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a b s t r a c t

This research is motivated by large-scale pervasive sensing applications. We examine the
benefits and costs of caching data for such applications. We propose and evaluate several
approaches to querying for, and then caching data in a sensor field data server. We show
that for some application requirements (i.e., when delay drives data quality), policies
that emulate cache hits by computing and returning approximate values for sensor data
yield a simultaneous quality improvement and cost saving. This win–win is because when
system delay is sufficiently important, the benefit to both query cost and data quality
achieved by using approximate values outweighs the negative impact on quality due to the
approximation. In contrast, when data accuracy drives quality, a linear trade-off between
query cost and data quality emerges.We also identify caching and lookup policies forwhich
the sensor field query rate is boundedwhen servicing an arbitraryworkload of user queries.
This upper bound is achieved by having multiple user queries share the cost of a single
sensor field query. Finally, we demonstrate that our results are robust to the manner in
which the environment being monitored changes using models for two different sensing
systems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Applications for pervasive sensing systems vary in scale from monitoring and controlling microscopic manufacturing
equipment, to implementing an earthquake early warning system for a country like Japan. There are many performance
metrics of interest in sensing systems for such applications. We focus on two that are common to the vast majority of
sensing applications:

(1) The accuracy of the data acquired by the application from the sensor networks; and
(2) the total system end-to-end delay incurred in the sequence of operations needed for an application to obtain sensor data.

Although almost all pervasive sensing applications have performance requirements that include accuracy and system delay,
their relative importance may differ between applications. We therefore define the quality of the data provided to sensing
applications to be a combination of accuracy and delay. As in most systems, improved quality usually comes at some cost.
For current wireless sensor networks, the most important component of cost typically is the energy consumed in providing
the requested data. In turn this is dominated by the energy required to transport messages through the sensor field. This
cost versus quality trade-off has recently been an active area of research [2,11,22–24,26,28].
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Fig. 1. Sensing system deployment.

Fig. 2. Sensor network data server or gateway with a cache.

To perform our research, we construct amodel for a pervasive sensing system.We then develop novel policies for caching
sensor network data values in sensor field gateway servers, and then retrieving these values via cache lookups. We also
propose a new objective function for data quality that combines accuracy and delay. Finally, we use our sensing system
model to assess the impact of several factors on data quality and query cost performance:

• Our caching and lookup policies;
• The relative importance of data accuracy and system end-to-end delay; and
• The manner in which the sensed data values in the environment change.

This assessment evaluates seven different caching and lookup policies by implementing them in a simulator based on
CSIM 19 [20,21].
Almost all sensing system deployments have three main components:

(1) One or more sensor fields consisting of sensor field nodes that communicate with one or more base stations;
(2) One or more data servers (or gateways) that accept requests for sensor data and generate replies for these requests; and
(3) Monitoring and control centers that are connected to the appropriate sensor data servers via a backbone network.

Fig. 1 shows an example of such a deployment with two sensor fields, one data server, and one monitoring and control
center. If the data server shown in this figure is augmented with storage, it can store and cache sensor field values
that are carried in query replies. The caching approaches we propose are designed to be general since they make no
assumptions about whether the sensor network architecture uses a structured or unstructured data model. In other words,
our approaches are independent of the database model for the sensor network. The database could implement a structured
schema that extends a standard like the Structured Query Language (SQL). The TinyDB and Cougar systems both advocate
this approach [5,16]. However, the schema could also be modified while the system is running (e.g., as in IrisNet [7]). The
database model might also expose a low-level interface to the sensing application. Directed Diffusion [12] does this by
allowing applications to process attributes or attribute-value pairs directly. DSN [4], Tenet [8], Kairos [9], and Regiment [17]
do this by introducing task-oriented or declarative programming languages for applications to acquire and process sensor
network data.

1.1. Data acquisition and caching in pervasive sensing systems

Consider the impact of adding a cache to the data server or gateway in Fig. 1. Fig. 2 shows such a system in which a cache
is added to the internal architecture of the server, on the ‘‘border’’ between the sensor field(s) and the backbone network.
There are two possible data paths that can be traversed in response to a query from the backbone network:
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• For a cache miss, a query is sent to the sensor field by the gateway, incurring a cost. To update the cache, each sensor data
value vi is copied into a cache entry. A cache entry, eli, associates with location li, the most recent value observed at this
location, and its timestamp into the tuple 〈li, vi, ti〉. We say that the system delay, Sd, is the time between an application
query arriving at the point labeledQuerym in Fig. 2 and the corresponding reply departing fromReplym. The value deviation,
Dv , is the unsigned difference between the data value in Replym and the true value at li when Replym leaves the gateway
reply queue.
• The data path for a cache hit is much shorter than for a cache miss. For example, if the cache is indexed by location, and
a cache entry is present for a location li specified in a query, a reply can be generated using only the information in the
tuple that corresponds to li. Since the processing required to perform this cache lookup and generate a reply is relatively
small, we assume that the system delay for a cache hit (Sd) and its associated cost are both zero. We also determine the
value deviation for cache hits (Dv) in the same way as for cache misses.

We exploit spatial locality within sensor field data in the cache. Specifically, some caching and lookup policies allow
cache ‘‘hits’’ in which the value at location li is approximated based on values vi′ from neighboring location(s) {li′ ∈ N(li)}.
(Here N(li) denotes the neighborhood of location li.) We develop and describe three such policies that implement what we
call approximate lookups and queries. We compare these approximate policies with four precise lookup and query policies
that only use information associated with location li to process queries that reference location li.

