 17.7% respec-
tively. Again, the MD5 authentication only contributes
2.0% of the increase (less than 1% of the total of the
authentication case).

If we use UDP without authentication as a baseline
to compare the CPU profiles for the registration case
with the proxying case, we can see notable differences.
The OpenSER core module contributes 38% of the cy-
cles for proxying, but contributes just 7.0% to the reg-
istration case. Similarly, the kernel contributes 40.3%
of the cycles for proxying, but just 21.1% for regis-
tration. Instead, the database contributes 29.6% of the
CPU cycles even without authentication. This is because
each successful registration must update the database,
as a REGISTER message updates the registration time-
out value. As observed in the proxy case, the database

 0

 20

 40

 60

 80

 100

 100 1000 10000

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

fu
l C

al
ls

Offered Load

Register UDP with No Authentication
Register TCP with No Authentication

Register UDP with Authentication
Register TCP with Authentication

Figure 15: Success Rate: Registration

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

Auth TCPNoAuth TCPAuth UDPNoAuth UDP

CP
U

Ev
en

ts

1373160

3443999.2

1653060.6

3846684
Registrar

Authentication
Forwarding

Crypto
User Location

Stateless
Record Route

Other
Stateful

Database
C Library

OpenSER Core
Kernel

Figure 16: CPU Profiles: Registration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096 16384 65536

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

Response Time (ms)

500 calls/sec
1000 calls/sec
2000 calls/sec
4000 calls/sec

Figure 17: Response Time CDF: Registration with Authentica-
tion

11

 1

 10

 100

 1000

 10000

 100 1000 10000

Re
sp

on
se

 T
im

e
(m

s)

Offered Load

Register UDP with No Authentication
Register TCP with No Authentication

Register UDP with Authentication
Register TCP with Authentication

Figure 18: Average Response Time: Registration

also makes extensive use of the C library, contributing
19.1% of the CPU cycles versus only 2.1% for proxying
without authentication. Finally, the user location mod-
ule, which is not used for proxying, contributes 16.5%
to registration.

The choice of transport protocol, however, has less ef-
fect on the registration results than it does for the proxy-
ing results, with a drop of only 19.8% when authentica-
tion is not used, and virtually no effect when authentica-
tion is enabled. The transport protocol affects the regis-
tration scenario less than for proxying, because proxying
is fundamentally more network oriented: minimal pro-
cessing is done to the packet to determine the destination
of the message, which is immediately forwarded to an-
other host. In registration, however, the message must
be completely parsed and the database updated.

Latencies

Registration average response times (shown in Fig-
ure 18) exhibit the same behavior as those from the prox-
ying scenario in Section 5.1. Again, latencies are low
until the server load approaches maximum capacity. At
those points, latencies rise rapidly, but the slope of the
response times changes once the server is in an over-
loaded state.

Figure 17 shows the cumulative distributions of the
response times measured for several loads, using authen-
tication and UDP. As with the proxying CDFs, there are
several significant jumps occurring at certain response
times due to retransmission timers. Unlike the proxy
curves, these jumps occur even before overload (e.g.,
they are visible in the 800 CPS curve); and after overload
the response time does not increase as quickly (e.g., un-
der 1200 registrations per second, 52.8% of the response
times are less than 1 ms).

 100

 1000

 100 1000 10000

Th
ro

ug
hp

ut
 (R

ed
ire

ct
s/

se
c)

Offered Load

Redirect UDP NoAuth
Redirect TCP NoAuth

Redirect UDP Auth
Redirect TCP Auth

Figure 19: Throughput: Redirection

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

TCP
Auth

UDP
Auth

TCP
NoAuth

UDP
NoAuth

Th
ro

ug
hp

ut
 (R

ed
ire

ct
s/

se
c)

17865.827

8006.957

1702.305 1301.067

Figure 20: Max Throughputs: Redirection

5.3 Redirection
Throughputs
Figure 19 shows throughputs versus offered load for
redirection with and without authentication, using both
UDP and TCP. As in previous sections, both the X and
Y axes are in log scale. Peak throughput is shown in
Figure 20, again calculated as the highest maximum
throughput achieved while maintaining a 99% success
rate. Figure 21 presents the CPU profiles for all four
configurations given a load of 1000 redirects/second.

