
Appears in "Proceedings of the First Symposium on Operating Systems Design and Implementation," Usenix Association, November 1994.

PerformanceIssuesin Parallelized Network Protocols

Erich M. Nahum, David J. Yates, James F. Kurose, and Don Towsley
�

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

Abstract

Parallel processing has been proposed as a means of
improving network protocol throughput. Several different
strategies have been taken towards parallelizing protocols.
A relatively popular approach is packet-level parallelism,
where packets are distributed across processors.

This paper provides an experimental performance study
of packet-level parallelism on a contemporary shared-
memory multiprocessor. We examine several unexplored
areas in packet-level parallelism and investigate how vari-
ous protocol structuring and implementation techniques can
affect performance. We study TCP/IP and UDP/IP protocol
stacks, implemented with a parallel version of the x-kernel
running in user space on Silicon Graphics multiprocessors.

Our results show that only limited packet-level paral-
lelism can be achieved within a single connection under
TCP, but that using multiple connections can improve avail-
able parallelism. We also demonstrate that packet ordering
plays a key role in determining single-connection TCP per-
formance, that careful use of locks is a necessity, and that
selective exploitation of caching can improve throughput.
We also describe experiments that compare parallel proto-
col performance on two generations of a parallel machine
and show how computer architectural trends can influence
performance.

1 Intr oduction

Parallel processing has been proposed as a means of improv-
ing network protocol throughput. Two trends motivate the
use of parallelism in network processing. First, network
bandwidths are increasing by orders of magnitude, with
the advent of technologies such as ATM. Second, shared-
memory multiprocessors are becoming more common, as

�
This research supported in part by NSF under grant NCR-9206908

and ARPA under contract number F19628-92-C-0089. Erich Nahum was
supported by an ARPA Research Assistantship in Parallel Processing.
David Yates is the recipient of a Motorola Codex University Partnership
in Research Grant. The authors can be reached at {nahum, yates, kurose,
towsley}@cs.umass.edu.

shown by recent vendor introductions [1, 8, 9]. There is
thus an opportunity to exploit the potential of parallelism in
network protocol processing, and this has become a grow-
ing area of research.

The approach we study here is that of packet-level par-
allelism, sometimes referred to as thread-per-packet or
processor-per-message parallelism. Originally proposed by
Hutchinson and Peterson in the x-kernel [14], this approach
distributes packets across processors, achieving speedup
both with multiple connections and within a single connec-
tion. Packets can be processed on any processor, maxi-
mizing flexibility and utilization. Other systems using this
approach include [5, 11].

Several other approaches to parallelism have also been
proposed and are briefly described here; more detailed
surveys can be found in [5, 11]. In layered parallelism,
protocols are assigned to specific processors, and mes-
sages passed between layers through interprocess com-
munication. Parallelism gains can be achieved mainly
through pipelining effects. An example is found in [10].
Connection-level parallelism associates connections with a
single processor or thread, achieving speedup with multi-
ple connections. Multiprocessor STREAMS most closely
matches this model [26, 27]. Functional parallelism
decomposes functions within a single protocol and as-
signs them to processing elements. Examples include
[19, 23, 25]. The relative merits of one approach over
the others depends on many factors, including the host ar-
chitecture, the number of connections, whether the imple-
mentation is in hardware or software, the thread scheduling
policies employed , and the cost of primitives such as lock-
ing and context switching. Schmidt and Suda [28] show that
packet-level parallelism and connection-level parallelism
generally perform better than layer parallelism on a shared-
memory multiprocessor, due to the context-switching over-
head when crossing layers using layer parallelism.

This paper provides an experimental performance study
of packet-level parallelism using TCP/IP and UDP/IP pro-
tocol stacks. We have conducted this study in the context
of a multiprocessor implementation of the x-kernel, which

runs in user space on Silicon Graphics shared-memory mul-
tiprocessors� using the IRIX operating system.

Our results show that only limited packet-level paral-
lelism can be achieved under TCP within a single connec-
tion, but that using multiple connections improves available
parallelism. The effects of checksumming and packet size
on speedup are also examined. We also find that ordering
plays a key role in determining single-connection TCP per-
formance, that careful use of locks is a necessity, and that
selective exploitation of caching can improve throughput.
Finally, we examine packet-level parallelism on three plat-
forms: the current Challenge series using both 100 MHz
and 150 MHz MIPS R4400 processors, and the older Power
Series with 33 MHz MIPS R3000’s.

The remainder of the paper is organized as follows: In
Section 2, we describe our experimental environment, in-
cluding the parallelized x-kernel and protocols. Section 3
gives our baseline results. Section 4 describes ordering
issues and shows how ordering can impact performance.
Section 5 examines locking strategies and techniques. Sec-
tion 6 illustrates the effects of caching. Section 7 examines
parallelized protocol performance on several different ar-
chitectures. In Section 8 we summarize our results and
conclude.

2 Experimental Envir onment

As stated earlier, our environment is based on a parallelized
x-kernel, and as such, it is similar in several respects to
the platform described by Bjorkman and Gunningberg at
the Swedish Institute of Computer Science (SICS) [4, 5].
Our platform was, for the most part, developed indepen-
dently, and for a different type of machine. The exception
is the SICS MP TCP code, which we used to guide the de-
sign of our parallel TCP, as described in Section 5.1. The
SICS platform, however, was based on the February 1992
release of the x-kernel, and ran on the Sequent Symmetry.
Our environment is based on the December 1993 x-kernel
release, and runs on the SGI Challenge. Given the differ-
ences in hardware, host operating systems, versions of the
x-kernel infrastructure and protocols, a direct comparison is
thus not possible. Where applicable, however, we describe
differences between the systems.

