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Abstract—This paper introduces several novel load balancing
algorithms for distributing Session Initiation Protocol (SIP)
requests to a cluster of SIP servers. Our load balancer improves
both throughput and response time versus a single node, while
exposing a single interface to external clients. We present the
design, implementation and evaluation of our system using a
cluster of Intel x86 machines running Linux. We compare our
algorithms with several well-known approaches and present
scalability results for up to 10 nodes. Our best algorithm,
Transaction Least-Work-Left (TLWL), achieves its performance
by integrating several features: knowledge of the SIP proto-
col; dynamic estimates of back-end server load; distinguishing
transactions from calls; recognizing variability in call length;
and exploiting differences in processing costs for different SIP
transactions. By combining these features, our algorithm provides
finer-grained load balancing than standard approaches, resulting
in throughput improvements of up to 24 percent and response
time improvements of up to two orders of magnitude. We present
a detailed analysis of occupancy to show how our algorithms
significantly reduce response time.

I. INTRODUCTION

The Session Initiation Protocol (SIP) is a general-purpose
signaling protocol used to control various types of media
sessions. SIP is a protocol of growing importance, with uses in
Voice over IP, Instant Messaging, IPTV, Voice Conferencing,
and Video Conferencing. Wireless providers are standardizing
on SIP as the basis for the IP Multimedia System (IMS)
standard for the Third Generation Partnership Project (3GPP).
Third-party VoIP providers use SIP (e.g., Vonage, Gizmo),
as do digital voice offerings from existing legacy Telcos
(e.g., AT&T, Verizon) as well as their cable competitors (e.g.,
Comcast, Time-Warner).

While individual servers may be able to support hundreds
or even thousands of users, large-scale ISPs need to support
customers in the millions. A central component to providing
any large-scale service is the ability to scale that service with
increasing load and customer demands. A frequent mechanism
to scale a service is to use some form of a load-balancing
dispatcher that distributes requests across a cluster of servers.
However, almost all research in this space has been in the
context of either the Web (e.g., HTTP [24]) or file service (e.g.,
NFS [1]). This paper presents and evaluates several algorithms
for balancing load across multiple SIP servers. We introduce
new algorithms which outperform existing ones. Our work is
relevant not just to SIP but also for other systems where it
is advantageous for the load balancer to maintain sessions in
which requests corresponding to the same session are sent by
the load balancer to the same server.

SIP has a number of features which distinguish it from

protocols such as HTTP. SIP is a transaction-based protocol
designed to establish and tear down media sessions, frequently
referred to as calls. Two types of state exist in SIP. The first,
session state, is created by the INVITE transaction and is
destroyed by the BYE transaction. Each SIP transaction also
creates state that exists for the duration of that transaction. SIP
thus has overheads that are associated both with sessions and
with transactions, and taking advantage of this fact can result
in more optimized SIP load balancing.

The session-oriented nature of SIP has important implica-
tions for load balancing. Transactions corresponding to the
same call must be routed to the same server; otherwise,
the server will not recognize the call. Session-aware request
assignment (SARA) is the process where a system assigns
requests to servers such that sessions are properly recognized
by that server, and subsequent requests corresponding to that
same session are assigned to the same server. In contrast,
sessions are less significant in HTTP. While SARA can be
done in HTTP for performance reasons (e.g., routing SSL
sessions to the same back end to encourage session reuse and
minimize key exchange), it is not necessary for correctness.
Many HTTP load balancers do not take sessions into account
in making load balancing decisions.

Another key aspect of the SIP protocol is that different
transaction types, most notably the INVITE and BYE trans-
actions, can incur significantly different overheads: On our
systems, INVITE transactions are about 75 percent more
expensive than BYE transactions. A load balancer can make
use of this information to make better load balancing decisions
which improve both response time and throughput. Our work
is the first to demonstrate how load balancing can be improved
by combining SARA with estimates of relative overhead for
different requests.

This paper introduces and evaluates several novel algorithms
for balancing load across SIP servers. Each algorithm com-
bines knowledge of the SIP protocol, dynamic estimates of
server load, and Session-Aware Request Assignment (SARA).
In addition, the best-performing algorithm takes into account
the variability of call lengths, distinguishing transactions from
calls, and the difference in relative processing costs for differ-
ent SIP transactions.