2. Cost and quality in sensing systems

2.1. Caching and lookup policies

Our caching and lookup policies are designed to explore alternative techniques for increasing the effective cache hit ratio,
and thus conserving sensing system resources.
All of the caching and lookup policies we propose and evaluate incorporate an age threshold parameter T that specifies

how long each entry is stored in the cache. We now describe all seven of our caching and lookup policies. All hits, all misses,
simple lookups and piggybacked queries implement precise lookups and queries. On the other hand, greedy age lookups, greedy
distance lookups, andmedian-of -3 lookups implement approximate lookups and queries.
• All hits (age threshold parameter T = ∞): In this policy cache entries are loaded into the cache but are never deleted,
updated, or replaced.
• All misses (age parameter T = 0): In this policy entries are not stored in the cache.
• Simple lookups (T ): This caching policy results in a cache hit or cache miss based on a lookup at the location specified in
each user query. If consecutive misses occur in the cache for the same location, this policy sends redundant queries into
the sensor field. When a reply is received its value is loaded into the cache, stored for T seconds, and then deleted.
• Piggybacked queries (T ): A cache hit or miss is determined only by a lookup at the location specified in the user query.
If a query has already been issued to fill the cache at a particular location, subsequent queries block in a queue behind
the original query and leverage the pending reply to fulfill multiple queries.
• Greedy age lookups (T ): A cache hit or miss is determined by a lookup first at the location specified in the query, and
second by lookups at all neighboring locations. If there is more than one neighboring cache entry, the freshest (newest)
cache entry is selected. As for piggybacked queries, if a query has already been issued to fill the cache at any of these
locations, subsequent queries block in a queue behind the original query and leverage the pending reply to fulfill multiple
queries. This is also true for the last two policies: greedy distance lookups andmedian-of -3 lookups.
• Greedy distance lookups (T ): A cache hit or miss is determined by a lookup first at the location specified in the query,
and second by lookups at neighboring locations. If there is more than one neighboring cache entry, the nearest cache
entry is selected.
• Median-of-3 lookups (T ). A cache hit or miss is determined by a lookup first at the location specified in the query, and
second by lookups at all neighboring locations. If there are at least three neighboring cache entries, the median of three
randomly selected entries is selected as the value returned with a cache hit. If there are one or two neighboring cache
entries, a randomly selected entry provides a cache hit. Otherwise, the query is treated as a miss.

By implementing blocking behind pending sensor field queries, four of these seven policies have an upper bound on the
sensor field query rate, Rf . Specifically,

max(Rf ) =
|N|
T
. (1)

The four policies are piggybacked queries, median-of-3 lookups, and the two approximate greedy policies. In Eq. (1), |N| is
the number of distinct locations that can be specified in queries for sensor data.

2.2. Sensing system data quality and query cost

We normalize sensor network data quality in order to compare quality measurements from different sensing systems, as
well as for different system parameters (e.g., number of sensors, distance between sensors, etc.) We define data quality to
be a linear combination of normalized system delay and normalized value deviation using a parameter A, which is the relative
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Fig. 3. Sensor field at intel berkeley research lab.

importance of delay when compared with value deviation. The expression that defines quality, denoted Qn, is:

Qn = A
1(

1+ e−b
) + (1− A) 1

(1+ e−c)
(2)

where−b and−c are the exponents used to perform softmax normalization on delays and value deviations, and 0 ≤ A ≤ 1.
The exponents in Eq. (2) are the z scores of their respective values and are therefore defined as follows:

−b = −
Sd −mean(Sd)
stddev(Sd)

, and (3)

− c = −
Dv −mean(Dv)
stddev(Dv)

. (4)

Since small values of system delay (Sd) and value deviation (Dv) are both desirable, smaller values of Qn, e.g., 0 < Qn � 0.5
imply better data quality, and larger values of Qn correspond to worse quality. Softmax normalization yields transformed
values that lie in the range [0, 1]. Because of this property, and because of our definition of A, 0 ≤ Qn ≤ 1. This type of
normalization has been used by others in neural networks; data mining for pattern recognition; and data classification [1,
3,10,19].
We use two different sensing system models in our research in order to generalize our results. The first model uses

correlated random variables to simulate how the environment changes for 1000 sensor locations. This model gives us the
flexibility to vary how the environment changes. The secondmodel uses real-world trace data to drive how the environment
changes. This trace datawas taken from 54 light, temperature, and humidity sensors deployed in the Intel Berkeley Research
lab over a five-week period [6].

2.3. Simulated changes to the environment

For the simulated changes to environment, the sensor field is a 3-dimensional field with rectangular planes on six faces.
There is an 8-unit spacing between 10 sensors in the X-dimension, a 6-unit spacing for 10 sensors in the Y -dimension, and
a 4-unit spacing for 10 sensors in the Z-dimension. Four base stations are placed on the X–Y plane. These four base stations
are then connected to the gateway server that has the common cache. Sensors always communicate with their closest base
station at a cost that incorporates free-space energy loss for each transmission [18]. Thus, the properties of each one-way
communication to and from location l are as follows:

Costl = pr2b′ | min(Costl) = 1 unit (5)
where rb′ is the distance between location l and its nearest base station b′, and p is the normalization constant for the set of
costs. In addition,

Delayl = q rb′ | max(Delayl) = 1 s (6)
where q is the normalization constant for the set of delays. We assume that all four base stations communicate with the
gateway server containing the cache at zero cost, with zero delay, and using infinite bandwidth. Thus, the minimum cost to
query a location in the sensor field is normalized to 2 units (1 for the query + 1 for the reply), and the maximum delay to
query a location in the sensor field is 2 s (not including queuing delay). Finally, each base station is connected to the sensor
field with an access link with a capacity of 25 queries/s.

