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Abstract
This paper experimentally investigates the effectiveness
of simultaneous multithreading (SMT) for network server
workloads. We study how well SMT improves perfor-
mance on two very different shipping platforms that sup-
port SMT: IBM’s POWER5 and the Intel Xeon. We use
the architectural performance counters available on each
processor to compare their architectural behavior, exam-
ining events such as cache misses, pipeline stalls, etc. By
observing how these events change in response to the in-
troduction of threading, we can determine whether and
how SMT stresses the system.

We find that POWER5 makes more effective use of
SMT for improving performance than the Xeon. In gen-
eral, POWER5 achieves a 40-50% increase whereas the
Xeon exhibits only a 10-30% gain. Examination using the
performance counters reveals that cache size and memory
bandwidth are the key requirements for fully exploiting
SMT. A secondary but still noticeable component is min-
imizing pipeline stalls due to branch mispredicts and in-
terrupts. We present suggestions for improving SMT per-
formance for each platform based on our observations.

1 Introduction
Simultaneous multithreading (SMT) is a technique for im-
proving processor resource utilization by allowing two or
more hardware threads to execute simultaneously on a sin-
gle processor core. By duplicating a small set of hardware
resources, such as architectural state registers, SMT al-
lows multiple instruction streams to execute in a single
pipeline simultaneously. Because the additional hardware
support for these extra resources is small, SMT is seen as a
relatively inexpensive way to gain instruction throughput.
Academic research has demonstrated considerable perfor-
mance gains using this technique [11, 44]. However, since
the actual hardware did not exist at the time of these stud-
ies, they could only be conducted using simulation.

This limitation has been changing, however, as SMT-

enabled hardware has come to market. Industry accep-
tance of SMT has been gaining, as shown by recent ship-
ping processors from major manufacturers such as IBM
and Intel, who have promoted SMT-enabled processors
for use in high performance servers. The availability of
this hardware offers the opportunity to measure perfor-
mance and see how effective SMT is in practice. How-
ever, current implementations of SMT have evolved from
existing single-threaded processors, and thus competing
manufacturers may have made very different choices re-
garding what resources need to be replicated or modified
for supporting SMT. For example, the Intel Xeon proces-
sor with Hyper-Threading is based on the Pentium 4 Net-
Burst architecture, and the IBM POWER5 is derived from
POWER4. Thus, studying the performance and observ-
able bottlenecks in different processor families presents
us with an excellent opportunity to understand what ar-
chitectural features are important for supporting SMT.

This paper experimentally investigates the effectiveness
of simultaneous multithreading for network server work-
loads. We study how well SMT improves performance
on the two shipping platforms that support SMT: IBM’s
POWER5 and the Intel Xeon. We focus on server work-
loads since the processors are targeted for such usage
and because most previous studies have examined user-
space and/or CPU-bound workloads. We measure the per-
formance of two different Web servers, Apache [2] and
Flash [30], running on a standard client-server testbed
connected using an isolated switched Gigabit Ethernet,
using the industry-standard SPECWeb99 [41] for work-
load generation.

In particular, we measure how performance changes
with the introduction of SMT, thus evaluating how effec-
tive each processor at utilizing this feature. To help under-
stand when, how, and why SMT is effective, we use the
architectural performance counters available on each plat-
form to measure and compare architectural behavior. By
observing how cycle-intensive architectural events such as
cache misses, ITLB misses, pipeline stalls, and branch
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mispredictions change in response to adding SMT, we
can determine whether and how SMT stresses the system.
This paper makes the following contributions:

• We provide the first experimental performance com-
parison of SMT implementations across multiple
platforms using server workloads. While POWER5
achieves 37-60% performance increases with SMT,
the Xeon gains only 5-30%. The Xeon also exhibits
less benefit from SMT in the dual-processor case
than with a single processor. POWER5 improve-
ments are more consistent for both single and dual
processors.

• We show that cache provisioning is a crucial factor
for exploiting SMT. Performance counter measure-
ments indicate that the Xeon does not significantly
benefit from SMT because of increased CPI due to
cache contention. In contrast, cache and memory
system contribution to overall CPI is only slightly af-
fected by SMT on POWER5, which has much larger
caches.

• Pipeline management is a secondary but significant
factor for achieving SMT benefits. CPI is only
slightly increased by pipeline stalls and branch mis-
predicts on the Xeon when SMT is enabled, but rises
more significantly on POWER5.

• We provide recommendations for both platforms on
how each can better take advantage of SMT.

The remainder of the paper is organized as follows.
Section 2 provides some architectural background on
hardware multithreading, particularly SMT. Section 3 de-
scribes our experimental platform in detail, including
server hardware, network connectivity, server software,
and workload generation. Section 4 presents the overall
performance results of the two platforms. Section 5 delves
further by using performance counter measurements to
help understand the performance seen in Section 4. Sec-
tion 6 discusses related work, and Section 7 presents our
conclusions and directions for future work.