The redirection scenario is able to achieve higher
throughput than both the proxying and registration sce-
narios under all four of its configurations. The through-
put is higher than that of proxying because fewer mes-
sages are exchanged. Even though redirection ex-
changes the same number of messages as registration,
it is less computationally intensive and thus achieves a
higher throughput. This result is expected as redirectors
are designed to push routing logic to the user-agents in
order to reduce the load on network elements.

12

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

Auth (1000CPS)Noauth (1000CPS)Auth (200CPS)Noauth (200CPS)

CP
U

Ev
en

ts

121522.8

949096.6

502727.8

1417849
Authentication

Forwarding
Crypto

User Location
Stateless

Other
Stateful

Database
C Library

OpenSER Core
Kernel

Figure 21: CPU Profiles: Redirection

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000

Re
sp

on
se

 T
im

e
(m

s)

Offered Load

Redirect UDP NoAuth
Redirect TCP NoAuth

Redirect UDP Auth
Redirect TCP Auth

Figure 22: Average Response Time: Redirection

The factors that affect proxying and registration also
influence redirection. Authentication has the largest im-
pact on throughput, degrading performance by 90.5%
for UDP and 83.7% for TCP. The choice of transport
protocol is also significant: TCP is 23.5% and 55.2%
slower than UDP with and without authentication, re-
spectively. The reasons are the same as in the earlier
scenarios: authentication requires significant processing
resources for database accesses; and TCP results in in-
creased kernel and OpenSER core processing.

Latencies
Redirection latencies, shown in Figure 22, exhibit the
same behaviors as those in Sections 5.1 and 5.2. La-
tencies are not observable due to SIPp’s 1 millisecond
at loads under max capacity, and again rise steeply as
capacity is reached. In general, response times using au-
thentication are higher than without, and higher using
TCP than with UDP. These results are expected given
the capacities (service rates) of the respective configura-
tions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096 16384 65536

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

Response Time (ms)

100 calls/sec
200 calls/sec
300 calls/sec
400 calls/sec
500 calls/sec
600 calls/sec
700 calls/sec
800 calls/sec
900 calls/sec

1000 calls/sec
2000 calls/sec
3000 calls/sec
4000 calls/sec
5000 calls/sec
6000 calls/sec
7000 calls/sec
8000 calls/sec
9000 calls/sec

10000 calls/sec

Figure 23: Response Time CDF: Redirection with UDP and
Authentication

6 Related Work
Due to space limitations, we only briefly discuss related
work in the SIP server performance area.

Janak’s Thesis [14] describes many of the perfor-
mance optimizations that are used by SER (and by impli-
cation, OpenSER). For example, rather than using null
terminated strings as defined by the C language, SER
uses counted strings where the length of each string is
stored with the string, making many operations constant
time rather than linear based on the length of the string.
SER also takes advantage of UTF-8 encoding to canon-
icalize certain headers for comparing in linear time, de-
spite SIP’s requirement to be case-insensitive. Finally,
SER uses lazy parsing to only parse those headers nec-
essary rather than naively parsing all headers, and incre-
mental parsing to only scan those fields within a header
that are needed.

SIPStone [27] is an early SIP benchmark de-
signed to evaluate SIP registrar, redirect and proxy
servers. The benchmark consists of five interactions:
registration, redirect, INVITE through an outbound
proxy, and INVITE ’s to an end proxy with both
408 TEMPORARILY UNAVAILABLE and 200 OK
responses. Each interaction is performed using both
UDP and TCP (using persistent connections) with an
open loop workload generator. The SIPStone tech re-
port defines and implements a benchmark but does not
evaluate any servers.

Salsano et al. [24] include an experimental perfor-
mance analysis of SIP security mechanisms using an
open source Java SIP proxy server. For the specific SIP
proxy and hardware tested (300 MHz Pentium, 128 MB
RAM, 100 Mb Ethernet), adding digest authentication to
an INVITE transaction increases processing overhead
by about 80% for a stateless proxy and 45% for a state-
ful proxy. Ignoring overhead associated with connection

13

setup, use of TCP incurs minimal overhead relative to
UDP, and addition of TLS incurs negligible overhead.
The total capacity of the server in these experiments was
on the order of tens of INVITES per second. Given these
relatively low numbers, we are not sure how representa-
tive these results are.