1) Call-Join-Shortest-Queue (CJSQ) tracks the number of
calls (in this paper, we use the terms call and session
interchangeably) allocated to each back-end server and
routes new SIP calls to the node with the least number
of active calls.

2) Transaction-Join-Shortest-Queue (TJSQ) routes a new



call to the server that has the fewest active transactions,
rather than the fewest calls. This algorithm improves on
CJSQ by recognizing that calls in SIP are composed
of the two transactions, INVITE and BYE, and that
by tracking their completion separately, finer-grained
estimates of server load can be maintained. This leads
to better load balancing, particularly since calls have
variable length and thus do not have a unit cost.

3) Transaction-Least-Work-Left (TLWL) routes a new call
to the server that has the least work, where work (i.e.,
load) is based on relative estimates of transaction costs.
TLWL takes advantage of the observation that INVITE
transactions are more expensive than BYE transactions.
We have found that a 1.75:1 cost ratio between INVITE
and BYE results in the best performance.

We implement these algorithms in software by adding them
to the OpenSER open-source SIP server configured as a load
balancer. Our evaluation is done using the SIPp open-source
workload generator driving traffic through the load balancer
to a cluster of servers running a commercially available SIP
server. The experiments are conducted on a dedicated testbed
of Intel x86-based servers connected via Gigabit Ethernet.

This paper makes the following contributions:

• We show that two of our new algorithms, TLWL and
TJSQ, scale better, provide higher throughputs and ex-
hibit lower response times than any of the other ap-
proaches we tested. The differences in response times are
particularly significant. For low to moderate workloads,
TLWL and TJSQ provide response times for INVITE
transactions that are an order of magnitude lower than
that of any of the other approaches. Under high loads,
the improvement increases to two orders of magnitude.

• We present the design and implementation of a load
balancer for SIP servers, and demonstrate throughput of
up to 5500 calls per second and scalability of up to 10
nodes. Our measurements show that the dispatcher intro-
duces minimal overhead to a SIP request. We extensively
evaluate several approaches for balancing SIP load across
servers including the three novel algorithms described
above as well as standard distribution policies such as
round-robin or hashing based on the SIP Call-ID.

• We present a detailed analysis of why TLWL and TJSQ
provide substantially better response times than the other
algorithms. Occupancy has a significant effect on re-
sponse times, where the occupancy for a transaction T

assigned to a server S is the number of transactions
already being handled by S when T is assigned to it. As
described in detail in Section V, by allocating load more
evenly across nodes, the distributions of occupancy across
the cluster are balanced, resulting in greatly improved
response times. The naive approaches, in contrast, lead
to imbalances in load. These imbalances result in the
distributions of occupancy that exhibit large tails, which
contribute significantly to response time as seen by that
request. To our knowledge, we are the first to observe

this phenomenon experimentally.

These results show that our load balancer can effectively
scale SIP server throughput and provide significantly lower
response times without becoming a bottleneck. The dramatic
response time reductions that we achieve with TLWL and
TJSQ suggest that these algorithms should be adapted for other
applications, particularly when response time is crucial.

We believe these results are general for load balancers,
which should keep track of the number of uncompleted
requests assigned to each server in order to make better load
balancing decisions. If the load balancer can reliably estimate
the relative overhead for requests that it receives, this can
further improve performance.

II. BACKGROUND

This section presents a brief description of SIP. SIP is a
control-plane protocol designed to establish, alter, and termi-
nate media sessions between two or more parties. The core
IETF SIP specification is given in RFC 3261 [26], although
there are many additional RFCs that enhance and refine the
protocol. SIP uses HTTP-like request/response transactions. A
transaction consists of a request to perform a particular method
(e.g., INVITE, BYE, CANCEL, etc.) and at least one response
to that request.

SIP users employ end points known as user agents. These
entities initiate and receive sessions. They can be either hard-
ware (e.g., cell phones, pages, hard VoIP phones) or software
(e.g., media mixers, IM clients, soft phones). User agents are
further decomposed into User Agent Clients (UAC) and User
Agent Servers (UAS), depending on whether they act as a
client in a transaction (UAC) or a server (UAS).

A SIP session is a relationship in SIP between two user
agents that lasts for some time period; in VoIP, a session
corresponds to a phone call. This is called a dialog in SIP and
results in state being maintained on the server for the duration
of the session. For example, an INVITE message not only
creates a transaction (the sequence of messages for completing
the INVITE), but also a dialog if the transaction completes
successfully. A BYE message creates a new transaction and
when the transaction completes, ends the dialog.