2.1 Parallelizedx-kernel

Our parallelized x-kernel was developed by adding locks
into appropriate places in the x-kernel infrastructure. Like
the SICS system,we placed locks protecting x-kernel infras-
tructure within the x-kernel, and placed locks concerning
protocols within the protocols. Unlike the SICS system,
which used a finite set of static, global locks, we instantiate
locks on a finer-grained, per data-structure basis.

The x-kernel’s message tool is a facility for managing
packet data, analogous to Berkeley mbuf’s. Messages are

per-thread data structures, and thus required no locks. They
point to allocated data structures called MNodes which are
reference counted; these reference counts must be incre-
mented and decremented atomically.

The x-kernel’s map manager provides a mapping from
an external identifier (e.g., a TCP port number) to an in-
ternal identifier (e.g., a TCP protocol control block), using
chained-bucket hash tables with a 1-behind cache. Maps
have many uses, but are primarily used for demultiplex-
ing. They must be locked to insert, lookup, or remove
entries. In addition, since the map manager provides an
iterator function mapForEach(), the map manager can
call itself recursively. To handle this recursion, counting
locks are used, so that if a thread already owns the lock,
it simply increments a count and proceeds. Similarly, an
unlock decrements the count, and the lock is released when
the count reaches zero.

The event manager uses a timing wheel [31] to manage
events which are to occur in the future. The wheel is essen-
tially another chained-bucket hash table, where the hashing
function is based on the time that the event is scheduled to
run. To protect this structure, we added per-chain locks,
so that concurrent updates to the table were less likely to
conflict with one another.

Other components of the x-kernel require locks for var-
ious reasons, most frequently for atomic addition and sub-
traction for object reference counts.

2.2 ParallelizedProtocols

In order to experimentally study various performance-
related issues in parallel protocols, we implemented multi-
processor versions of FDDI, IP, UDP, and TCP. This section
briefly describes our parallel implementations of these pro-
tocols.

The FDDI protocol in the x-kernel is very simple; it es-
sentially prepends headers to outgoing packets and removes
headers from incoming packets. Locking is only necessary
in two instances: during session creation and on packet
demultiplexing (to determine the upper-layer protocol to
which a message should be dispatched to). No locking is
required for outgoing packets during data transfer.

The Internet Protocol is structured similarly to FDDI
but has a slightly larger amount of state, which must be
locked. On the send side, IP has a datagram identifier used
for fragmenting packets larger than the network interface
MTU. The identifier must be atomically incremented, per-
datagram. On the receive side, if a packet is a fragment,
a fragment table must be locked to serialize lookups and
updates.

UDP is a connectionless transport protocol that provides
little beyond simple multiplexing and demultiplexing. Like
FDDI, locking is only required for session creation and
packet demultiplexing.

TCP is a much more complex protocol than UDP. It pro-
vides reliable, in-order data delivery with no loss, error, or

duplication, and has built in flow control and congestion
control� mechanisms. Our TCP is based upon the x-kernel’s
adaptation of the Berkeley Tahoe release, but was updated
to be compliant with the BSD Net/2 release. In addition to
adding header prediction, this involved updating the con-
gestion control and timer mechanisms, as well as reordering
code in the send side to test for the most frequent scenarios
first [15]. The one change we made to the base Net/2 struc-
ture was to use 32-bit flow-control windows, rather than
the 16-bit windows defined by the TCP specification. This
turns out to be important for the high bandwidths generated
by our experiments, and we note that 32-bit flow control
information is used in both 4.4 BSD with large windows
[16] and in the next-generation TCP proposals [6, 30].

Due to the semantics of TCP, the protocol consequently
has a great deal of per-connection state, which must be
locked to provide consistency and semantic correctness.
For example, each connection has a retransmission queue,
a reassembly queue, and various windows for both the send
and receive sides. Given this large amount of state, several
state locking strategies are possible. We thus implemented
three Net/2-based versions of TCP, where each version uses
a different locking granularity. These are described in more
detail in section 5.1.

Checksumming has been identified as a potential perfor-
manceissue in TCP/UDP implementations. We thus wished
to examine the extent to which checksumming made a dif-
ference in protocol speedup and throughput. The checksum
code used in our studies was the fastest available portable
algorithm that we were aware of, which was from UCSD
[18].

2.3 In-Memory Drivers

Since our platform runs in user space, accessing the FDDI
adaptor involves crossing the IRIX socket layer, which is
prohibitively expensive. Normally, in a user-space im-
plementation of the x-kernel, a simulated device driver is
configured below the media access control layer (in this
case, FDDI). The simulated driver uses the socket interface
to emulate a network device. To avoid this socket-crossing
cost, we replaced the simulated driver with in-memory de-
vice drivers for both the TCP and UDP protocol stacks. The
drivers emulate a high-speed FDDI interface, and support
the FDDI maximum transmission unit (MTU) of slightly
over 4K bytes. This is similar to the approaches taken in
[5, 11, 21, 28].

The drivers act as senders or receivers, producing or con-
suming packets as fast as possible, to simulate the behavior
of a simplex data transfer over an error-free network. To
minimize execution time and experimental perturbation, the
receive-side driver uses preconstructed packet templates,
and does not calculate TCP and UDP checksums. Instead,
in experiments that examine checksumming using a simu-
lated sender, the actual TCP and UDP receivers calculate
the checksum, but ignore the result.

THROUGHPUT
�
 TEST

TCP
�

IP
�

FDDI
�

SIM−TCP−RECV
�

Figure 1: TCP Send-Side Configuration

Figure 1 shows an example of a test configuration. The
example is of a send-side TCP throughput test, where a
simulated TCP receiver sits below the FDDI layer. The
simulated TCP receiver generates acknowledgement pack-
ets for packets sent by the actual TCP sender. The driver
acknowledges every other packet, thus mimicking the be-
havior of Net/2 TCP when communicating with itself as a
peer. Since spawning threads is expensive in user space in
IRIX, the driver "borrows" the stack of a calling thread to
send an acknowledgement back up.