2 Background
In this section, we present a brief overview of the vari-
ous approaches to multithreading, describe SMT in more
detail, and discuss the two SMT-capable processors that
we use – IBM POWER5 and Intel Xeon processor with
Hyper-Threading.

2.1 Hardware Multithreading
Although SMT is a relatively new feature, the concept of
multithreading has been around for several years. In these
architectures, instructions from different threads are exe-
cuted at various intervals without context switches. The

Xeon POWER5
Shared caches, branch predictors,

Resources decoder logic, execution units
DTLB TLB

Duplicated interrupt controller, status registers,
Resources renaming logic

ITLB instruction buffer,
Partitioned load/store buffer
Resources µop queue, Global completion

reordering buffer table (GCT)

Table 1: SMT resource allocation in Intel Xeon and POWER5.

execution interval could be interleaved cycle by cycle,
known as fine-grained multithreading, or by certain events
(such as a cache miss), known as coarse-grained multi-
threading. An early example of the former was the Denel-
cor HEP [32], which had 8 hardware contexts. A much
later design from the same architect, the Tera MTA [10],
used 128 contexts. Recent examples include the IBM
RS64-II [6], introduced in 1998, which switches threads
to avoid processor time during long-latency events. The
Sun Fire T1000 (Niagara) from Sun Microsystems has
fine-grained multithreading which implements a thread-
select logic to decide which thread is active in a given
cycle [31].

2.2 Simultaneous Multithreading
Multithreading technology in general was introduced to
increase functional unit utilization. SMT improves this
utilization by executing instructions from multiple pro-
cesses or threads simultaneously in a single pipeline. In
SMT-enabled processors, most of the processor resources
are shared by the threads. Duplication of components
varies from processor to processor, except that registers
for architectural states have to be duplicated to fetch in-
structions from different processes independently. Be-
cause operating systems usually get processor informa-
tion from these registers, SMT appears exactly as multi-
processor if no further identification is taken.

2.3 Intel Xeon
The Intel Xeon with Hyper-Threading was the earliest
SMT-capable processor family shipped with real imple-
mentation. The Xeon is Intel’s server class processor, with
dual or multi-processor support. Intel Xeon with Hyper-
Threading was based on the Intel NetBurst microarchitec-
ture [14], which has a superscalar, out-of-order pipeline
with 20 stages for early versions and 31 stages for the lat-
est ones. It has two threads (logical processors) per phys-
ical processor, which share most of the resources, such
as caches, functional units, branch prediction unit etc.
Some of the resources are duplicated, such as architecture
state registers, interrupt controllers, etc. Some resources
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Xeon POWER5
Clock Rate 3.06 GHz 1.5 GHz

Pipeline Stages 30 16-21
TC/I-L1 12 K µops, 64 KB,

8-way, 6µops line 2-way, 128B line
D-L1 8 KB, 32 KB,

4-way, 64B line 4-way, 128B line
L2 512 KB, 1.875 MB*,

8-way, 128B line 10-way, 128B line
L3 1 MB, 36 MB*,

8-way, 128B line 12-way, 256B line
Main Memory 2 GB 2 GB

Memory
Bandwidth 600 MB/s 1280 MB/s

Address 128-entry ITLB 1024-entry I/DTLB
Translation 64-entry DTLB 128-entry ERAT

64-entry I/DSLB
Branch 4K branch 8-entry branch

Prediction target buffer information queue

Table 2: Intel Xeon and POWER5 hardware specification.
Memory bandwidth are measured using lmbench. *: the L2 and
L3 caches are shared by the two cores on the POWER5

are partitioned when SMT is enabled, but are completely
available to a single thread when only one thread is ac-
tive [22]. We provide some of the key resource allocations
for the Xeon in Table 1.

2.4 IBM POWER5
The POWER5 processor is IBM’s latest 64-bit implemen-
tation of the PowerPC AS architecture [17]. It is a dual
core processor with multi-threading technology. The pro-
cessor has a superscalar, out-of-order pipeline with 16
stages for fixed-point operations, 18 stages for most load
and store operations, and 21 stages for most floating point
operations. Each POWER5 core supports two hardware
threads. As with the Xeon, threads in POWER5 also share
functional units and branch prediction logic. Replicated
resources include state registers, the instruction buffer,
etc. The design of the instruction buffer is very different in
the two processors – it is replicated in POWER5 while is
partitioned in Xeon (the µops queue). The reordering unit,
which is achieved using a global completion table (GCT)
in POWER5, is partitioned in both processors. Some of
the hardware resources are also described in Table 1.