III. LOAD BALANCING ALGORITHMS

This section presents the design of our load balancing
algorithms. Due to space limitations, implementation details
are omitted. Figure 1 depicts our overall system. User Agent
Clients send SIP requests (e.g., INVITE, BYE) to our load
balancer which then selects a SIP server to handle each
request. The distinction between the various load balancing
algorithms presented in this paper are how they choose which
SIP server to handle a request. Servers send SIP responses
(e.g., 180 TRYING or 200 OK) to the load balancer which
then forwards the response to the client.

Note that SIP is used to establish, alter, or terminate media
sessions. Once a session has been established, the parties



Fig. 1. System Architecture

participating in the session would typically communicate di-
rectly with each other using a different protocol for the media
transfer which would not go through our SIP load balancer.

A. Novel Algorithms

A key aspect of our load balancer is that requests corre-
sponding to the same call are routed to the same server. The
load balancer has the freedom to pick a server only on the
first request of a call. All subsequent requests corresponding
to the call must go to the same server. This allows all requests
corresponding to the same session to efficiently access state
corresponding to the session.

Our new load balancing algorithms are based on assigning
calls to servers by picking the server with the (estimated) least
amount of work assigned but not yet completed. While the
concept of assigning work to servers with the least amount of
work left to do has been applied in other contexts [13], [27],
the specifics of how to do this efficiently for a real application
are often not at all obvious. The system needs some method
to reliably estimate the amount of work that a server has left
to do at the time load balancing decisions are made.

In our system, the load balancer can estimate the work
assigned to a server based on the requests it has assigned to
the server and the responses it has received from the server.
All responses from servers to clients first go through the
load balancer which forwards the responses to the appropriate
clients. By monitoring these responses, the load balancer can
determine when a server has finished processing a request or
call and update the estimates it is maintaining for the work
assigned to the server.

1) Call-Join-Shortest-Queue: The Call-Join-Shortest-
Queue (CJSQ) algorithm estimates the amount of work a
server has left to do based on the number of calls (sessions)
assigned to the server. Counters are maintained by the load
balancer indicating the number of calls assigned to each
server. When a new INVITE request is received (which
corresponds to a new call), the request is assigned to the
server with the lowest counter, and the counter for the server
is incremented by one. When the load balancer receives a
200 OK response to the BYE corresponding to the call, it
knows that the server has finished processing the call and
decrements the counter for the server.

A limitation of this approach is that the number of calls
assigned to a server is not always an accurate measure of the

load on a server. There may be long idle periods between the
transactions in a call. In addition, different calls may consist of
different numbers of transactions and may consume different
amounts of server resources. An advantage of CJSQ is that
it can be used in environments in which the load balancer is
aware of the calls assigned to servers but does not have an
accurate estimate of the transactions assigned to servers.

2) Transaction-Join-Shortest-Queue: An alternative
method is to estimate server load based on the number
of transactions (requests) assigned to the servers. The
Transaction-Join-Shortest-Queue (TJSQ) algorithm estimates
the amount of work a server has left to do based on the
number of transactions (requests) assigned to the server.
Counters are maintained by the load balancer indicating the
number of transactions assigned to each server. New calls are
assigned to servers with the lowest counter.

A limitation of this approach is that all transactions are
weighted equally. In the SIP protocol, INVITE requests
are more expensive than BYE requests, since the INVITE
transaction state machine is more complex than the one for
non-INVITE transactions (such as BYE). This difference in
processing cost should ideally be taken into account in making
load balancing decisions.

3) Transaction-Least-Work-Left: The Transaction-Least-
Work-Left (TLWL) algorithm addresses this issue by assigning
different weights to different transactions depending on their
relative costs. It is similar to TJSQ with the enhancement that
transactions are weighted by relative overhead; in the special
case that all transactions have the same expected overhead,
TLWL and TJSQ are the same. Counters are maintained by the
load balancer indicating the weighted number of transactions
assigned to each server. New calls are assigned to the server
with the lowest counter. A ratio is defined in terms of relative
cost of INVITE to BYE transactions. We experimented with
several values for this ratio of relative cost. TLWL-2 assumes
INVITE transactions are twice as expensive as BYE trans-
actions and are indicated in our graphs as TLWL-2. We found
the best performing estimate of relative costs was 1.75; these
are indicated in our graphs as TLWL-1.75. Note that if it is
not feasible to determine the relative overheads of different
transaction types, TJSQ can be used which results in almost
as good performance as TLWL-1.75 as will be shown in the
results section.