2.4. Trace-driven changes to the environment

For the trace-driven changes to the environment, our second sensor field model has more than an order of magnitude
fewer locations (54 instead of 1000). The sensors are arranged in a 2-dimensional field at the numbered locations in Fig. 3,
which is taken from [6]. Each entry in the trace is from a Mica2Dot sensor, which senses humidity, temperature, light, and
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Fig. 4. Cost vs. quality for A = 0.1 and correlated changes over 1000 locations.

battery voltage. The trace contains over 2.2 million entries taken over more than five weeks in early 2004. This means that
one location reads and records new sensor field values an average of about once every 1.33 s. We wanted to use the most
dynamically changing of the sensor field values in our model to maximize the error in query accuracy. We therefore chose
the value with the largest average difference between samples. This was light intensity, which is reported in Lux. A value of
1 Lux corresponds to moonlight, 400 Lux to a bright office, and 100,000 Lux to full sunlight.
Four base stations are placed at the corners of the floor plan shown in Fig. 3. As before, sensors always communicate with

their closest base station. We further assume that the cost and delay of each one-way communication are given by Eqs. (5)
and (6), respectively.

2.5. Query workload model

Weuse a queryworkloadmodel that is well suited for pervasive sensing applications that includemonitoring and control
functions. Many of these applications have a workload that includes a periodic arrival process of queries as well as a random
arrival process. There are examples of query workloads that capture both of these components in the literature, e.g., [12,
13,25]. On the other hand, other researchers assume that queries either have exclusively periodic interarrival times [15,16]
or random (usually exponential) interarrival times [5,29]. We assume that the query workload for our applications consists
of the superposition of two query processes: a polling component that slowly scans the sensor field at a fixed rate, and a
random component that consists of queries to different locations in the sensor field. Within this random component it is
equally likely that each location in the sensor field will be sampled. This workloadmodel is similar to models used by others
in [12,13,25]. Specifically, our query workload is characterized by two parameters:

• τ = the period of the polling component of the query workload (τ > 0); and
• λ= the average query arrival rate of a process that represents the random component of our workload.

For simulated changes to the environment, λ and τ are fixed: λ = 81 queries/s is used as the rate parameter to generate
queries with exponentially distributed interarrival times with mean 1/λ. The parameter τ is set to 111.11 s so that the
arrival rate for polling queries is 9 queries/s. When λ = 81 and τ = 111.11, the aggregate arrival rate for queries is
81+ 9 = 90 queries/s. Since the total capacity of the sensor field access links is 4× 25 = 100 queries/s, their average link
utilization is 0.90 for ‘‘all miss’’ runs, and less for runs that include some cache hits.
For trace-driven changes to the environment, λ and τ are fixed for the results described in Section 3: λ = 0.81 queries/s

and τ = 600 s. This makes the average arrival rate for queries two orders of magnitude less than query rate for simulated
changes, namely 0.9 queries/s. The total capacity of the sensor field access links is 4× 0.25 = 1 query/s. Thus, the average
link utilization is also 0.90 for ‘‘all miss’’ runs. These parameters are varied in Sections 4 and 5 as we examine performance
trends in our two different sensing system models.

3. Discussion of results

We wanted our simulated results to capture the fact that sensor field readings are correlated in both space and time. In
our sensor field model, at time t + 1, the value at each location l is drawn from a normal distribution with mean

µl,t+1 =
1
3
µ+

1
3
µl,t +

1
3
µN(l),t . (7)

The long-term mean of this distribution is µ = 0. The standard deviation σ = 0.407514, and the tails are truncated
at minimum/maximum values of µ − 6σ/µ + 6σ . This standard deviation is the same as the standard deviation of the
system end-to-end delays during a set of 20 runs without a cache for our 1000-node sensor network model. N(l) denotes
the neighbors of location l, and each neighboring location l′ of l contributes to µN(l),t in proportion to µl′,t/rl′ , where rl′ is
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Fig. 5. Cost vs. quality for A = 0.1 and trace-driven changes over 54 locations.

Fig. 6. Cost vs. delay for A = 0.1 and correlated changes over 1000 locations.

Fig. 7. Cost vs. delay for A = 0.1 and trace-driven changes over 54 locations.

the distance between locations l and l′. This model for a changing environment is based on the model for correlated sensor
network data developed by Jindal and Psounis [14].
Each data value presented in our results is derived by averaging 20 simulation runs initialized with different seeds.