The TCP receive-side driver (i.e., simulated TCP sender)
produces packets in-order for consumption by the actual
TCP receiver, and flow-controls itself appropriately using
the acknowledgements and window information returned
by the TCP receiver. Both simulated TCP drivers also
perform their respective roles in setting up a connection.

3 BaselineResults

In this section we present a set of baseline results on our
8-processor 100 MHz Challenge machine. Our goal here
is to illustrate the differences between the send and receive
paths, and the impact of checksumming and packet size on
scalability. The baseline protocol implementations which
generated these results include message caching, atomic
increment/decrement, and (in the case of TCP) a single
lock on the TCP state. The locks used are the SGI supplied
mutex locks. In sections 5 and 6 we describe these protocol
structuring and implementation choices, and examine how
they and various other alternative approaches effect and
determine performance.

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2 3

	
4 5

6

�
7

�
8

0

�

200
�

400

600
�

800

1000

1200

1400

1600

1K Byte Packets, Checksum On
1K Byte Packets, Checksum Off
4K Byte Packets, Checksum On

�4K Byte Packets, Checksum Off

Figure 2: UDP Send Side Throughputs

R
el

at
iv

e
Sp

ee
du

p
Processors

�1 2 3
	

4 5

6
�

7
�

8

1

2
�

3
	

4
�

5

6
�

7
�

8

1K Byte Packets, Checksum On
1K Byte Packets, Checksum Off
4K Byte Packets, Checksum On

�4K Byte Packets, Checksum Off

Figure 3: UDP Send Side Speedup

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

200

400
�

600
�

800

1000

1200

1K Byte Packets, Checksum On
1K Byte Packets, Checksum Off
4K Byte Packets, Checksum On
4K Byte Packets, Checksum Off

�

Figure 4: UDP Receive Side Throughputs

R
el

at
iv

e
Sp

ee
du

p

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

1

2
�

3
	

4
�

5

6
�

7
�

8

1K Byte Packets, Checksum On
1K Byte Packets, Checksum Off
4K Byte Packets, Checksum On
4K Byte Packets, Checksum Off

�

Figure 5: UDP Receive Side Speedup

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2 3

	
4 5

6

�
7

�
8

0

�

100

200

300
	

400

1K Byte Packets, Checksum On
1K Byte Packets, Checksum Off
4K Byte Packets, Checksum On

�4K Byte Packets, Checksum Off

Figure 6: TCP Send Side Throughputs

R
el

at
iv

e
Sp

ee
du

p
Processors

�1 2 3
	

4 5

6
�

7
�

8

1

2
�

3
	

4
�

5

6
�

7
�

8

TCP1 1K Byte Packets, Checksum On
�TCP1 1K Byte Packets, Checksum Off
�TCP1 4K Byte Packets, Checksum On
�TCP1 4K Byte Packets, Checksum Off

Figure 7: TCP Send Side Speedup

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

100

200

300
	

400

1K Byte Packets, Checksum On
1K Byte Packets, Checksum Off
4K Byte Packets, Checksum On
4K Byte Packets, Checksum Off

�

Figure 8: TCP Receive Side Throughputs

R
el

at
iv

e
Sp

ee
du

p

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

1

2
�

3
	

4
�

5

6
�

7
�

8

1K Byte Packets, Checksum On
1K Byte Packets, Checksum Off
4K Byte Packets, Checksum On
4K Byte Packets, Checksum Off

�

Figure 9: TCP Receive Side Speedup

In our experiments each processor has a single thread
which� is wired to that processor, similar to the method used
by Bjorkman and Gunningberg. To see if wiring impacted
our results, we ran several experiments without wiring
threads to processors with TCP and UDP, send and receive
side, with and without checksumming. The only change
we observed was a small (approximately ten percent) dif-
ference on the send side for UDP above 4 processors. IRIX
5.2 schedules for cache affinity, and so we conclude that
wiring has little perturbation of our experiments.

3.1 Sendand ReceiveSideProcessing

Figure 2 shows UDP send-side throughput, for a single
UDP connection, in Megabits per second, measured on
our 8-processor Challenge machine. Figure 3 shows rel-
ative speedup for the send side in UDP, where speedup is
normalized relative to the uniprocessor throughput for that
particular packet size. Figures 4 and 5 show UDP receive-
side throughput and speedup, respectively. For these and all
subsequent graphs, each data point is the average of 10 runs,
where a run consists of measuring the steady-state through-
put for 30 seconds, after an initial 30 second warmup pe-
riod. In addition, we isolated our Challenge multiprocessor
as much as possible by running experiments with no other
user activity. All non-essential daemons were removed,
and the machine did not mount or export any remote file
systems. To check variance, we ran one 8-processor test
400 times, and observed that the data fit a normal bell-
curve distribution. Throughput graphs include 90 percent
confidence intervals.

The figures show that, as Bjorkman and Gunningberg dis-
covered [5], UDP send-side performance scales well with
larger numbers of processors. In our discussion, scalability
means the first derivative of speedup as the last processor
is added to the experiment. Note that a test can demon-
strate high speedup to a point but exhibit poor scalability.
We observe that send and receive side processing scale
differently, but we do not wish to claim any inherent dif-
ference between their relative scalability. This is because
our send-side experiments explicitly yield the processor on
every packet, but the the receive side relies on the operating
system to preempt the thread. This is partially a historical
artifact of our implementation, and we plan a more detailed
comparison between the two in the future.

One major difference between the send and receive paths
is that a protocol’s receive processing must demultiplex
incoming packets to the appropriate upper layer protocol.
At first, we thought that the locks used in the map man-
ager for demultiplexing might be creating a bottleneck, but
running the test without locking the maps yielded a small
(approximately 10 percent) improvement in throughput.