Thus far, our presentation of the load balancing algorithms
assumes that the servers have similar processing capacities.
However, this may not always be the case. Some servers
may be more powerful than others; other servers may have
substantial background jobs that consume cycles. In these
situations, the load balancer could assign a new call to the
server with the lowest value of estimated work left to do (as
determined by the counters) divided by the capacity of the
server; this applies to CJSQ, TJSQ, and TLWL.

In some cases, though, the load balancer might not know
the capacity of the servers. For these situations, our new al-
gorithms have the robustness to automatically adapt to hetero-
geneous back-end servers with over 60% higher throughputs



than the previous algorithms we tested.
CJSQ, TJSQ, and TLWL are all novel load balancing

algorithms. In addition, we are not aware of any previous
work which has successfully adapted least work left
algorithms for load balancing with SARA.

B. Comparison Algorithms

We also implemented several standard load balancing algo-
rithms for comparison. These algorithms are not novel but are
described for completeness.

1) Hash and FNVHash: The Hash algorithm is a static
approach for assigning calls to servers based on the SIP
Call-ID, which is contained in the header of a SIP message
identifying the call to which the message belongs. A new
INVITE transaction with Call-ID x is assigned to server
(Hash(x)modN), where Hash(x) is a hash function and N

is the number of servers. This is a common approach to SIP
load balancing; both OpenSER and the Nortel Networks Layer
2-7 Gigabit Ethernet Switch module [21] use this approach.
We have used both the original hash function provided by
OpenSER and FNV hash [22].

2) Round Robin: The hash algorithm is not guaranteed to
assign the same number of calls to each server. The Round
Robin (RR) algorithm guarantees a more equal distribution of
calls to servers. If the previous call was assigned to server M ,
the next call is assigned to server (M + 1)modN , where N

is again the number of servers in the cluster.
3) Response-time Weighted Moving Average: Another

method is to make load balancing decisions based on server
response times. The Response-time Weighted Moving Average
(RWMA) algorithm [25] assigns calls to the server with the
lowest weighted moving average response time of the last n

(20 in our implementation) response time samples. The for-
mula for computing the RWMA linearly weights the measure-
ments so that the load balancer is responsive to dynamically
changing loads, but does not overreact if the most recent
response time measurement is highly anomalous. The most
recent sample has a weight of n, the second most recent a
weight of n − 1, and the oldest a weight of one. The load
balancer determines the response time for a request based on
the time when the request is forwarded to the server and the
time the load balancer receives a 200 OK reply from the server
for the request.

IV. EXPERIMENTAL ENVIRONMENT

We describe here the hardware and software that we use,
our experimental methodology, and the metrics we measure.

SIP Software. For client-side workload generation, we
use the the open source SIPp [11] tool, which is the de
facto standard for generating SIP load. SIPp is a configurable
packet generator, extensible via a simple XML configuration
language. It uses an efficient event-driven architecture but
is not fully RFC compliant (e.g., it does not do full packet
parsing). It can thus emulate either a client (UAC) or server

Feature Machine Type A Machine Type B
Quantity 11 3
CPU 3.06 GHz 2.8 GHz
RAM 4 GB 2 GB
Kernel 2.6.9-55.0.6 2.6.9-11
Distro RedHat AS 4.5 RedHat AS 4.5
Roles Back-End Server, Workload

Load Balancer Generation

TABLE I
HARDWARE TESTBED CHARACTERISTICS

(UAS), but at many times the capacity of a standard SIP end-
host. We use the Subversion revision 311 version of SIPp.
For the back-end server, we use a commercially available SIP
server.

Hardware and System Software. We conduct experiments
using two different types of machines, both of which are
IBM x-Series rack-mounted servers. Table I summarizes the
hardware and software configuration for our testbed. Eight of
the servers have two processors; however, for our experiments,
we use only one processor. All machines are interconnected
using a gigabit Ethernet switch.