Cortes et al. [5] measured the capacity of four transac-
tion stateful SIP proxies using a suite of five tests. The
tests used UDP only and evaluated parsing, string pro-
cessing, memory allocation, thread overhead and over-
all capacity. Their results showed each of the four indi-
vidual components significantly affected capacity, with
parsing, string handling and memory management con-
tributing from 33% to 88% of processing time. Parsing
was shown to consume roughly a quarter of processing
time despite large variations in absolute values. Other el-
ements were shown to vary widely among proxies, with
string processing ranging from 7% to 45% and memory
allocation varying from 3% to 14%. For the 450 MHz
dual-SPARC processors on which the tests were per-
formed, maximum capacity of the proxies ranged from
90 to 700 calls per second.

7 Summary
In this paper, we evaluate SIP server performance for
three core SIP server scenarios: proxying, registration,
and redirection. We also examine the impact of au-
thentication and transport protocol on performance, as
well as statelessness vs. statefulness for proxy servers.
We study these issues experimentally, using OpenSER, a
high-performance open-source SIP server, and SIPp, the
de-facto standard for SIP performance benchmarking.
For our experiments, we use an Intel Xeon processor-
based blade as our server, running the Linux operat-
ing system, connected over a private network to several
Intel-based client workload generators.

We find that performance varies widely, by an order of
magnitude. Depending on the scenario (proxying, redi-
rection, registration) and on the configuration (authenti-
cation enabled/disabled, UDP or TCP, stateful or state-
less), throughput can vary from hundreds of operations
a second to tens of thousands. Authentication has the
greatest impact across all scenarios, due to the increased
use of the database. TCP is more expensive than UDP
for most configurations, and stateful proxying slower
than stateful proxying. We show that latency distribu-
tions are highly influenced by the load, especially when
the system is in an overloaded state. Finally, we pro-
vide a simple fix for stateful proxying which improves
performance by up to a factor of 10.

Based on our results, we believe many potential future
research issues exist, including:
• OpenSER and Linux optimizations. Profiling has

revealed many opportunities to improve perfor-

mance for SIP servers, in both the server and the
kernel.

• Overload control. SIP servers need to be able to
maintain throughput under overload. This also an
active area of research in IETF (e.g., [11]). Inves-
tigating various approaches to admission control,
load shedding or service degradation seems appro-
priate.

• User-model based benchmarking. This work has
taken a micro-benchmark approach to evaluating
performance. Previous work in Web servers (e.g.,
SURGE [2] and SPECWeb2005 [4]) has shown that
how users interact with a system can have a sig-
nificant impact on performance. A straightforward
next step would be to incorporate user activity into
the workload generation, e.g., talk durations and
ringing times.

• DB Performance. Given the impact of the database
on SIP server performance, several avenues could
be pursued: varying the DB caching policy, using a
customized DB rather than a general-purpose one,
or evaluating locating the DB on a separate ma-
chine.

• Instant messaging and presence. Our work has fo-
cused on VoIP-based scenarios. Given the rise in
the use of SIP for instant messaging and presence,
how those systems perform will be necessary for
provisioning and dimensioning those services.

• SSL/TLS as a transport. Given the heavy costs of
SSL/TLS on Web server performance [3], it seems
likely that the same will be true for SIP servers.
Evaluating and understanding this cost will be nec-
essary if SIP servers are to provide confidentiality.

We plan to explore many of the areas described
above.

Acknowledgments
Thanks to Arup Acharya and Henning Schulzrinne for
many insightful discussions about SIP and SIP server
performance, and to Vijay A. Balasubrimaniyan for help
with OpenSER configuration.

References
[1] Gaurav Banga and Peter Druschel. Measuring the capac-

ity of a Web server. In USENIX Symposium on Internet
Technologies and Systems, 1997.

[2] Paul Barford and Mark Crovella. Generating representa-
tive Web workloads for network and server performance
evaluation. In Proceedings of the ACM Sigmetrics Con-
ference on Measurement and Modeling of Computer Sys-
tems, Madison, WI, June 1998.

[3] Cristian Coarfa, Peter Druschel, and Dan S. Wallach.
Performance analysis of TLS Web servers. ACM Trans-
actions on Computer Systems, 24(1):39–69, 2006.