The TCP throughput and speedup results, again for a
single connection, are given in Figures 6-9 respectively.
The TCP numbers here are from our baseline TCP, TCP-
1, further described in section 5.1. Our results show that

TCP does not scale nearly as well as UDP, in either the
send or receive case. Locking state is the culprit here.
For example, profiling with Pixie [29] shows that in an 8-
processor receive-side test, 90 percent of the time is spent
waiting to acquire the TCP connection state lock; on the
send side, the amount is 85 percent.

Several unusual points warrant mentioning. Figure 6
shows that send-side throughput appears to level off at
around 215 megabits/sec. Figure 8 shows that receive-
side throughput levels off above 350 megabits/sec, but
then drops off suddenly afterwards. This dip is caused
by the combination of TCP packets being misordered when
threads contend for the connection state lock, and the dif-
ference in processing times for in-order versus out-of-order
packets in TCP. Section 4.1 discusses how this problem was
discovered, as well as the solution.

3.2 Checksummingand PacketSize

As mentioned earlier, we were interested in how check-
summing and packet size influence the performance of
parallel protocols. Our expectations were that relative
speedup would be greater when processing larger packets
with checksumming, since checksumming occurs outside
of locked regions and thus constant per-packet costs would
constitute a smaller fraction of the processing time [17].
Figures 3, 5, 7, and 9 show that, in general, tests with larger
packets have better speedup than those with smaller ones,
and experiments for a particular packet size with checksum-
ming have better speedup than those without, although the
differences are not as pronounced as we had expected. The
trends agree somewhat with those shown in [11], which
showed better speedup with larger data units. However,
their tests included presentation-layer conversion, which is
much more compute-bound and data-intensive than check-
summing.

Although the SGI documentation gives the aggregate bus
bandwidth as 1.2 gigabytes/sec, we wished to see the read
bandwidth limitations imposed by checksumming. To this
end, we ran a micro-benchmark that checksummed over a
large amount of data, to force cache misses. We observed
that each processor could checksum at a rate of 32 MB/sec,
or 256 megabits/sec, at least up to 8 processors. Assuming
the bandwidth does not degrade as processors are added,
this implies that the bus could support up to 38 processors
doing nothing but checksumming.

4 Ordering Issues

4.1 Ordering Issuesin TCP

Recall that in Figure 8, receive-side TCP throughput falls
drastically beyond 4 or 5 processors. Further investigation
showed large numbers of out-of-order arrivals at the TCP
layer, a surprising result since data was being generated

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

50

100

150

200
�

250

300
	

350
	

400
�

450
�

TCP-1 Mutex Locks
�TCP-1 MCS Locks
�TCP-1 Assumed In-Order

Figure 10: Ordering Effects in TCP

in-order by the simulated TCP sender. As the TCP header
prediction algorithm is dependent on the arrival of in-order
packets, we hypothesized that out-of-order arrivals were
reducing performance. To test this hypothesis, we ran a
test using a version of TCP modified to treat every packet
as if it were in-order. The result was the disappearance of
the anomaly. The question then became how to bridge the
gap between the observed behavior and the forced in-order
experiment.

The Pixie results showed high contention for the con-
nection state lock, and since the raw mutex locks provided
by IRIX are not FIFO, this suggested that lock contention
was causing threads, and thus packets, to be reordered.
To preserve the original ordering, we implemented FIFO
queueing using the MCS locks by Mellor-Crummey and
Scott [22]. Their locking algorithm requires atomic swap
and compare-and-swap functions, which we implemented
using short R4000 assembler routines.

Figure 10 illustrates the effects, using 4 KB packets with
checksumming on. The top curve in the figure is from the
modified TCP where packets are assumed to be in order,
a potential upper bound. The bottom curve is the baseline
TCP-1 implementation using regular mutex locks for the
connection state. The middle curve is TCP-1 using MCS
locks. We see that using these locks bridges the majority of
the gap between the baseline case and the “upper bound.”
In the case with checksumming off (not shown), there is no
statistically discernible difference between the performance
of the “upper bound” TCP and TCP with MCS locks. Clos-
ing the remainder of the gap with checksumming is not
trivial. For example, we tried a receive-side test where

map lookups were serialized by MCS locks, and observed
a slight reduction in throughput. Since MCS locks have
a greater fixed-overhead cost without contention than the
straight mutex locks (1.5 usec vs. 0.7 usec), we did not wish
to simply replace all mutex locks in the system with MCS
locks. However, as observed above, in the right scenario
they can create an enormous performance win.

Processors 1 2 3 4 5 6 7 8
Mutex Locks 00 02 04 05 11 25 42 54
MCS Locks 00 02 04 06 09 11 14 18

Table 1. Percentage of packets out-of-order.

Table 1 also shows the impact of using FIFO locks. The
table gives the percentage of packets received out-of-order
in TCP with mutex locks and MCS locks, for a receive-
side test using 4KB packets with checksumming. The ta-
ble shows a large difference in the number of out-of-order
packets between the two locking schemes as the number of
processors increases.

An interesting side issue is the misordering that can occur
on the send side when threads pass each other below TCP
but before reaching the FDDI driver. This would cause
packets to be placed out-of-order on the wire, and probably
arrive out-of-order at the receiver. To quantify this potential
problem, we measured the percentage of out-of-order pack-
ets in the send-side driver, and observed that fewer than one
percent were misordered with up to eight processors.

4.2 Ordering and Correctness

We note that preserving order is a semantic correctness
issue. If an application uses TCP and cannot cope with out-
of-order delivery, packet order must also be preservedabove
TCP. When parallelism is introduced, an arriving packet
cannot simply release the TCP connection state lock and
continue; the moment the lock is relinquished,guarantees of
ordered data above TCP are lost. Similarly, on the send side,
the order of the data the application passes to TCP must be
preserved, lest the order TCP preserves is different from the
one the application observed. For some applications, this is
not a problem. For example, NFS does not assume ordered
packets, and can be configured to use TCP. In most cases,
however, the application requires order to be preserved.