Additional details of our experimental methodology are described in [27]. The odd-numbered figures, Figs. 5, 7 and
9, show results for light intensity in Lux measured over time in the Intel Berkeley lab data set. These results are for
T = 90 s, and 0.9 queries/s. Note that because of Eq. (1), the maximum sensor field query rate, max(Rf ), is reduced to
54/90 = 0.6 queries/s. The even-numbered figures, Figs. 4, 6 and 8, are for correlated changes to the environment with
both the age parameter, T , and the average query rate scaled for the more rapidly changing environment. Specifically,
T = 8.88 s and the average user query rate is 90 queries/s. Because of Eq. (1), the maximum sensor field query rate
max(Rf ) = 1000/T = 112.5 queries/s.
We can draw two main conclusions from our experiments using the correlated and trace-driven models for how the

environment changes. Results from these experiments appear in Figs. 4 through 11.
1. There is a cost vs. quality trade-off for some data quality requirements but not others. For example, consider the results

shown in Figs. 4 and 5. Fig. 5 shows cost versus quality for all seven caching and lookup policies, where A = 0.1 and the
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Fig. 8. Cost vs. value deviation for A = 0.1 and correlated changes over 1000 locations.

Fig. 9. Cost vs. value deviation for A = 0.1 and trace-driven changes over 54 locations.

Fig. 10. Cost vs. quality for A = 0.9 and correlated changes over 1000 locations.

values at each location are changed according to the lab trace [6]. At the smallest cost, we have a 100% cache hit ratio
(labeled ‘‘All hits’’) that provides a quality of below 0.6 for zero cost. For the largest cost, we see that a 0% cache hit ratio
(labeled ‘‘All misses’’) provides the third-best quality at a cost of approximately 19 units. Recall that for quality, smaller
values indicate better quality. The remaining five caching and lookup policies provide a linear trade-off between cost and
quality. Fig. 4 also shows a trade-off between cost and quality for the same value of A and the same seven caching and lookup
policies, but with changes to the environment now modeled by a series of values correlated in space and time. There are
two observations worth noting when comparing these first two figures. First, the cost values in Fig. 5 are less than in Fig. 4
because the distances within the sensor field are smaller. Second, the trends are similar between these two figures, with the
exception of the increase in quality of the ‘‘all misses’’ policy between Figs. 4 and 5. This worse ‘‘all misses’’ quality is due
entirely to an increase in the normalized delay term in the right hand side of Eq. (2). This can be verified by comparing the
relative differences in delays between the policies, shown on the horizontal axes in Figs. 6 and 7.
We now examine system configurations for which delay is the more important component of quality in more detail.

Figs. 10 and 11 show such configurations for a value of A = 0.9. The most remarkable result in these figures is that there is
no trade-off between cost and quality when we significantly prioritize delay over value deviation. The two greedy caching
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Fig. 11. Cost vs. quality for A = 0.9 and trace-driven changes over 54 locations.

Table 1
Hit ratios, costs, and delays for T = 8.88 s, 90 queries/s, and correlated changes over 1000 locations

Policies Hit ratio Cost Delay

All hits 1 0 0
All misses 0 94 1.18
Simple lookup 0.40 56 0.69
Greedy age lookup 0.62 37 0.39
Greedy distance lookup 0.60 38 0.44
Median-of-3 lookup 0.55 43 0.51
Piggyback queries 0.40 57 0.69

Table 2
Hit ratios, costs, and delays for T = 90 s, 0.9 queries/s, and trace-driven changes over 54 locations

Policies Hit ratio Cost Delay

All hits 1 0 0
All misses 0 19 4.4
Simple lookup 0.59 7.7 1.0
Greedy age lookup 0.78 4.0 0.47
Greedy distance lookup 0.76 4.4 0.55
Median-of-3 lookup 0.71 5.4 0.68
Piggyback queries 0.59 7.7 1.0

and lookup policies have the best cost performance and the best quality performance for both models of changing the
environment in Figs. 10 and 11. Even though the ‘‘all hits’’ policy has the best absolute performance in these figures, we
don’t consider this a practical policy since it never updates the cache. In studying Figs. 4 through 11 it is interesting to
understand which system variables depend on which system parameters. For example, cost, delay, and hit ratio values in
these simulation results each depend on the following three variables:

• The caching and lookup policies themselves (including the value of T );
• The physical configuration of the sensor field; and
• The query arrival process.

Thus, a cost vs. delay or a cost vs. hit ratio graph is the same for different experiments in which these three variables are
held constant. To see how cost and delay both increase with lower cache hit ratios, Table 1 shows the cache hit ratio for each
of the (cost, delay) points in Fig. 6. Similarly, Table 2 shows the hit ratio for each of the (cost, delay) points in Fig. 7.
Value deviation depends on the same parameters listed above, and additionally on themanner inwhich the environment

changes. Thus, cost vs. value deviation graphs are the samewhen the policies, sensor field, query arrival process, andmethod
for changing the environment are all identical. Figs. 8 and 9 show cost vs. value deviation results for correlated changes and
trace-driven changes to the environment, respectively. Themost interesting difference between the two figures is the overall
increase in the dispersion of the value deviations in Fig. 9when comparedwith those in Fig. 8. This is because the variation in
sensor field values is much greater in the Intel Berkeley trace data than values that are drawn from our normal distribution
with a time-dependent mean.
2. Different lookup policies perform best depending on whether delay or value deviation is most important to the application.