14

[4] The Standard Performance Evaluation Corporation.
SPECWeb2005. http://www.spec.org/osg/
web2005, 2005.

[5] Mauricio Cortes, J. Robert Ensor, and Jairo O. Este-
ban. On SIP performance. Bell Labs Technical Journal,
9(3):155–172, Nov 2004.

[6] T. Dierks and C. Allen. The TLS protocol version 1.0.
RFC 2246, Internet Engineering Task Force, January
1999.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1.
RFC 2068, Internet Engineering Task Force, January
1997.

[8] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. HTTP authen-
tication: Basic and digest access authentication. RFC
2617, Internet Engineering Task Force, June 1999.

[9] J. Galvin, S. Murphy, S. Crocker, and N. Freed. Se-
curity multiparts for MIME: multipart/signed and mul-
tipart/encrypted. RFC 1847, Internet Engineering Task
Force, October 1995.

[10] Richard Gayraud and Olivier Jacques. SIPp. http:
//sipp.sourceforge.net.

[11] V. Hilt, D. Malas, I. Widjaja, and R. Terpstra. Session
initiation protocol (SIP) overload control. Internet draft
draft-hilt-sipping-overload-00.txt (work in progress), In-
ternet Engineering Task Force, October 2006.

[12] Internet Engineering Task Force (IETF). SIP work-
ing group charter. http://www.ietf.org/html.
charters/sip-charter.html.

[13] iptel.org. SIP express router (SER). http://www.
iptel.org/ser.

[14] Jan Janak. SIP server proxy effectiveness. Master’s the-
sis, Czech Technical University Department of Computer
Science, Prague, Czech Republic, May 2003.

[15] A. Johnston, S. Donovan, R. Sparks, C. Cunningham,
and K. Summers. Session initiation protocol (SIP) ba-
sic call flow examples. RFC 3665, Internet Engineering
Task Force, December 2003.

[16] Daryl Malas. SIP performance metrics. Internet
draft draft-malas-performance-metrics-05.txt (work in
progress), Internet Engineering Task Force, September
2006.

[17] David Mosberger and Tai Jin. httperf – a tool for measur-
ing Web server performance. In Proceedings 1998 Work-
shop on Internet Server Performance (WISP), Madison,
WI, June 1998.

[18] OProfile. A system profiler for Linux.
http://oprofile.sourceforge.net/.

[19] The MySQL Project. The MySQL database server.
http://www.mysql.org.

[20] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
session initiation protocol. RFC 3261, Internet Engineer-
ing Task Force, June 2002.

[21] J. Rosenberg and Henning Schulzrinne. An offer/answer
model with session description protocol (SDP). RFC
3264, Internet Engineering Task Force, June 2002.

[22] J. Rosenberg and Henning Schulzrinne. Session initiation
protocol (SIP): locating SIP servers. RFC 3263, Internet
Engineering Task Force, June 2002.

[23] Jonathan Rosenberg, Henning Schulzrinne, and Gonzalo
Camarillo. The stream control transmission protocol
(SCTP) as a transport for the session initiation protocol
(SIP). RFC 4168, Internet Engineering Task Force, Oc-
tober 2005.

[24] Stefano Salsano, Luca Veltri, and Donald Papalilo. SIP
security issues: The SIP authentication procedure and its
processing load. IEEE Network, pages 38–44, Novem-
ber/December 2002.

[25] Bianca Schroeder, Adam Wierman, and Mor Harchol-
Balter. Closed versus open loop system models: Un-
derstanding their impact on performance evaluation and
system design. In Network Systems Design and Imple-
mentation (NSDI), San Diego, California, May 2006.

[26] Henning Schulzrinne, Stephen Casner, Ron Frederick,
and Van Jacobson. RTP: a transport protocol for real-
time applications. RFC 3550, Internet Engineering Task
Force, July 2003.

[27] Henning Schulzrinne, Sankaran Narayanan, Jonathan
Lennox, and Michael Doyle. SIPstone - benchmarking
SIP server performance. http://www.sipstone.
org, April 2002.

[28] www.openser.org. The open SIP express router
(OpenSER). http://www.openser.org.

[29] Lixia Zhang, Steve Deering, Deborah Estrin, Scott
Shenker, and David Zappola. RSVP: a new resource
reservation protocol. IEEE Communications Magazine,
40(5):116–127, May 2002.

15