To examine this issue, we implemented a ticketing
scheme similar to a bakery algorithm. Before releasing
the TCP connection state lock, a receiving thread acquires
an up-ticket for the next higher layer. The thread then re-
leases the connection state lock, and continues up the stack.
In the test application above TCP, at the point where the
application requires order, the thread can then wait for its
ticket to be called. The amount of mechanism required
to implement this feature is not large, but restricts order,
further limiting performance. Figure 11 shows a receive
side TCP throughput test using 4KB packets, comparing an
application that requires order preservation versus one that

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

50

100

150

200
�

250

300
	

350
	

400
�

450
�

Checksum On, With Ticketing
�Checksum Off, With Ticketing
�Checksum On, No Ticketing
�Checksum Off, No Ticketing
�

Figure 11: Ticketing Effects in TCP

does not. In this example, the application is our test code,
which simply counts packets that arrive. The application’s
critical section itself is small, a lock-increment-unlock se-
quence; the performance is lost preserving the order.

We are not the first to observe this problem [11, 13], but
to our knowledge, previous work has not provided adequate
solutions. For example, in [11], Goldberg et. al. use a tick-
eting scheme similar to ours, but assign tickets to packets
at the driver for use in re-ordering at the application. How-
ever, this assumes a one-to-one correspondence between
arriving packets and application data units. It does not
address issues such as corrupted packets that are dropped,
fragmented packets that are reassembled, or packets that
are not data at all, such as acknowledgements.

The more general problem is to provide a mechanism
that is correct in a general fashion, across several proto-
col layers. The solution we describe above only solves
the problem when there is a one-to-one correspondence be-
tween a TCP connection and the application’s notion of a
connection. This is the case in the example of TCP and BSD
sockets. However, if a TCP connection was multiplexed by
several other higher-layer protocols, each message must be
“re-ticketed” at each multiplexing or demultiplexing point � .
A general solution that meshes with the x-kernel’s infras-
tructure is an issue still under study.

4.3 Multiple Connections

Given the performance penalty exacted for maintaining or-
der, and the single-connection performance limits in TCP,

�
Thanks to Mats Bjorkman for pointing this out.

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

100

200
�

300
	

400

500

600
�

700
�

Send-side, Checksum On
�Send-side, Checksum Off
�Recv-side, Checksum On
Recv-side, Checksum Off

�

Figure 12: TCP with Multiple Connections

we argue that if parallel applications are to reap the benefits
of parallelized networking, they should perform their own
ordering. Using either a connectionless protocol such as
UDP or a connection-oriented protocol such as TCP with
multiple connections, an application must be able to handle
out-of order delivery. Lindgren et. al. [21] make a related
argument that the parallel application must be tied closely
to the parallel communication system.

To illustrate the benefits of using multiple connections,
we ran send-side and receive-side experiments of TCP-1
with MCS locks, without ticketing, using 4KB packets with
and without checksumming. In these tests, each processor
was responsible for a separate connection. For example,
the eight processor experiment examines throughput for
eight connections. The simulated drivers were modified
slightly to support multiple connections for these tests. The
results are shown in Figure 12. The graph shows steadily
increasing throughput as connections (and their associated
processors) are added. This test is somewhat “idealized” in
that the distribution of traffic acrossconnections is relatively
uniform. However, the point of the experiment is to show
that the connection state lock is the major bottleneck for a
single connection, and that it may be overcome by using
multiple connections.

5 Locking Issues

5.1 Locking Granularity in TCP

Recall that TCP maintains a relatively large amount of state
per connection. A question we wished to address was how

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

100

200
�

300
	

400
�

TCP-6 1KB Packets
�TCP-2 1KB Packets
TCP-1 1KB Packets
TCP-6 4KB Packets

�TCP-2 4KB Packets
TCP-1 4KB Packets

�

Figure 13: TCP Send-Side Locking Comparison

that state should be locked in order to maximize perfor-
mance and speedup. Towards this end, we produced three
versions of our TCP, each with a different number of locks.
For illustrative purposes, we call them TCP-N, where N
indicates the number of locks involving connection state.
The first version, the baseline given in Section 3, is TCP-
1, which uses only a single lock to protect all connection
information. The second version, TCP-2, uses two locks
per connection: one to protect send-side state, and the other
to protect receive-side state. The last version, TCP-6, uses
the locking style from the SICS MP TCP, with six locks
serializing access to various components of the connection
state.

More specifically, TCP-6 has separate locks to protect the
receive-side reassembly queue, the send-side retransmis-
sion buffer, the header prepend operation, header remove
operation, send side window state, and receive side win-
dow state. In most cases, this locking is either redundant
or unnecessary. For example, header manipulation occurs
solely on the stack of the calling thread; thus, no locking is
necessary. Similarly, the send and receive queues need to
be locked at the same time as the send and receive window
state, which is redundant.

Another concern we had with the SICS TCP implementa-
tion was that locks were being held where checksum calcu-
lation would have been done, on both incoming and outgo-
ing packets. � In the x-kernel, this occurs where headers are
prepended or removed, respectively, and the TCP-6 code
is consistent with their implementation. However, we saw

�
We note that Bjorkman and Gunningberg reported results for TCP

without checksumming.

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

100

200
�

300
	

400
�

TCP-6 1KB Packets
�TCP-2 1KB Packets
TCP-1 1KB Packets
TCP-6 4KB Packets

�TCP-2 4KB Packets
TCP-1 4KB Packets

�

Figure 14: TCP Receive-Side Locking Comparison

that locking was not necessary here, and our two other TCP
implementations reflect this. The key realization is that
checksumming a packet is orthogonal to manipulating con-
nection state. The only change needed was, in the case of
the outbound processing in tcp output, the checksum
calculation had to be moved so that it was done outside
the scope of the send window lock. This did not affect
correctness, however.