When comparing these platforms, we focus on the ar-
chitectural components enhanced to support SMT. Direct
architectural comparison between Xeon and POWER5
may not be feasible since Xeon is a complex instruction
set computer (CISC) and POWER5 is a reduced instruc-
tion set computer (RISC). Instructions on these two pro-
cessors are thus very different. However, the native x86
instruction is internally translated into RISC-like micro-
operations (µops) which are comparable to instructions in

Term Kernel Num Threads Total
Used Type Proc. / Proc. Threads
UP UP 1 1 1
1P SMP 1 1 1
2T SMP 1 2 2
2P SMP 2 1 2
4T SMP 2 2 4

Table 3: Nomenclature used in this paper

POWER5.

3 Experimental Testbed
Our experimental setup consists of an Intel Xeon server
and an IBM POWER5 server. Our POWER5 server is
a P5 520, which has a dual-core processor running at
1.5GHz. Our Intel server is a SE7505VB2 which sup-
ports Xeon dual processors running at a number of clock
speeds. To simplify the comparison with the POWER5,
we use a dual Xeon processor running at 3.06GHz with a
1MB L3 cache. Some of the detailed hardware parameters
are provided in Table 2.

There are a few key differences in the memory hier-
archy between the two processors. In POWER5, the L3
cache is off-chip, but moved from the memory side of the
fabric to the processor side in order to reduce interchip
traffic when an L2 miss hits in the L3. The Xeon only
provides L3 cache for its high-end processors, but it is on-
chip. The two processor cores in POWER5 share all of
the caches. When only one processor is active, it is able
to access the full cache capacity.

In addition to the two server systems, our testbed has 12
client workload generator machines with 1.6 GHz AMD
Duron processors. We ensure that the aggregate processor
power of the clients are enough to saturate the servers. To
provide adequate network bandwidth, the clients are par-
titioned into four groups of three machines. Each group
is connected to the server via a separate Gigabit Ether-
net switch, which in turn is connected to one of four Intel
e1000 MT server adapters on the server.

In our experiments, we compare five different
OS/processor configurations, based on whether SMT is
enabled or not and how many physical processors are ac-
tive. The five configurations are one processor without
SMT with a uniprocessor kernel (UP), one processor with-
out SMT and an SMP kernel (1P), one processor with
SMT (2T), two processors without SMT (2P), and two
processors with SMT (4T). Our terminology is summa-
rized in Table 3.

We use the BIOS support and OS boot parameters to en-
able and disable SMT for the Xeon processor. POWER5
provides a hot-plug interface to the OS in order to bring
up and shut down a particular thread without requiring a
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reboot. Since our goal is to evaluate SMT performance,
we use the multiprocessor-capable (SMP) kernel, which
is required to use SMT. While some previous work [36]
finds that SMP kernels may reduce some of the benefits
of SMT when comparing performance with uniprocessor
kernel, that is not the focus this work. We use RedHat En-
terprise Linux AS 4 (RHEL AS 4) on both of the servers.
The kernel of RHEL 4 is a patched version 2.6.9 which
includes optimizations for SMT such as processor affin-
ity and load balancing [3]. The scheduler eliminates the
chance of one context being idle while the other has mul-
tiple tasks waiting.

3.1 Workloads
We focus on Web servers and workloads since it is one
of the most popular commercial server applications and
has not been subject to the same level of study as sci-
entific computing workloads. We use Apache 2.0 [2]
and the Flash [30] Web servers. To exploit thread-level-
parallelism, we configure the Apache server with the
thread pool model which uses Linux kernel threads. Flash
is an event-driven server with aggressive performance op-
timizations. It has a main process multiplexing all of the
requests while all disk I/O accesses are handled by a set of
helper processes. We run the same number of Flash main
processes as the number of hardware contexts. All of the
servers are optimized for the best performance by follow-
ing steps described in literature. We disable logging on
both of the servers to reduce the amount of disk activity.

We use the SPECweb99 [41] benchmark which mea-
sures server capacity in the number of simultaneous con-
nections that meet a QoS target. The benchmark consists
of 70% static and 30% dynamic requests. The dynamic
requests attempt to model commercial Web servers per-
forming ad rotation, customization, etc. The benchmark
client software reports connections meeting the specified
latency requirement. The data set involved scales with the
number of connections, thus it is easily exceed the phys-
ical memory size. In order to avoid any complexity in-
troduced by disk access, we limit the data set size to 500
MB, which fits in our physical memory.

When measuring performance counters, we use Opro-
file [29] on Xeon and pmcount on POWER5. Oprofile
support for POWER5 has been recently ported; however,
we observe a significant amount of overhead when using
Oprofile on POWER5. The overhead on Intel platform is
minimal, usually less than 1%.