Workload. The workload we use is SIPp’s simple SIP
UAC call model consisting of an INVITE, which the server
responds to with 100 TRYING, 180 RINGING, and 200
OK responses. The client then sends an ACK request which
creates the session. After a variable pause to model call hold
times, the client closes the session using a BYE which the
server responds to with a 200 OK response. Calls may or
may not have pause times associated with them, intended
to capture the variable call duration of SIP sessions. In our
experiments, pause times are normally distributed with a mean
of one minute and a variance of 30 seconds. While simple, this
is a common configuration used in SIP performance testing.
Currently no standard SIP workload model exists, although
SPEC is attempting to define one [30].

Methodology. Each run lasts for 3 minutes after a warm-up
period of 10 minutes. There is also a ramp-up phase until the
experimental rate is reached. The request rate starts at 1 cps
and increases by x cps every second, where x is the number of
back-end nodes. Thus, if there are 8 servers, after 5 seconds,
the request rate will be 41 cps. If load is evenly distributed,
each node will see an increase in the rate of received calls of
one additional cps until the experimental rate is reached. After
the experimental rate is reached, it is sustained. SIPp is used
in open-loop mode; calls are generated at the configured rate
regardless of whether the other end responds to them.

Metrics. We measure both throughput and response time.
We define throughput as the number of completed requests
per second. The peak throughput is defined as the maximum
throughput which can be sustained while successfully handling
more than 99.99% of all requests. Response time is defined
as the length of time between when a request (INVITE or
BYE) is sent and the successful 200 OK is received.

Component Performance. We have measured the through-
put of a single SIPp node in our system to be 2925 calls
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per second (cps) without pause times and 2098 cps with
pause times. The peak throughput for the back-end SIP server
is about 300 cps in our system; this figure varies slightly
depending on the workload. Surprisingly, the peak throughput
is not affected much by pause times. While we have observed
that some servers can be adversely affected by pause times,
we believe other overheads dominate and obscure this effect
in the server we use.

V. RESULTS

In this section, we present in detail the experimental results
of the load balancing algorithms defined in Section III.

A. Response Time

We observe significant differences in the response times of
the different load balancing algorithms. Figure 2 shows the
average response time for each algorithm versus offered load
measured for the INVITE transaction. Note especially that
the Y axis is in logarithmic scale. In this experiment, the
load balancer distributes requests across 8 back-end SIP server
nodes. Two versions of Transaction-Least-Work-Left are used.
For the curve labeled TLWL-1.75, INVITE transactions are
1.75 times the weight of BYE transactions. In the curve
labeled TLWL-2, the weight is 2:1. The curve labeled Hash
uses the standard OpenSER hash function, whereas the curve
labeled FNVHash uses FNVHash. Round-robin is denoted RR
on the graph.

The algorithms cluster into three groups: TLWL-1.75,
TLWL-2, and TJSQ, which offer the best performance; CJSQ,
Hash, FNVHash, and Round Robin in the middle; and RWMA
which results in the worst performance. The differences in
response times are significant even when the system is not
heavily loaded. For example, at 200 cps, which is less than
10% of peak throughput, the average response time is about
2 ms for the algorithms in the first group, about 15 ms for
algorithms in the middle group, and about 65 ms for RWMA.
These trends continue as the load increases, with TLWL-
1.75, TLWL-2, and TJSQ resulting in response times 5-10
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times smaller than those for algorithms in the middle group.
As the system approaches peak throughput, the performance
advantage of the first group of algorithms increases to two
orders of magnitude.

Similar trends are seen in Figure 3, which shows average
response time for each algorithm vs. offered load for BYE
transactions, again using 8 back-end SIP server nodes. BYE
transactions consume fewer resources than INVITE trans-
actions resulting in lower average response times. TLWL-
1.75, TLWL-2, and TJSQ provide the lowest average response
times. However, the differences in response times for the
various algorithms are smaller than is the case with INVITE
transactions. This is largely because of SARA. The load
balancer has freedom to pick the least loaded server for the first
INVITE transaction of a call. However, a BYE transaction
must be sent to the server which is already handling the call.

The significant improvements in response time that TLWL
and TJSQ provide present a compelling reason for systems
such as these to use our algorithms. Section V-C provides a
detailed analysis of the reasons for the large differences in
response times that we observe.