The results for the three TCP implementations are given
in Figures 13 and 14, which plot send and receive side
throughput respectively with checksumming. The three
TCP’s measured here are based on the baseline version de-
scribed in Section 3 with the addition of MCS locks. The
goal here is simply to compare locking strategies. TCP-
1 and TCP-2 both outperform TCP-6, particularly when
checksumming is enabled. With checksumming off, the
gaps are smaller, but the relative ordering between the three
TCP’s is the same. In all cases, send and receive side,
with and without checksumming, the code with the sim-
plest locking, TCP-1, performed the best. We also observed
this behavior when the three TCP’s did not include MCS
locks. In retrospect, we can see how the single-lock version
would perform the best, since the Net/2 TCP implementa-
tion manipulates send-side state on the receive path, and
receive-side state on the send path. For example, in the
TCP header prediction code (intended to be common-case
processing), both the send and receive state locks must be
acquired.

Another attractive feature of using a single lock is its
simplicity. Implementation is easier, deadlock is easier to
avoid, and atomicity of changes to protocol state is easier

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

100

200
�

300
	

400
�

Send-side, No Atomic Ops
�Send-side, Atomic Ops
�Recv-side, No Atomic Ops
Recv-side, Atomic Ops

�

Figure 15: TCP Atomic Operations Impact

to guarantee.
We note that this result is specific to the BSD implemen-

tation, and that a TCP implementation designed around
separating send and receive side processing may well yield
better speedup with multiple locks. However, due to the
widespread use of the BSD code, using the Net/2 example
is applicable to many operating systems.

5.2 Atomic Incrementand Decrement

Another locking issue we examined was using atomic incre-
ment and decrement functions that exploited the R4000’s
load-linked (LL) and store-conditional (SC) instructions.
LL and SC allow programmers to produce lock free prim-
itives [12]. A simple example of this is atomic increment,
which replaces a lock-increment-unlock sequence.

We tried this for two reasons. First, the x-kernel’s mes-
sage tool relies on the notion that reference counts are atom-
ically manipulated, and so the primitives map perfectly with
the existing code. Thus, the primitives benefit the message
tool, and subsequently all protocols that use it. Second, the
x-kernel uses reference counts on session and protocol state
in order to know when objects can be freed. When a packet
is demultiplexed, these reference counts are incremented
on the way up the stack and then decremented on the way
down. This means that two locks are acquired and released
per-layer, on the fast path of data transfer. Thus, atomic
primitives again potentially benefit the entire protocol stack.

Replacing a lock-increment-unlock sequence with
atomic increment pays off in two ways. First, a layer of
procedure call is removed, which can affect performance

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

100

200
�

300
	

400
�

Send-side, Messages Not Cached
�Send-side, Messages Cached
�Recv-side, Messages Not Cached
Recv-side, Messages Cached

�

Figure 16: TCP Message Caching Impact

on the fast path. Second, in the best case, it reduces mem-
ory traffic by replacing three writes with a single one. We
implemented these primitives with short R4000 assembler
routines. Sample results are given in Figure 15, which
shows the effects of atomic primitives on TCP throughputs
with 4KB packets and checksumming on. Both TCP and
UDP see improvements with the atomic primitives. The
UDP receive-side obtains a larger benefit than the send side
from atomic increments, due to the reference count manip-
ulation that happens during demultiplexing. The benefits to
the TCP send and receive sides were approximately equal,
as the majority of the improvement is due to a more efficient
message tool.

6 Per-ProcessorResourceCaching

As mentioned earlier, x-kernel protocols make heavy use of
the message tool to manipulate packets. Since caching has
been shown to be effective in data structure manipulations
[2, 7], we decided to evaluate the use of simple per-thread
resource caches in the message tool. Whenever a thread
requires a new MNode (the message tool’s internal data
representation), it first checks a local cache, which can be
done without locking. The cache is managed last-in first-out
(LIFO) to maximize cache affinity. This avoids contention
in two ways: first, the lock in malloc serializing mem-
ory allocation is avoided, reducing locking contention, and
possible system calls (e.g., sbrk). Second, memory freed
by a processor is re-used by that processor, avoiding mem-
ory contention. Figure 16 gives a sample of the results,
displaying TCP throughputs with 4 KB packets with check-

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

0

�

100

200
�

300
	

400
�

500

R3000 MP (33MHz), Checksum On
�R3000 MP (33MHz), Checksum Off
�R4400 MP (100MHz), Checksum On
�R4400 MP (100MHz), Checksum Off
�R4400 MP (150MHz), Checksum On
�R4400 MP (150MHz), Checksum Off
�

Figure 17: TCP Throughputs across Architectures

summing. The improvement in TCP is significant, due to its
heavy use of the message tool. The results are also positive
for UDP send and receive side.

7 Ar chitectural Trends

Of the experiments given in Section 3 that coincide with
those given by Bjorkman and Gunningberg on the Sequent,
we observed similar trends but relatively lower speedups.
Drawing conclusions based on comparing speedups be-
tween two largely different architectures would most likely
be inappropriate. Still, we were curious as to the differ-
ences that hardware made, since the Sequent used in their
experiments was an older machine. Although we could not
compare our results with theirs directly, we thought it would
be illustrative to run our code on older hardware. To this
end, we ran the same experiments on a Power Series, the
previous generation Silicon Graphics multiprocessor, with
four 33 MHz MIPS R3000’s. We also ran our experiments
on a faster version of our machine, a four-processor Chal-
lenge using 150 MHz R4400’s. In all cases, the machines
ran version 5.2 of the IRIX operating system. In these ad-
ditional tests, we did not have exclusive access to the other
machines, and so were not able to isolate them as carefully
as with our Challenge experiments. However, we did run
all our tests with minimal other activity on the systems, and
the width of the confidence intervals on these graphs show
that variance is low.