4 SMT Performance Results
In this section we evaluate the effectiveness of SMT by ex-
amining the performance of our two platforms. Here per-
formance is not only the achieved throughput or number
of simultaneous connections in SPECWeb99 or any other

workloads, but also the relative improvement of perfor-
mance when threading is introduced. We wish to see how
effective additional threads are in increasing performance.

4.1 Throughput
We begin by examining performance of the Xeon plat-
form using SPECWeb99, which is shown in Figure 1 for
both the Apache and Flash Web servers. The five sys-
tem configurations are indicated in the legend. As can
be seen, performance degrades slightly when the SMP
kernel is used instead of the UP kernel in the unipro-
cessor case. However, performance improves steadily as
a second thread is added (2T), then a second processor
(2P), and finally two processors each with two threads
(4T). Figure 2 shows the performance exhibited by the
POWER5 platform for the same experiments. Observe
that performance increases in a similar fashion as is shown
in Figure 1.

4.2 Speedups
While both figures show similar trends, less obvious is
the relative increase in performance when SMT is added.
This is the focus of Figure 3, which shows the improve-
ment in performance for the two platforms. The left side
of the graph shows the improvement going from 1 thread
to 2 threads in the uniprocessor case (2T/1P), while the
right side of the graph shows the improvement in the
dual-processor case (4T/2P). Note that the performance
improvement for the Xeon is significantly smaller than
POWER5. For example, in the uniprocessor case with
Apache, the Xeon gets a respectable 32% improvement,
but POWER5 exhibits a 43% gain. The largest discrep-
ancy is in the dual-processor scenario with Flash, where
the Xeon gets only a 4% improvement when activating
SMT, whereas POWER5 increases by 38%.

4.3 Static Workloads
Figures 4, 5, and 6 show the corresponding performance
numbers and improvement for the two platforms using the
SPECWeb99 static workloads. Note that in these graphs
that the Tux Web server is included as well 1. While
the respective numbers are different using this workload,
the trends are all the same: enabling SMT increases per-
formance, for both the uniprocessor and dual-processor
cases, but POWER5 gets a substantially better improve-
ment than does the Xeon.

Having seen the impact of introducing SMT on perfor-
mance, the next question is: why is SMT more effective
for POWER5 than for the Xeon? We study this issue in
depth in the next section.

1Due to a problem with dynamic content on Tux in POWER5, we
were not able to have SPECWeb99 results with Tux available in time for
submission. We expect to have this problem resolved shortly.

4



Apache Flash
0

1000

2000

3000

4000

5000

6000

S
im

u
lta

n
e

o
u

s 
C

o
n

n
e

ct
io

n
s UP

1P
2T
2P
4T

Figure 1: SPECWeb99 results on the
Xeon
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Figure 2: SPECWeb99 results on
POWER5
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Figure 3: SMT speedups with
SPECWeb99 (Xeon & POWER5)
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Figure 4: SPECWeb99 static results on
the Xeon
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Figure 5: SPECWeb99 static results on
POWER5
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Figure 6: SMT speedups with
SPECWeb99 static (Xeon & POWER5)

5 Architectural Analysis
In this section we perform an architectural analysis to un-
derstand the underlying causes of the performance ob-
served in the previous section. We use the architectural
performance counters available on each processor to mea-
sure the cycles per instruction (CPI) for each server, work-
load, configuration, and processor. In addition, we use
the counters to to compare the behavior of the processors,
examining cycle-intensive events such as cache misses,
TLB misses, pipeline stalls, branch mispredicts, etc. By
observing how the frequency of these events change in
response to the introduction of SMT, we can determine
whether and how they are sensitive to threading, and thus
how SMT stresses the system.

5.1 Performance Counters
Both the Xeon and POWER5 processors offer a wide
range of performance counters that measure architectural
events such as cache misses, branch mispredicts, pipeline
stalls, etc., in a fashion similar to Digital’s (now HP) DCPI
[1]. The Xeon provides about 40 categories and hundreds
of events to monitor. POWER5 provides even richer in-
formation with performance counters. It has more than
a hundred groups of counters with each group having 5
events. Two of the events, instructions completed and run

cycles, are included in all groups. Since both the Xeon
and POWER5 have speculative execution and out of or-
der completion, monitoring and interpreting performance
counters on these processors to determine the exact con-
tribution to CPI is not straightforward.