B. Throughput

We now examine how our load balancing algorithms per-
form in terms of how well throughput scales with increasing
numbers of back-end servers. In the ideal case, we would hope
to see 8 nodes provide 8 times the single-node performance.
Recall that the peak throughput is the maximum throughput
which can be sustained while successfully handling more
than 99.99% of all requests and is approximately 300 cps
for a back-end SIP server node. Therefore, linear scalability
suggests a maximum possible throughput of about 2400 cps for
8 nodes. Figure 4 shows the peak throughputs for the various
algorithms using 8 back-end nodes. Several interesting results
are illustrated in this graph.

TLWL-1.75 achieves linear scalability and results in the
highest peak throughput of 2439 cps. TLWL-2 comes close



 0

 500

 1000

 1500

 2000

 2500

TLWL-1.75TLWL-2TJSQRRFNVHashHashRWMACJSQ

Th
ro

ug
hp

ut
 (c

al
ls

/s
ec

)

1515

1854 1855
1954

2135

2272
2317

2439

Fig. 4. Peak Throughput of Various Algorithms with 8 SIP Servers

to TLWL-1.75, but TLWL-1.75 does better due to its bet-
ter estimate of the cost ratio between INVITE and BYE
transactions. The same three algorithms resulted in the best
response times and peak throughput. However, the differences
in throughput between these algorithms and the other ones are
not as high as the differences in response time.

The standard algorithm used in OpenSER, Hash, achieves
1954 cps. Despite being a static approach with no dynamic
allocation at all, one could consider hashing doing relatively
well at about 80% of TLWL-1.75. Round-robin does somewhat
better at 2135 cps, or 88% percent of TLWL-1.75, illustrating
that even very simple approaches to balancing load across a
cluster are better than none at all.

We did not obtain good performance from Response-time
Weighted Moving Average (RWMA), which resulted in the
second lowest peak throughput and the highest response times.
Response times may not be the most reliable measure of
load on the servers. If the load balancer weights the most
recent response time(s) too heavily, this might not provide
enough information to determine the least loaded server. On
the other hand, if the load balancer gives significant weight
to response times in the past, this makes the algorithm too
slow to respond to changing load conditions. A server having
the lowest weighted average response time might have several
new calls assigned to it resulting in too much load on the
server before the load balancer determines that it is no longer
the least loaded server. In contrast, when a call is assigned to
a server using TLWL-1.75 or TJSQ, the load balancer takes
this information immediately into account when making future
load balancing decisions. Therefore, TLWL-1.75 and TJSQ
would not encounter this problem. While we do not claim that
any RWMA approach does not work well, we were unable to
find one that performed as well as our algorithms.

Calls-Join-Shortest-Queue (CJSQ) is significantly worse
than the others, since it does not distinguish call hold times in
the way that the transaction-based algorithms do. Experiments
we ran that did not include pause times (not shown due to
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space limitations) showed CJSQ providing very good perfor-
mance, comparable to TJSQ. This is perhaps not surprising
since, when there are no pause times, the algorithms are
effectively equivalent. However, the presence of pause times
can lead CJSQ to misjudgments about allocation that end
up being worse than a static allocation such as Hash. TJSQ
does better than most of the other algorithms. This shows that
knowledge of SIP transactions and paying attention to the call
hold time can make a significant difference, particularly in
contrast to CJSQ.

We determined that the load balancer can support up to
about 5400 cps before becoming overloaded. Given that the
peak throughput of the back-end SIP server that we use is
about 300 cps, the prototype should be able to support about
17 servers of this type. The load balancer was not a bottleneck
in any of the experiments described in this paper.

In many deployments, it is not realistic to expect that
all nodes of a cluster have the same server capacity. Some
servers may be more powerful than others. Other servers may
be running background tasks which limit the CPU resources
which can be devoted to SIP. Our new algorithms adapt
to heterogeneous back ends much more effectively than the
prior art ones. Experiments we ran indicate that TLWL-1.75
achieves near optimal throughput when the back ends differ
in processing power by as much as 50% which is over 60%
higher throughput than the prior art algorithms we tested.

C. Occupancy and Response Time

Given the substantial improvements in response time shown
in Section V-A, we believe it is worth explaining in depth how
certain load balancing algorithms can reduce response time
versus others. We show this in two steps: First, we demonstrate
how the different algorithms behave in terms of occupancy,
namely, the number of requests allocated to the system. The
occupancy for a transaction T assigned to a server S is the
number of transactions already being handled by S when T

is assigned to it. Then, we show how occupancy has a direct
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influence on response time. In the experiments described in
this section, requests were distributed among four servers at a
rate of 600 cps. Experiments were run for one minute; thus,
each experiment results in 36,000 calls.