If data quality is more important to the application than cost, and value deviation is more important than delay, simple
lookups and piggybacked queries provide the best performance. This can be seen in Figs. 4 and 5. In both of these figures,
simple lookups and piggybacked queries yield the best quality, other than the ‘‘all misses’’ policy for correlated changes.
When value deviation is most important, the expense of taking a cache miss (by not computing an approximate value from
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Fig. 12. Cost vs. quality for A = 0.1 and 9 of 1000 correlated changes/s.

neighboring values for these two policies) isworthwhile, since value deviation is deemedmost important. If query cost is at a
premium compared with quality, using greedy age lookups or greedy distance lookups is preferred. These two policies have
the most favorable cost performance in both sensor field models, other than the ‘‘all hits’’ case. If delay is more important
to quality than value deviation, Figs. 10 and 11 show that performing greedy age lookups or doing greedy distance lookups
yields the best performance. This is true regardless of whether cost or quality is more important to the application.We again
assume that the ‘‘all hits’’ case is not useful to realistic applications. For these policies, getting the fast response time of a
cache ‘‘hit’’ (whichmight be approximated from values at one ormore neighboring locations) is worthwhile, since low delay
is more important than a more accurate value.
The fact that different lookup policies perform best for different application requirements can be explained by examining

the underlying delays and value deviations of the policies themselves. For example, consider the case where A = 0.1
and changes to the environment are driven by the lab traces. A value of A = 0.1 biases quality toward value deviation
performance rather than delay performance. In this case, value deviation performance is significantly better when using
precise lookups and queries, as shown in Fig. 9. Fig. 5 therefore shows that the data quality supported by the simple lookup
and piggyback query policies is superior to the data quality supported by the greedy and median-of-3 lookup policies.
Now consider the case where A = 0.9 and changes to the environment are again driven by the lab trace data. A value

of A = 0.9 biases quality toward delay performance rather than value deviation performance. In this case, both delay and
cost performance are best for approximate lookups and queries, as shown in Table 2. Fig. 11 thus shows that the query cost
incurred for doing greedy age lookups or greedy distance lookups is superior to (i.e., less than) the query cost incurred by
the other policies for quality that is also better. It is helpful to summarize the cost and quality performance results presented
above as follows:

• When value deviation is more important to quality than delay, there is a linear cost vs. quality trade-off. We obtain the
best cost performance by implementing policies that approximate sensor values by using cached values from nearby
locations. The best quality performance is achieved by policies that always query and cache the sensor field location
specified in the user query.
• When delay is more important than value deviation, policies that approximate values using cached values from nearby
locations provide the best cost performance as well as the best quality performance.
• These results hold for both simulated changes to the environment and trace-driven changes to the environment.

4. Performance trends when value deviation is most important

The results in the previous sectionprovide a thoroughunderstanding of cost andquality performance in pervasive sensing
systems for twomodels of how the environment changes.We next investigate performance trends that emerge as the query
rate increases or decreases relative to the rate at which the environment changes.
Because our simulator fully models an environment with correlated changes specified by Eq. (7), we explicitly vary the

rate at which the environment changes. To do this we increase the number of locations changed per second from 9 to 90
to 900 while maintaining a query workload with an average rate of 90 queries/s. The Intel Berkeley lab traces specify how
the environment changes for our trace-driven experiments. In this case, we vary the relative rate at which the environment
changes by decreasing the average query rate from 90 to 9 to 0.9 queries/s.
We begin this investigation by considering cost and quality performance when value deviation is more important in

determining data quality than system end-to-end delay. Results for these simulations appear in this section. In the following
section, we explore sensor network applications for which system delay is more important than value deviation.
The same high-level conclusions presented in the last section hold true when the relative rate at which the environment

changes is increased by two orders of magnitude. However, some of the underlying results differ either qualitatively or
quantitatively. Figs. 12 through 17 show these results for correlated changes to the environment. Figs. 18 through 23 show
the corresponding results for trace-driven changes to the environment. If value deviation is more important than delay,
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Fig. 13. Cost vs. quality for A = 0.1 and 90 of 1000 correlated changes/s.

Fig. 14. Cost vs. quality for A = 0.1 and 900 of 1000 correlated changes/s.

Fig. 15. Value deviation vs. quality for A = 0.1 and 9 of 1000 correlated changes/s.

Fig. 16. Value deviation vs. quality for A = 0.1 and 90 of 1000 correlated changes/s.
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Fig. 17. Value deviation vs. quality for A = 0.1 and 900 of 1000 correlated changes/s.

Fig. 18. Cost vs. quality for A = 0.1, 90 queries/s and trace-driven changes over 54 locations.

Fig. 19. Cost vs. quality for A = 0.1, 9 queries/s and trace-driven changes over 54 locations.

Fig. 20. Cost vs. quality for A = 0.1, 0.9 queries/s and trace-driven changes over 54 locations.
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Fig. 21. Value deviation vs. quality for A = 0.1, 90 queries/s and trace-driven changes over 54 locations.

Fig. 22. Value deviation vs. quality for A = 0.1, 9 queries/s and trace-driven changes over 54 locations.