The Xeon, for example, does not have a mechanism
to measure the exact number of stalled cycles caused by
a particular event. POWER5 provides some support to
measure the penalty caused by an event, although it is
not complete either. These events include: base com-
pletion cycles; global completion table (GCT) empty cy-
cles caused by I-cache miss penalty; branch mispredic-
tion penalty and store stall penalty; and other stall cy-
cles such as stalls by load/store instructions, and stalls by
fixed-point or floating-point instructions. We estimate the
contribution of an event to CPI based on the frequency
of the event as measured by the performance counters
multiplied by the cost of the events. Costs are either
measured directly via lmbench [26] (e.g., cache memory,
main memory, or TLB access times) or calculated based
on values taken from the appropriate processor references
[14, 16, 17, 22, 23, 28, 38].
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Figure 8: Measured CPI of POWER5

Figure 9: Calculated CPI breakdown

5.2 Cycles Per Instruction
In evaluating processor performance, perhaps the most
common metric is cycles per instruction (CPI). We mea-
sure CPI by dividing the number of run cycles completed
by the number of instructions retired. For the Xeon, we
use the RISC-like micro-ops (µops) when measuring in-
structions. Our goal is to explain the changes in perfor-
mance due to SMT via corresponding changes in CPI. Our
definition of CPI is thus per-thread CPI rather than per-
processor. For example, in an idealized case, CPI would
not change when SMT is introduced, which would lead to
a doubling of processor throughput.

Figure 7 shows the measured CPIs of the Xeon and Fig-
ure 8 shows the corresponding CPIs for POWER5. The
key feature to observe in these graphs is the increase in
CPI when SMT is enabled. For example, in the Xeon,
the CPI when running Apache jumps from 2.2 in the
single-threaded uniprocessor case (1P) to 3.8 in the dual-
threaded case (2T), roughly a 57% increase. Similarly, the
Xeon’s CPI nearly doubles from 3 to 5.6 when changing
from a single-threaded dual-processor scenario (2P) to the
dual-threaded multiprocessor case (4T). POWER5, on the
other hand, sees only a 20-30% increase in CPI across the
same configurations. This shows that POWER5 is making

Xeon POWER5
L2 fetch 18 12
L3 fetch 42 67

Main memory fetch 362 250
ITLB miss 65 28
ISLB miss N/A 48

DTLB miss 65 28
ISLB miss N/A 48

Branch Misprediction 20 11
Pipeline Flush 30 20

Table 4: Cost of each latency component in cycles, measured
by lmbench or calculated from processor references

better use of SMT.
The next question, then, is to determine the origins of

the CPI increase for each of the platforms. In order to
understand the performance of hardware components as
well as their impact to the overall performance, we break
down CPI into its component events such as cache misses,
TLB misses, branch misprediction, etc. into a calculated
CPI as described in Section 5.1. The cycle costs used in
these calculations are shown in Table 4. Figure 9 shows
the results of this breakdown. As can be seen, the cal-
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Figure 10: CPI of Apache L2 references
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Figure 11: CPI of Apache L3 references
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Figure 13: CPI of Flash L2 references
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Figure 14: CPI of Flash L3 references
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Figure 15: CPI of Flash main memory
references

Xeon POWER5
2T/1P 4T/2P 2T/1P 4T/2P

Apache Measured 1.23 1.82 0.70 0.83
Apache Calculated 1.34 1.40 0.59 0.61

Flash Measured 1.42 2.52 0.63 0.70
Flash Calculated 1.71 1.91 0.61 0.62

Table 5: CPI increase per logical processor when SMT enabled

culated CPIs match well with the observed CPIs in Fig-
ure 7 and Figure 8, particularly in terms of exposing the
influence of SMT. The increases in CPI per logical pro-
cessor are shown in Table 5, separated by measured in-
crease and calculated increase. The differences in most
cases are narrow, and the inexactness is due to the fact
that our calculated CPI comes from performance counter
events rather than cycle-accurate simulation. Since the
performance counters provide only limited insight into the
extent of operation overlap, we cannot precisely calculate
CPI. However, our measurements are quite close, espe-
cially when viewed relative to baseline CPI. For example,
the largest absolute difference occurs in the 4T/2P case
for Flash on the Xeon. Here, the measured increase is
2.52, while the calculated is only 1.91, a difference of .61.

However, the total CPI for that case is 5.6, so the relative
error is less than 11%. Given the huge speed advantages
of measurement over cycle-level simulation, a maximum
error of 11% is quite tolerable. In the following sections,
we separate the components of the CPI increase.

5.3 Cache & Memory Subsystem
The importance of the cache memory subsystem to over-
all performance is well-known in computer systems.
For SMT-capable processors, memory subsystem per-
formance is even more critical due to the sharing of
the caches, memory buses and main memory. Previous
work [36] has shown that an L3 cache helps the Xeon in
realizing better SMT benefits. The Xeon processor used
in our experiments has a 1MB L3 cache, which is usually
available only on Intel’s multi-processor Xeon.