Figure 6 shows the cumulative distribution frequency (CDF)
of the occupancy as seen by a request at arrival time for one
back-end node for four algorithms: FNVHash, Round-Robin,
TJSQ, and TLWL-1.75. This shows how many requests are
effectively “ahead in line” of the arriving request. A point
(5, y) would indicate that y is the proportion of requests with
occupancy no more than 5. Intuitively, it is clear that the
more requests there are in service when a new request arrives,
the longer that new request will have to wait for service.
One can observe that the two Transaction-based algorithms
see lower occupancies for the full range of the distribution,
where 90 percent see fewer than two requests, and in the
worst case never see more than 20 requests. Round-Robin and
Hash, however, have a much more significant proportion of
their distributions with higher occupancy values; 10 percent
of requests see 5 or more requests upon arrival. This is
particularly visible when looking at the complement of the
CDF, as shown in Figure 7: Round-robin and Hash have much
more significant tails than do TJSQ or TLWL-1.75. While the
medians of the occupancy values for the different algorithms
are the same (note that over 60% of the transactions for all of
the algorithms in Figure 6 have an occupancy of 0), the tails
are not, which influences the average response time.

Recall that average response time is the sum of all the
response times seen by individual requests divided by the
number of requests. Given a test run over a period at a fixed
load rate, all the algorithms have the same total number of
requests over the run. Thus by looking at contribution to total
response time we can see how occupancy affects average
response time.

Figure 8 shows the contribution of each request to the total
response time for the four algorithms in Figure 6, where
requests are grouped by the occupancy they observe when
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they arrive in the system. In this graph, a point (5, y) would
indicate that y is the sum of response times for all requests
arriving at a system with 5 requests assigned to it. One can
see that Round-Robin and Hash have many more requests in
the tail beyond an observed occupancy of 20. However, this
graph does not give us a sense of how much these observations
contribute to the sum of all the response times (and thus the
average response time). This sum is shown in Figure 9, which
is the accumulation of the contributions based on occupancy.

In this graph, a point (5, y) would indicate that y is the
sum of response times for all requests with an occupancy up
to 5. Each curve accumulates the components of response
time (the corresponding points in Figure 8) until the total
sum of response times is given at the top right of the curve.
For example, in the Hash algorithm, approximately 12,000
requests see an occupancy of zero, and contribute about
25,000 milliseconds towards the total response time. 4,000
requests see an occupancy of one and contribute about 17,000
milliseconds of response time to the total. Since the graph is
cumulative, the Y value for x = 1 is the sum of the two oc-
cupancy values, about 42,000 milliseconds. By accumulating
all the sums, one sees how large numbers of instances where
requests arrive at a system with high occupancy can add to
the average response time.

Figure 9 shows that TLWL-1.75 has a higher sum of
response times (40,761 milliseconds) than does TJSQ (34304
ms), a difference of about 18 percent. This is because TJSQ
is exclusively focused on minimizing occupancy, whereas
TLWL-1.75 minimizes work. Thus TJSQ has a smaller re-
sponse time at this low load (600 cps), but at higher loads,
TLWL-1.75’s better load balancing allows it to provide higher
throughput.

To summarize, by balancing load more evenly across a
cluster, the transaction-based algorithms improve response
time by minimizing the number of requests a new arrival must
wait behind before receiving service. This clearly depends on
the scheduling algorithm used by the server in the back end;
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however, Linux systems like ours effectively have a scheduling
policy which is a hybrid between first-in-first-out (FIFO) and
processor sharing (PS) [10]. Thus the number of requests in
the system has a strong correlation with the response time seen
by an arriving request.

VI. RELATED WORK

A load balancer for SIP is presented in [29]. In this paper,
requests are routed to servers based on the receiver of the call.
A hash function is used to assign receivers of calls to servers.
A key problem with this approach is that it is difficult to come
up with an assignment of receivers to servers which results in
even load balancing. This approach also does not adapt itself
well to changing distributions of calls to receivers. Our study
considers a wider variety of load balancing algorithms and
shows scalability to a larger number of nodes. The paper also
addresses high availability and how to handle failures.