Examples of the architectural comparisons are given in
Figures 17 and 18, which show receive-side throughput and
speedup respectively for TCP on the three platforms. Space

Sp
ee

du
p

Processors
�1 2

�
3

	
4

�
5

6

�
7

�
8

1

2

3
	

4
�

5

6
�

7
�

8

R3000 MP (33Mhz), Checksum On
�R3000 MP (33Mhz), Checksum Off
�R4400 MP (100Mhz), Checksum On
�R4400 MP (100Mhz), Checksum Off
�R4400 MP (150Mhz), Checksum On
�R4400 MP (150Mhz), Checksum Off
�

Figure 18: TCP Speedups across Architectures

constraints prevent us from showing all of our data, but in
general, our findings were consistent across platforms. We
do not wish to draw broad conclusions, especially from
machines with only four processors, but we can summarize
our observations:

� On all platforms, TCP-1 outperformed TCP-2 and
TCP-6.

� On all platforms, UDP send-side scaled well, and TCP
scaled poorly.

� On all platforms, the fastest machine had the highest
throughput for a particular test.

� Speedup was consistently best on the Power Series
(the oldest machine) and about the same on the two
Challenge platforms.

� The two Challenge machines exhibited the receive-
side drop in throughput at 2 processors, but the Power
Series did not. In particular, UDP receive-side perfor-
mance scales on the Power Series as far as could be
observed, namely up to four processors.

The last item is perhaps the most interesting. Without
more detailed information, we cannot assert any explana-
tions for the behavior. We do note though, that the Power
Series performs locking using a separate dedicated synchro-
nization bus, similar to the Sequent. The Challenge, how-
ever, uses memory to synchronize, relying on the coherency
protocol and the load-linked/store-conditional instructions
[9]. Given that Bjorkman and Gunningberg did not observe

the receive-side drop for their UDP receive side tests on the
Sequent,� we suspect that the difference in synchronization
may be the cause of the anomaly. We are pursuing further
studies along these dimensions.

Finally, the 100 MHz Challenge uniprocessor through-
puts are roughly 25 to 50 percent better than those of the
33MHz Power Series. This is surprising, given that the
former has a three times faster clock cycle, on-chip caches,
and larger secondary caches. This is only one architectural
comparison, with different generations of both the MIPS
architecture and multiprocessor interconnects. Still, it sug-
gests that network protocol processing speed may not be
improving as fast as application performance, which agrees
with the operating system trends shown in [3, 24]. We plan
to investigate this further.

8 Conclusionsand Futur eWork

We briefly summarize our findings as follows:

� Preserving order pays. We showed that, in cases
wherecontention for locks perturbs order, simple FIFO
queueing locks preserve this order, which improves
performance.

� Single-connection TCP parallelism is limited, both on
the receive side, and on the send side, even more so
than shown by Bjorkman and Gunningberg.

� Multiple-connection TCP parallelism can scale, since
contention for the connection state lock is avoided.
However, the application must manage order across
connections.

� Exploiting cache affinity, and avoiding contention, is
crucial. This is demonstrated by the effectiveness of
per-processor resource caching. Contemporary ma-
chines are memory-bound, due to the disparity be-
tween CPU and memory speeds, and the gap is only
expected to grow.

� Simpler locking is better. We showed that, on a mod-
ern machine, locking structure impacts performance,
and that a complex protocol with large connection state
yields better speedup with a single lock than with mul-
tiple locks.

� Atomic primitives can make a big difference. Re-
placing sequences of lock-increment-unlock with an
atomic increment improved receive-side TCP and
UDP performance by about 20 percent on average,
and send-side between 5 and 10 percent.

� Checksumming has some influence on speedup. This
was demonstrated by the differences in relative
speedup between experiments with and without check-
summing.

These results indicate that packet-level parallelism is es-
pecially beneficial for connectionless protocols, but that
connection-oriented protocols will have limited benefits in
speedup within a single connection. Applications will need
to use multiple connections to obtain parallel performance
with connection-oriented protocols, which means they must
manage order between connections. Due to time and space
constraints, we have only been able to briefly address mul-
tiple connections in this paper. We plan to examine issues
involving multiple connections more in-depth, and to ex-
amine another strategy of parallelizing protocols involving
connection-level parallelism.

Acknowledgements

We are indebted to Larry Peterson and the x-kernel group
at the University of Arizona for extending their help and
hospitality, and allowing us to use their Power Series ma-
chine. Ed Menze and Hilarie Orman answered countless
questions. Lawrence Brakmo assisted our understanding
of TCP in general. Mats Bjorkman, Franklin Reynolds,
and Franco Travostino discussed ordering issues with us.
Special thanks to Mats Bjorkman for providing us with his
original parallel TCP code, helping us with understanding
it, and engaging in lively discussion. Thanks to David
Oliver at the Center for Geometry Analysis Numerics and
Graphics at the University of Massachusetts for letting us
use their 150 MHz Challenge machine.

Many people contributed comments that improved the
form and content of this paper, including Mats Bjorkman,
Neal Nuckolls, and the anonymous reviewers.

References

[1] Brian Allison. DEC 7000/10000 Model 600 AXP multi-
processor server. In Proceedings IEEE COMPCON, pages
456–464, San Francisco CA, February 1993.

[2] Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. The performance implications of thread manage-
ment alternatives for shared-memory multiprocessors. IEEE
Transactions on Computers, 38(12):1631–1644, December
1989.

[3] Thomas E. Anderson, Henry M. Levy,Brian N. Bershad, and
Edward D. Lazowska. The interaction of architecture and
operating system design. In Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 108–120, 1991.

[4] Mats Björkman. The xx-Kernel: an execution environment
for parallel execution of communication protocols. Dept. of
Computer Science, Uppsala University, June 1993.