Both of the processors we use have three levels of cache
hierarchy, and we configure the same amount of main
memory size on each. However, the cache subsystems on
the two processors differ in several ways. The POWER5
has much larger cache size than the Xeon, as shown in
Table 2. Though access latencies of the three levels of
caches are comparable in terms of cycles, main mem-
ory latency of POWER5 is about two thirds that of the
Xeon. The first level instruction cache on the Xeon is
called the trace cache, which stores decoded instructions
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Figure 16: CPI of Apache branch mispre-
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Figure 17: CPI of Flash branch mispre-
diction

and is equivalent to a traditional L1 instruction cache. The
L2 and L3 caches hold both instruction and data on the
Xeon and POWER5, but are shared by the two cores on
the POWER5, as it has two cores on a single chip.

We measure the number of L2, L3 and main mem-
ory accesses, calculating their overall contribution to CPI.
Figures 10 through 15 show these contributions for both
the Xeon and POWER5. We do not discuss L1 hit cycles
here because they take 2 cycles on each of the processors
and usually can be overlapped by other activities. We dis-
cuss each Figure in detail below.

Figure 10 and Figure 13 show CPI contribution at-
tributed to fetches from the L2 cache, using Apache and
Flash. Though both the Xeon and the POWER5 exhibit
more L2 accesses when SMT is enabled, the POWER5
is less affected by this pressure. L2 contribution to CPI
of the Xeon increases about 50% in SMT mode, while
POWER5 increases only 16%. This by itself accounts for
a third of the overall increase in CPI that the Xeon ex-
hibits in Figure 7. Cache size is likely a significant fac-
tor here, since the L1 instruction cache on POWER5 is 5
times larger than on the Xeon and the L1 data cache is
4 times larger. Whether or not set associativity plays an
role here can not be determined because the performance
counters do not separately track conflict misses.

CPI contributed by references that hit in L3 are shown
in Figure 11 and Figure 14. The contribution of L3 ac-
cesses to CPI is relatively unaffected by the introduction
of SMT. The amount of CPI contributed by L3 accesses is
also much less than those caused by hits to L2 and main
memory. We surmise this is because of the footprint of
our workloads – most of the accesses are absorbed by the
L2 cache.

Figure 12 and Figure 15 present the contribution to
CPI caused by accesses that reach main memory. The
results are significantly different between the Xeon and
POWER5. Memory references consist of about 15-20%
of overall CPI on the Xeon, while it is only about 5%
on POWER5. We do see some increasing contribution to

CPI as SMT is introduced on the Xeon, but relatively lit-
tle change on POWER5. Recall that the L3 cache size
on POWER5 is 36 MB, shared by each core, but is only
1 MB on the Xeon. Moreover, it takes about 250 cy-
cles to reach the main memory on POWER5 while the
latency on the Xeon is more than 360 cycles. We thus
conclude that SMT stresses the memory system more on
Xeon than POWER5, most likely because of the latter’s
larger caches.

5.4 Branch Prediction Unit
Branches are usually a significant fraction of instructions
used in server applications, and comprise about 15-17%
of the instructions used by both Apache and Flash. Since
both of the processors use speculative execution, a branch
target needs to be predicted to execute before the branch
instruction is evaluated. If a branch is mispredicted, all
instructions following the branch need to be flushed from
the pipeline, causing a delay. This penalty is about 20
cycles on the Xeon and 11 cycles on POWER5.

On each of the processors, the branch prediction unit is
shared by the hardware threads when running with SMT
enabled. Branch misprediction rates could thus suffer
when SMT is enabled, and in fact we do see this on the
Xeon. Apache has about 7% mispredition rate in single
thread mode and 10-12% in SMT mode. However, on
POWER5, both Apache and Flash have about 10% branch
misprediction rate on POWER5. The difference between
single thread mode and SMT mode is minimal. We mea-
sure the number of mispredicted branches and calculate
their contribution to the CPI. The results are shown in Fig-
ure 16 and Figure 17. Observe that when SMT is enabled,
the contribution of branch misprediction to CPI increases
nearly 50%, or 0.05. However, this is a relatively small
contribution to the overall CPI on the Xeon, which has an
increase of 1.5 to CPI when SMT is utilized.

The different misprediction phenomenon in respond-
ing to SMT comes from the design of branch predic-
tion unit on the two processors. The branch prediction
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Figure 18: CPI of Apache ITLB misses
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Figure 19: CPI of Apache DTLB misses
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Figure 20: CPI of Apache pipeline clears
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Figure 21: CPI of Flash ITLB misses
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Figure 22: CPI of Flash DTLB misses
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Figure 23: CPI of Flash pipeline clears

unit on the Xeon consists of a branch history table and
a branch target buffer of 4K entries. However, POWER
seems to only have branch history table, and a 32-entry
target cache which is only used for a subset of instruc-
tions. It uses an 8-entry link stack to predict targets of
subroutine returns. The target address of most branches
are calculated from the instruction’s address plus and off-
set as described by the POWER architecture. The design
of POWER5 branch prediction may be less sensitive to
SMT, but has a higher misprediction rate than does the
Xeon. Our finding about insignificance between single
thread mode and SMT mode on POWER5 is consistent
with some of the previous research [23], which exercised
computation-intensive workloads and compared the de-
sign of POWER4 and POWER5.