A number of products are advertising support for SIP
load balancing including Nortel Networks’ Layer 2-7 Gigabit
Ethernet Switch Module for IBM BladeCenter [15], Foundry
Networks’ ServerIron [20], and F5’s BIG-IP [8]. Publicly
available information on these products does not reveal the
specific load balancing algorithms that they employ.

A considerable amount of work has been done in the
area of load balancing for HTTP requests [4]. One of the
earliest papers in this area describes how NCSA’s Web site
was scaled using round-robin DNS [17]. Advantages of
using an explicit load balancer over round-robin DNS were
demonstrated in [7]. Their load balancer is content unaware
because it does not examine the contents of a request. Content-
aware load balancing, in which the load balancer examines the
request itself to make routing decisions, is described in [2],
[3], [24]. Routing multiple requests from the same client to the
same server for improving the performance of SSL in clusters
is described in [12]. Load balancing at highly accessed real
Web sites is described in [5], [16]. Client-side techniques for
load balancing and assigning requests to servers are presented
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in [9], [18]. A method for load balancing in clustered Web
servers in which request size is taken into account in assigning
requests to servers is presented in [6].

Least-work-left (LWL) and join-shortest-queue (JSQ) have
been applied to assigning tasks to servers in other do-
mains [13], [27]. While conceptually TLWL, TJSQ, and CJSQ
use similar principles for assigning sessions to servers, there
are considerable differences in our work. Previous work in this
area has not considered SARA, where only the first request
in a session can be assigned to a server. Subsequent requests
from the session must be assigned to the same server handling
the first request; load balancing using LWL and JSQ as defined
in these papers is thus not possible. In addition, these papers
do not reveal how a load balancer can reliably estimate the
least work left for a SIP server which is an essential feature
of our load balancer.

VII. SUMMARY AND CONCLUSIONS

This paper introduces three novel approaches to load bal-
ancing in SIP server clusters. We present the design, im-
plementation, and evaluation of a load balancer for cluster-
based SIP servers. Our load balancer performs session-aware
request assignment (SARA) to ensure that SIP transactions
are routed to the proper back-end node that contains the
appropriate session state. We presented three novel algorithms:
Call Join Shortest Queue (CJSQ), Transaction Join Shortest
Queue (TJSQ), and Transaction Least-Work-Left (TLWL).

The TLWL algorithms result in the best performance, both
in terms of response time and throughput, followed by TJSQ.
TJSQ has the advantage that no knowledge is needed of
relative overheads of different transaction types. The most
significant performance differences were in response time.
Under light to moderate loads, TLWL-1.75, TLWL-2, and
TJSQ achieved response times for INVITE transactions that
were at least 5 times smaller than the other algorithms we
tested. Under heavy loads, TLWL-1.75, TLWL-2, and TJSQ
have response times two orders of magnitude smaller than



the other approaches. For SIP applications that require good
quality of service, these dramatically lower response times
are significant. We showed that these algorithms provide
significantly better response time by distributing requests
across the cluster more evenly, thus minimizing occupancy
and the corresponding amount of time a particular request
waits behind others for service. TLWL-1.75 provides 25%
better throughput than a standard hash-based algorithm and
14% better throughput than a dynamic round-robin algorithm.
TJSQ provides nearly the same level of performance. CJSQ
performs poorly since it does not distinguish transactions from
calls and does not consider variable call hold times.

Our results show that by combining knowledge of the SIP
protocol, recognizing variability in call lengths, distinguishing
transactions from calls, and accounting for the difference
in processing costs for different SIP transaction types, load
balancing for SIP servers can be significantly improved.

The dramatic reduction in response times achieved by both
TLWL and TJSQ, compared to other approaches, suggest that
they should be applied to other domains besides SIP, particu-
larly if response time is crucial. Our results are influenced by
the fact that SIP requires SARA. However, even where SARA
is not needed, variants of TLWL and TJSQ could be deployed
and may offer significant benefits over commonly deployed
load balancing algorithms based on round robin, hashing, or
response times. A key aspect of TJSQ and TLWL is that
they track the number of uncompleted requests assigned to
each server, in order to make better assignments. This can be
applied to load balancing systems in general. In addition, if the
load balancer can reliably estimate the relative overhead for
requests that it receives, this can further improve performance.
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