Fig. 23. Value deviation vs. quality for A = 0.1, 0.9 queries/s and trace-driven changes over 54 locations.

simple lookups and piggybacked queries again provide the best performance when quality is more important than cost.
This can be seen in Figs. 12–14. If cost is at a premium compared with quality, greedy age lookups or greedy distance
lookups trade worse quality for lower cost. In fact, these policies have the most favorable cost performance, other than the
‘‘all hits’’ case. These figures also show that our results are robust with respect to how rapidly our correlated environment
changes. For example, the trade-off between cost and quality is linear in Figs. 12–14. Excluding the ‘‘all hits’’ case again, the
range of quality values decreases as the rate at which the environment changes increases. In spite of these differences in
quality performance, the relative cost and quality performance of most of the policies remain the same. Figs. 15–17 confirm
a strong positive correlation between value deviation and quality when A = 0.1. Examining these figures in increasing order
illustrates how value deviation increases as the rate at which the environment changes increases.
For trace-driven changes to the environment, simple lookups and piggybacked queries also provide the best performance

when quality is more important than cost. This can be seen in Figs. 18–20. The trade-off between cost and quality is also
linear in these figures. Although the costs increase from Fig. 18 to Fig. 19 to Fig. 20, the range of normalized quality is
approximately the same (again, excluding the ‘‘all hits’’ case).
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Fig. 24. Cost vs. quality for A = 0.9 and 9 of 1000 correlated changes/s.

Fig. 25. Cost vs. quality for A = 0.9 and 90 of 1000 correlated changes/s.

Figs. 21–23 confirm a positive correlation between value deviation and quality when A = 0.1 and changes to the
environment are driven by our trace data. Examining these figures in increasing order illustrates how value deviation
increases as the average query rate (and thus the cache hit ratio) decreases.

5. Performance trends when end-to-end delay is most important

In the previous section we presented performance results that are important to sensor network applications for which
high accuracy (i.e., low value deviation) is the most important factor in the quality of their data. In this section we consider
how performance varies as the query rate increases or decreases relative to the rate at which the environment changes
when system end-to-end delay is most important. For correlated changes to the environment, we again vary the rate at
which the environment changes from 9 to 90 to 900 locations/s while maintaining a query workload with an average rate
of 90 queries/s. For the Intel Berkeley lab traces, we again vary the relative rate at which the environment changes by
decreasing the average query rate from 90 to 9 to 0.9 queries/s.
We examine system configurations for which delay is a more important component of quality than value deviation.

Figs. 24 through 29 show such configurations for correlated changes to the environment. For correlated changes to the
environment, the cost remains constant for policies as the rate of change for sensor values in the environment increases from
9 locations/s to 900 locations/s. At the same time, the quality performance for all policies is very similar, but not identical.
Figs. 30 through 32 show configurations for trace-driven changes to the environment. In these system configurations, the
cost increases as the average query rate and the cache hit ratio both decrease.
A value of A = 0.9 is used in Figs. 24 through 32. This choice of A makes system delay significantly more important

to quality than value deviation. This is demonstrated, for example, by Figs. 27–29. These figures all show a strong positive
and linear correlation between delay and quality for correlated changes to the environment. Examining these figures also
confirms that the delays for each policy are constant across the three system configurations, and furthermore are identical
to those in Table 1, since the query workloads are the same.
For correlated changes to the environment, Figs. 24–26 show that performing greedy age lookups or greedy distance

lookups yields the best cost performance, and the best quality performance, excluding the ‘‘all hits’’ case. These figures
also show that our results are robust with respect to how rapidly our correlated sensor field values change, and that the
relative performance differences among our policies remain the same. Similar results hold for trace-driven changes to the
environment. These can be seen in Figs. 30–32. However, it appears that as higher cache hit ratios (e.g., in Fig. 30) cause a
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Fig. 26. Cost vs. quality for A = 0.9 and 900 of 1000 correlated changes/s.

Fig. 27. Delay vs. quality for A = 0.9 and 9 of 1000 correlated changes/s.

Fig. 28. Delay vs. quality for A = 0.9 and 90 of 1000 correlated changes/s.

Fig. 29. Delay vs. quality for A = 0.9 and 900 of 1000 correlated changes/s.
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Fig. 30. Cost vs. quality for A = 0.9, 90 queries/s and trace-driven changes over 54 locations.

Fig. 31. Cost vs. quality for A = 0.9, 9 queries/s and trace-driven changes over 54 locations.

Fig. 32. Cost vs. quality for A = 0.9, 0.9 queries/s and trace-driven changes over 54 locations.

performance convergence among the caching policies, the median-of-3 policy exhibits better cost and quality performance
than doing greedy lookups.
We have seen that for correlated changes to the environment, one ormore of the greedy policies provide the best cost and

quality performance among the realistic policies. For trace-driven changes to the environment, greedy policies (including the
median-of-3 policy) also provide the best cost performance and the best quality performance. This can be seen in Figs. 30–
32, in which there is no trade-off between cost and quality. As costs increase from Fig. 30 to Fig. 31 to Fig. 32, the range of
quality values also increases. However, these quality values remain in the continuumbetween the ‘‘All hits’’ and ‘‘All misses’’
quality values.

6. Performance impact of cache entry age threshold (T )

In practice, picking a good value for T depends on how rapidly the environment being monitored might change, and the
utility of a cached entry as it approaches being T seconds old. If T is too small, it is easy to imagine that the cache might not
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Fig. 33. Cost vs. quality for A = 0.1, T = 88.88 s, and correlated changes over 1000 nodes.