5.5 Address Translation Resources
A translation lookaside buffer (TLB) is commonly used in
modern processors to translate virtual addresses to physi-
cal addresses. The Xeon has a 128-entry instruction TLB
(ITLB) and a 64-entry data TLB (DTLB). POWER5 has
a multi-layer address translation mechanism. The address
visible to software is called the effective address. In order
to access the hardware, the effective address first needs to
be translated to a virtual address and then to a real address.
The processor also provides a segment lookaside buffer
(SLB) in addition to the TLB. Each processor core con-

tains a unified, 1024 entry TLB. There are two 128-entry
caches to facilitate the effective-to-real address translation
(ERAT), one for instruction addresses and one for data ad-
dresses. For most accesses, address translation is satisfied
with a hit in the ERAT cache. The SLB and TLB are uti-
lized only if the ERAT access is a miss.

Figure 18 and Figure 21 show the cost to CPI of in-
struction TLB misses of the Xeon and accumulated miss
penalties of TLB, SLB and ERAT on POWER5. Data
TLB miss costs on the Xeon and data miss costs of TLB,
SLB, ERAT on POWER5 are shown in Figure 19 and Fig-
ure 22. Note that the cost of ITLB misses increases 50%
on the Xeon when SMT is introduced, whereas the cost
on POWER5 is unchanged.

5.6 Pipeline Clear
Branch misprediction and interrupts are common events
which may cause instructions in the pipeline be flushed,
also called a pipeline clear. Section 5.4 presented the im-
pact of pipeline clears due to branch mispredicts; here we
show the effects of pipeline clears due to other factors,
excluding branch mispredicts.

Figure 20 and Figure 23 illustrate the impact of this
event. Both processors show a significant increase in CPI
due to clears when SMT is enabled. However, the over-
all contribution to CPI of clears on POWER5 of clears
in SMT mode is much larger than on the Xeon. When
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in single-threaded mode, POWER5 shows a very small
number of clears, whereas the Xeon still has a noticeable
amount.

POWER5 has the unique aspect that, when running in
SMT mode, pipeline clears can be caused by imbalanced
threads or synch instructions. Imbalanced threads occurs
when one thread occupies too many entries in the global
completion table. The synch instruction orders memory
operations across multiple processors and may require a
long time to complete. A thread executing this instruction
is very likely to be waiting for dispatching or decoding,
and consequently block the other thread from proceed-
ing. A further examination of the data reveals that most
of the clears on POWER5 are caused by synchronization.
Although the relative increase from the single thread to
SMT is high, the overall contribution of the event to CPI is
small, at most 6-8%. Most clears on the Xeon are caused
by interrupts.

5.7 Microarchitecture Summary
At a high level, we can summarize our microarchitectural
findings by noting that the Xeon’s high clock rate puts
heavy demands on its memory system, and it compensates
by more aggressive speculation coupled with seemingly
more graceful recovery from pipeline and other problems.
Still, the effect of SMT is evident on the CPI, which al-
most doubles due to resource contention. With the Xeon’s
high clock rate and relatively distant memory, lower func-
tional unit utilization stems from memory latency bot-
tlenecks, rather than failure to have enough outstanding
memory accesses. The Xeon otherwise shows no signifi-
cant increases in other microarchitectural hazards stem-
ming from the addition of SMT support. While some
undesirable microarchitectural events do increase in fre-
quency, their contribution to the CPI increase is minimal.

The POWER5, with a clock rate almost half that of the
Xeon, achieves more work per cycle, and uses its well-
provisioned cache to compensate for a cycle time that
would normally make it uncompetitive on integer-heavy
workloads. The use of SMT appears to negatively affect
the POWER5 CPI much less than the Xeon, largely due to
the higher effective bandwidth provided by the L2 and L3
caches. However, some architectural problems are evident
with SMT enabled – pipeline flushes become a measur-
able contributor to CPI, and coupled with some functional
unit contention, are the main limits to SMT’s performance
improvements.

6 Related Work
To the best of our knowledge, the first study of the im-
pact of operating systems on SMT performance was per-
formed by Redstone et al. [34], using the SMTSIM simu-
lator [44] ported to the SimOS framework [35]. McDow-
ell et al. [24] used the same simulator and studied memory

allocation and synchronization strategies for a search en-
gine application. These studies found that OS behavior
had a significant impact that could not be easily neglected
in the simulator. In comparison, the OS could be safely ig-
nored in the computation-intensive workloads previously
studied, including SPEC CINT and CFP [40, 43, 44],
parallel ray-tracing applications [15], SPLASH-2 bench-
marks [21], MPEG-2 decompression [9, 37], and other
scientific application workloads [19, 39].