[5] Mats Björkman and Per Gunningberg. Locking effects in
multiprocessor implementations of protocols. In ACM SIG-
COMM Symposium on Communications Architectures and
Protocols, pages 74–83, San Francisco, CA, September
1993.

[6] Dave Borman. NTCP: A proposal for the next generation
of TCP and UDP. In Submission to the End2End-Interest
mailing list, pages 1–37, Eagan, MN, 1993. Cray Research.
End2End archives available via FTP at ftp.isi.edu.

[7] Peter Druschel and Larry L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In Proceedings
of the Fourteenth ACM Symposium on Operating Systems
Principles, pages 189–202, Asheville, NC, Dec 1993.

[8] Michel Cekleov et. al. SPARCCenter 2000:Multiprocessing
for the 90’s! In Proceedings IEEE COMPCON, pages 345–
353, San Francisco CA, February 1993.

[9] Mile Galles and Eric Williams. Performance optimizations,
implementation, and verification of the SGI Challenge multi-
processor. Technical report, Silicon Graphics Inc., Mt. View,
CA, May 1994.

[10] Dario Giarrizzo, Matthias Kaiserswerth, Thomas Wicki, and
Robin C. Williamson. High-speed parallel protocol imple-
mentation. First IFIP WG6.1/WG6.4 International Work-
shop on Protocols for High-Speed Networks, pages 165–180,
May 1989.

[11] Murray W. Goldberg, Gerald W. Neufeld, and Mabo R. Ito.
A parallel approach to OSI connection-oriented protocols.
Third IFIP WG6.1/WG6.4 International Workshop on Pro-
tocols for High-Speed Networks, pages 219–232, May 1993.

[12] Maurice Herlihy. A methodology for implementing highly
concurrent data objects. ACM Transactions on Programming
Languages and Systems, 15(5):6–16, November 1993.

[13] Norman C. Hutchinson. Protocols versus parallelism. In Pro-
ceedings from the x-Kernel Workshop, Tucson, AZ, Novem-
ber 1992. University of Arizona.

[14] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel:
An architecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1):64–76, Jan-
uary 1991.

[15] Van Jacobson. Efficient protocol implementation. In ACM
SIGCOMM 1990 Tutorial Notes, Philadelphia, PA, Septem-
ber 1990.

[16] Van Jacobson, Robert Braden, and Dave Borman. TCP
extensions for high performance. In Network Information
Center RFC 1323, pages 1–37, Menlo Park, CA, May 1992.
SRI International.

[17] Jonathan Kay and Joseph Pasquale. The importance of
non-data touching processing overheads in TCP/IP. In SIG-
COMM Symposium on Communications Architectures and
Protocols, pages 259–269, San Francisco, CA, September
1993. ACM.

[18] Jonathan Kay and Joseph Pasquale. Measurement, analysis,
and improvement of UDP/IP throughput for the DECStation
5000. In USENIX Winter 1993 Technical Conference, pages
249–258, San Diego, CA, 1993.

[19] Odysseas G. Koufopavlou and Martina Zitterbart. Parallel
TCP for high performance communication subsystems. In
Proceedings of the IEEE Global Telecommunications Con-
ference (GLOBECOM), pages 1395–1399, 1992.

[20] Samuel J. Leffler, Marshall Kirk McKusick, Michael J.
Karels, and John S. Quarterman. The Design and Imple-
mentation of the 4.3BSD UNIX Operating System. Addison
Wesley, Reading, Massachusetts, 1989.

[21] Bert Lindgren, Bobby Krupczak, Mostafa Ammar, and
Karsten Schwan. An architecture and toolkit for parallel
and configurable protocols. In Proceedings of the Interna-
tional Conferenceon Network Protocols, San Francisco, CA,
October 1993.

[22] John M. Mellor-Crummey and Michael L. Scott. Algorithms
for scalable synchronization on shared-memory multiproces-
sors. ACM Transactions on Computer Systems, 9(1):21–65,
February 1991.

[23] Arun N. Netravali, W. D. Roome, and K. Sabnani. De-
sign and implementation of a high-speed transport protocol.
IEEE Transactions on Communications, 38(11):2010–2024,
November 1990.

[24] John Ousterhout. Why aren’t operating systems getting faster
as fast as hardware? In Proceedings of the Summer USENIX
Conference, pages 247–256, June 1990.

[25] Tom F. La Porta and Mischa Schwartz. A high-speed pro-
tocol parallel implementation: Design and analysis. Fourth
IFIP TC6.1/WG6.4 International Conference on High Per-
formance Networking, pages 135–150, December 1992.

[26] David Presotto. Multiprocessor streams for Plan 9. In
UKUUG, January 1993.

[27] Sunil Saxena, J. Kent Peacock, Fred Yang, Vijaya Verma,
and Mohan Krishnan. Pitfalls in multithreading SVR4
STREAMS and other weightless processes. In Winter 1993
USENIX Technical Conference, pages 85–96, San Diego,
CA, January 1993.

[28] Douglas C. Schmidt and Tatsuya Suda. Measuring the impact
of alternative parallel process architectures on communica-
tion subsystem performance. Fourth IFIP WG6.1/WG6.4
International Workshop on Protocols for High-Speed Net-
works, August 1994.

[29] Michael D. Smith. Tracing with Pixie. Technical report,
Center for Integrated Systems, Stanford University, Stan-
ford, CA, April 1991.

[30] Robert Ullman. TP/IX: The next internet. In Network Infor-
mation Center RFC 1475, Menlo Park, CA, June 1993. SRI
International.

[31] George Varghese and Tony Lauck. Hashed and hierarchical
timing wheels: Data structures for the efficient implementa-
tion of a timer facility. In The Proceedings of the 11th Sym-
posium on Operating System Principles, November 1987.