Fig. 34. Cost vs. value deviation for A = 0.1, T = 88.88 s, and correlated changes over 1000 nodes.

be effective. If T is too large, then the cache may be helpful in terms of saving cost, but may be harmful if value deviation
increases as a function of elapsed time.
In this section we present results for values of T that are both larger and smaller than the values we have used thus

far. This allows us to explore two additional operating regions for pervasive sensing systems. In the first operating region,
the cache hit ratio is increased and the sensor field query rate is bounded at a rate that is much less than average query
arrival rate from the sensing applications. In the second region, the cache hit ratio is significantly decreased such that for all
interesting caching and lookup policies, less than 10% of queries yield a cache hit.

6.1. Larger values of T

Since energy is typically a critical resource inwireless sensor networks,wewanted to understand the effects of decreasing
resource consumption by reducing the volume of sensor field query traffic. We accomplished this by increasing the value
of the age threshold parameter associated with cache entries (our value of T ), and thus boosting the cache hit ratio for our
age-based policies.
For simple lookups, piggybacked queries, the median-of-3 policy, and both greedy policies, an age threshold of T =

88.88 s was used for correlated changes to the environment. This value is an order of magnitude larger than the value of T
used for our earlier results. For this larger environment (with 1000 locations), the sensor field is queried an average of 90
times per second and changed at a rate of 90 locations/s. For this value of T , all of these policies except simple lookups have
an upper bound on the sensor field query rate of max(Rf ) = |N|/88.88 = 11.25 queries/s. This bound is guaranteed by
Eq. (1) and implies that the average query rate (90 queries/s) is eight times greater than the peak sensor field query rate.
Our results for this larger value of T appear in Figs. 33 through 35 and Table 3. The most noticeable difference between the
results in Figs. 33 through 35 when compared with our earlier results is that the performance differences between the five
age-based policies are quite small. This similar performance of our age-based policies is most pronounced for performance
metrics that are independent of A (e.g., cost, delay, and hit ratio). For example, Table 3 shows cost and delay performance for
all non-trivial policies (from simple lookups through piggybacked queries) that is almost the same for correlated changes.
Note also that corresponding hit ratios for these policies are also virtually identical. In fact, the hit ratio for all of these policies
falls between 88% and 90% in this table. These hit ratios aremuch greater than our earlier results inwhich the hit ratio ranges
were 40%–62% in Table 1. Even the characteristic cost vs. value deviation graph, Fig. 34, shows much less difference in value
deviation than our earlier results. In all of our results for larger values of T , the much higher hit ratios (88% or greater) make
the cost performance of our policies fairly close to the case where the hit ratio is 100% (i.e., the ‘‘all hits’’ case). Furthermore,
the quality performance is close to the quality performance of the all hits case regardless of whether value deviation or delay
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Fig. 35. Cost vs. quality for A = 0.9, T = 88.88 s, and correlated changes over 1000 nodes.

Table 3
Hit ratios, costs, and delays for T = 88.88 s, 90 queries/s, and correlated changes over 1000 locations

Policies Hit ratio Cost Delay

Simple lookup 0.88 12 0.14
Greedy age lookup 0.88 12 0.13
Greedy distance lookup 0.89 10 0.13
Median-of-3 lookup 0.90 10 0.12
Piggyback queries 0.88 12 0.14

Fig. 36. Cost vs. quality for A = 0.1, T = 0.88 s, and correlated changes over 1000 nodes.

is deemed more important to the sensing applications. Fig. 33 shows this converged quality performance when A = 0.1,
and Fig. 35 shows analogous results when A = 0.9.Wewere surprised that in spite of a significant change in our cache entry
aging parameter, some of our important earlier results still hold. These results can be summarized as follows:
• When A = 0.9, system delay drives quality, and there is no trade-off between cost and quality. Thus for correlated
changes, Fig. 35 exhibits the same trends for cost and quality as the corresponding delays in Table 3.
• When A = 0.1, value deviation in the sensing system causes a trade-off between quality and cost. Specifically, Fig. 33
shows the same trends as its value deviation counterpart, Fig. 34.

6.2. Smaller values of T

In Section 6.1 we examined results for high cache hit ratios, which were induced by increasing the age threshold, T .
We also wanted to study system configurations with low cache hit ratios. To obtain results for these configurations, we
decreased our values of T by an order of magnitude when compared with the values of T used to produce our earlier results
(see Section 3). For our five age-based policies, an age parameter of T = 0.88 s was used with correlated changes to the
environment. Note also that this value is two orders of magnitude smaller than the value of T used in Section 6.1, making
the upper bound on the sensor field query rate 100 times larger. For the four applicable policies, max(Rf ) = |N|/0.88 =
1125 queries/s. This bound is quite loose in that it is more than 12 times the average query rate of 90 queries/s. Results for
this smaller value of T appear in this section in Figs. 36 through 38 and Table 4.
The most interesting results in Figs. 36 through 38 are the negative results. Fig. 36 shows that a cache can, for some

caching and lookuppolicies, provide onlymarginal benefitwhen compared to having no cache (illustrated by the ‘‘Allmisses’’
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Fig. 37. Cost vs. value deviation for A = 0.1, T = 0.88 s, and correlated changes over 1000 nodes.

Fig. 38. Cost vs. quality for A = 0.9, T = 0.88 s, and correlated changes over 1000 nodes.