The difference between the SMT simulations and actual
hardware was earlier explored by our previous work [36].
In that paper we examined the performance of various
Web server packages across different models of the Xeon
processor. The conclusion we drew from that work was
that the latency of memory access was a primary barrier
to low SMT performance. In this work, we have exam-
ined the differences in performance between two different
processor families, the Xeon and the POWER5. This ap-
proach not only provides a broader range of parameters
than just processors in a single family, but it also high-
lights the impact of different architectural and implemen-
tation choices.

Other researchers have also been exploring delivered
SMT performance, but with a general focus on compute-
intensive benchmarks. Tuck and Tullsen [42] evaluated
the implementation and effectiveness of SMT in a Pen-
tium 4 processor, particularly in the context of prior pub-
lished research in SMT. They measured SPEC CPU2000
and other parallel benchmarks, and concluded that this
processor implementation matches the promise of the
published SMT research. Bulpin and Pratt [7] extended
Tuck et al.’s evaluation by comparing an SMT system to a
comparable SMP system, but did not investigate SMT on
SMP systems as we do in this paper. Chen et al. [9] also
only evaluated performance of SMT and SMP individu-
ally.

Other work has focused on trying to improve the per-
formance of SMT processors, often stemming from ob-
servations of microarchitectural resource conflicts. Sev-
eral groups have proposed special schedulers for SMT –
Snavely et al. [39, 40] use a symbiotic approach, Bulpin
and Pratt [8] try to manage resource interference, and Fe-
dorova et al. [13] try to partition caches (although for a
CMP instead of an SMT). Raasch and Reinhardt [33] also
study the impact of resource partitioning on SMT proces-
sors.

Performance analysis using hardware provided event
counters has been an effective approach in previous stud-
ies. Bhandarkar et al. [4] and Keeton et al. [18] char-
acterized performance of Pentium Pro systems and stud-
ied latency components of the CPI. More recently, Black-
burn et al. [5] used some of the Pentium 4 performance
counters to study impact of garbage collection. Given the
complexity of Xeon microarchitecture, interpreting the
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performance-monitoring events on these systems is more
difficult than with previous Pentium family processors or
RISC processors. Moreover, we are unaware of any non-
simulation work in this area that provides the breadth of
event coverage that we do in this paper.

7 Conclusions and Future Work
In this paper, we have examined both the macroscopic and
microarchitectural performance of server workloads on
two very different SMT-enabled processors. By compar-
ing behavior across two different processor families, we
can get a broader perspective than previous work that ex-
amined SMT performance within a single processor fam-
ily. Our overall results are fairly surprising – although
the Xeon and the POWER5 have very different design
philosophies, different architectural styles, different target
markets, and different implementation focuses, we have
shown that their respective performance gains from the
use of SMT are largely tied to their memory organiza-
tions. The POWER5, with its slower cycle time and more
aggressive memory hierarchy, has a much lower effective
memory latency, and sees a more predictable and much
higher relative performance gain than the Xeon.

All of the other architectural aspects, such as pipeline
length, flushes, stalls, TLB misses, etc., vary widely be-
tween the two systems, and reflect their different imple-
mentation choices, but ultimately, all of these effects con-
tribute less to the CPI than the memory effects. The
lack of significant problems arising from microarchitec-
tural choices may be the result of careful implementations
in each processor, or it may be due to the large differ-
ence between processor speeds and memory today. In
any case, even in these areas, we find microarchitectural
choices that we believe can be improved to better support
SMT on the workloads we consider. To the best of our
knowledge, this work is the first to identify some of these
opportunities, especially on the POWER5 processor.

In terms of our avenues for future work, we expect that
the evolution of the POWER series will provide more op-
portunities to study some of the issues we have raised –
in particular, the POWER5 is now shipping at a much
higher clock speed (2.5GHz) than our test machine, so
main memory latency may be impacted. Likewise, future
generations of the POWER processor are rumored to meet
or exceed the clock frequency of our test Xeon processor,
so it will be interest to examine if its larger L3 cache is
able to offset the higher rate of memory accesses one can
expect.

In terms of future Xeon processors, the future research
opportunities are less clear, since the current trend ap-
pears to be adopting multi-core processors while dropping
SMT support. While this choice is, in all likelihood, a
side-effect of using the older and lower-power Pentium-
III/Pentium-M architecture as the basis for the multicore

chips, it is not clear if SMT will reappear in the Xeon
roadmap in the near future. While SMT did provide some
performance boost for the Xeon, and may provide an at-
tractive return on the investment in silicon space, the lit-
erature on the NetBurst (P4) architecture mentions that
it was designed to support SMT. Adding it to the less-
speculative P3 architecture may yield more pronounced
penalties for pipeline problems and misspeculation.
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