Table 4
Hit ratios, costs, and delays for T = 0.88 s, 90 queries/s, and correlated changes over 1000 locations

Policies Hit ratio Cost Delay

Simple lookup 0.02 92 1.15
Greedy age lookup 0.08 88 0.93
Greedy distance lookup 0.06 89 1.01
Median-of-3 lookup 0.05 90 1.07
Piggyback queries 0.02 92 1.14

results). Furthermore, by using an inappropriate caching and lookup policy, the presence of a cache for sensor network data
can even hurt quality performance. For example, Fig. 36 shows that the greedy lookup policies yield a cost savings of about
4% while incurring a significant penalty in quality. What renders these policies perhaps not worthwhile (because of their
worse quality performance) is the significant value deviation that is introduced by a cache that is almost ineffective. These
value deviations are shown in Fig. 37, in which the greedy policies and the median-of-3 lookup policy show significantly
worse value deviation for a negligible or small amount of cost savings.
There are also interesting positive results shown by these figures. The cost vs. quality trade-off favors using simple

lookups or piggybacked queries when value deviation drives quality (e.g., when A = 0.1). For correlated changes, Fig. 36
shows that using simple lookups or piggybacked queries provides about the same quality performance as all misses, while
yielding a small cost savings of 1%–2%. The cost savings and quality performance are both more compelling for trace-driven
changes. For this smaller environment (with 54 nodes), the cost savings increases to 12%–15% while quality also improves
by about 5%. These results are not shown here, but are discussed further in [27]. Now consider the case where delay is more
important than value deviation in Eq. (2). For example, when A = 0.9, Fig. 38 shows that the cost and quality performance
of the greedy policies and the median-of-3 lookup policy is better than the performance of not using a cache. Specifically,
a cost saving of up to 5% is obtained with a simultaneous improvement in quality of up to 20%. The characteristic cost and
delay performance shown in Table 4 are highly correlated. Furthermore, since the cache hit ratio of the age-based policies is
between 2% and 8% in this table, the quality provided by these policies is clustered toward the ‘‘All misses’’ point near the top
of Fig. 38. However, Fig. 38 also shows that the greedy policies again provide the best performance in terms of both cost and
quality. When the cache hit ratios are low, we have seen that the presence of a cache provides greater performance benefits
when delay drives quality. Specifically when A = 0.9, we observed cost savings of up to 5% and quality improvements of
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up to 20%. In contrast, Figs. 36 and 37 make a weaker case for using a cache when its hit ratio is low (8% or less for all of
our age-based policies, as shown in Table 4). In this section, we studied the impact of manipulating the cache hit ratio by
varying the cache age threshold parameter, T :

• We achieve a significant cost saving (up to 90% in our configurations) by increasing T , and thus increasing the cache hit
ratio.
• We still achieve a small cost saving (from 2% to 5%) when T is small, but greater than zero.
• In both of these cases, and for both of our sensor field models, these cost savings occur with a simultaneous quality
improvementwhen delay ismore important to quality than value deviation [27]. However, when value deviation ismore
important to quality, we observe quality that is sometimes worse (by up to 50% in our configurations), and sometimes
better (by up to 5%).

7. Conclusion

The following are the contributions of this paper:

• Sensor network caching and lookup policies that improve data quality and query cost.We measure the benefit and cost of
seven different caching and lookup policies as a function of the application quality requirements. We show that for some
quality requirements (i.e., when delay drives data quality), policies that emulate cache hits by computing and returning
approximate values for sensor data yield a simultaneous quality improvement and cost saving. This win–win is because
when delay is sufficiently important, the benefit to both query cost and data quality achieved by using approximate
values outweighs the negative impact on quality due to the approximation.
• Form and magnitude of the cost vs. quality trade-off. For our seven caching and lookup policies, five of these policies
age and then delete cache entries uniformly based on an age threshold parameter, T . We observe that in many system
configurations these five policies expose a linear cost vs. quality trade-off. When this linearity is present, we find that
the underlying cost vs. accuracy and/or cost vs. delay functions are also linear. When this linearity is not present, the
performance differences between our policies in terms of both cost and quality, can be small. When this is true, we
observe that the cache hit ratios for our policies are close in value.
• Bounded cost for some caching and lookup policies. For sensing applications that require bounded resource consumption,
we identify a class of policies for which the sensor field query rate can be bounded when servicing an arbitrary workload
of user queries. Recall that the domain for our user queries is the set of discrete locations in the sensor field. This upper
bound is a function of two variables: (1) the number of locations in each sensor field (these locations are also used to
index the cache) and; (2) the age threshold parameter, T .
• Impact of themanner in which the environment changes on query cost and data quality performance.Our results characterize
and quantify cost and quality performance for two different sensing systems, which each monitor environments with
different characteristics. These results show that while the form and magnitude of the cost and quality performance
change, the performance trends generally remain the same. Specifically, the performance differences between policies
change, but the policies that provide the best quality (and cost) performance in different sensing system configurations
are almost always the same.
• Effect of the age threshold parameter (T) for cache entries on performance. For the caching policies that we propose and
evaluate, the cache hit ratio for a given query workload can be increased by increasing T . The converse is also true.
We determine how cost and quality performance are impacted as T is changed by two orders of magnitude. We also
compare these results with ‘‘all misses’’ and ‘‘all hits’’ baseline policies. We achieve a significant cost saving (up to 90%
in our configurations) by increasing T , and thus increasing the cache hit ratio. We still achieve a small cost saving (from
2% to 5%) when T is small, but greater than zero. When T is too small and value deviation is most important to quality,
we observe quality that is sometimes worse, and sometimes better.
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