
Enabling Content-Based Load Distribution for Scalable Services

Guerney Hunt, Erich Nahum, and John Tracey
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598�
gddh,nahum,jtracey � @watson.ibm.com

Abstract

We argue that using information content of individual
client requests to distribute load across a cluster of work-
stations or PCs has many attractive properties, and describe
how current Internet standards make content-based load dis-
tribution difficult. We discuss several approaches to achieve
content-based load distribution for large scalable services
such as WWW servers. We illustrate the advantages and dis-
advantages of these approaches and introduce one method,
connection hand-off, which enables content-based load distri-
bution. We describe a small backwards-compatible extension
to the TCP protocol to allow connection hand-off and outline
the OS implementation required.

1 Introduction

Networked information systems have seen explosive growth
in the last few years. The information available via the global
information infrastructure is growing rapidly as text-only in-
formation sources are augmented with voice, video and still
image data. This growth places increasing demands on large
scale information servers, which provide services such as dig-
ital libraries, video-on-demand, World-Wide Web and high-
performance file systems. In addition, a single server may
provide responses for potentially thousands of clients. If a
server is connected to the global Internet, capacity planners
may not even be able to accurately estimate the demand for
it, since an unknown (and growing) number of clients may
be requesting service. For example, Netscape’s home page
server currently receives over one hundred million requests a
day [9].

Cluster-based computing has received a large amount of
attention recently[2], both in the academic and commercial
communities. Clusters attempt to replace an expensive high-
end machine with a collection of cheaper workstations or
PC’s. The increasing performance and shrinking price of

these machines make clusters an attractive alternative to tra-
ditional mainframes and supercomputers.

Clusters can be used as cost-effective scalable servers,
for providing WWW, video, file, or other services. Indeed,
several products have been released that make a cluster appear
as a single server, establishing a single point-of-presence on
the network at a particular IP address. This allows distributing
requests across the cluster in a way that is transparent to
clients.

Several approaches or mechanisms may be used to enable
this distribution. In addition, many policies may be used
to balance load across a cluster. Ideally, requests should
be distributed in such a way as to maximize the number of
requests that can be serviced by the cluster, or to minimize the
response time as observed by a client. However, as we will
demonstrate, the mechanism used to distribute the requests
can limit the choice of policies.

In this paper, we argue that exploiting information content
in client requests can greatly improve load distribution, using
a cluster-based WWW service as an example application. We
describe several approaches to distributing WWW requests
across a cluster of machines, and show their limitations for
exploiting information content. We propose a novel mecha-
nism to migrate connections that enables content-based load
distribution. We describe a backwards-compatible option to
the TCP protocol [24] that allows migrating an established
connection, and outline the OS changes required to imple-
ment this feature.

2 Mechanisms for Scalable WWW Servers

In this Section we outline several possible mechanisms for
using clusters as scalable WWW servers, and describe the
characteristics of each.

One possible mechanism is using a cluster with a single
system image (SSI) or distributed shared memory (DSM)

1

Internet

Client

Client

Client

request

request

request

 Network
Dispatcher

S1

S2

SN

requests

dispatch

response

response

response

Single IP Address

Figure 1: Connection Routing

[17, 20]. A great deal of research has been done in DSM, and
Sun has demonstrated an SSI prototype [16]. The advantages
to this approach are that it provides fine-grained sharing and
load balancing across a cluster, and is transparent to the client.
The disadvantage is that it requires support on the server
system, and typically requires the cluster to be homogeneous.
An attractive feature of cluster-based servers is that they can
be grown incrementally as needed, preserving a customer’s
investment in hardware and software. This can lead to a
heterogeneous environment, as machines that were most cost-
effective at one point in time are augmented by machines that
have the best current price/performance. Thus, we believe
that heterogeneity limits the utility of DSM-based clusters as
scalable servers.

Another mechanism is called connection routing [12]. In
this approach, a front-end machine, called the network dis-
patcher, routes incoming requests to server nodes. When a
TCP connection request arrives, the dispatcher determines
which server in the cluster to forward the packet to, usually
based on an estimate of load on each server. The dispatcher
routes the packet to the server, and adds an entry in its inter-
nal state that allows it to forward subsequent packets for that
connection to the same server. The dispatcher must process
all external client packets entering the cluster, but need not
see packets from the server to the client. Several announced
products use this or similar methods [8, 10, 13, 18, 25], which
is illustrated in Figure 1.

IBM’s product is used for the main IBM web site
(www.ibm.com) and was used for the Summer 1996 Olympic
Web Server [3, 7]. In IBM’s implementation, the network dis-

patcher includes a manager which is used to implement load
balancing policies. The network dispatcher uses a weighted
round-robin policy for the distribution of requests. The man-
ager monitors metrics which indicate the load on the servers.
These distribution weights are adjusted by the manager to
keep the load balanced on the servers in the cluster. How
metrics are combined is user configurable.

Connection routing has compelling advantages: it is trans-
parent to both the client and the server, and it scales well with
the number of servers in the cluster. For example, HTTP
requests for the Olympic Web Server were distributed over
a cluster of 56 machines. One disadvantage is that, because
of the nature of TCP and HTTP, the connection must be es-
tablished between the client and server node before the type
of request can be ascertained. This precludes using the con-
tent of the request as a factor in making a connection routing
decision. TCP was designed as a bulk data transfer protocol,
and the problems of using it for request-response communi-
cation are well-known [22, 23]. Specifically, TCP requires
a three-way handshake to establish a connection, in order
to detect duplicate packets and reject spurious connection re-
quests, and data typically does not flow across the connection
until after the handshake completes. Although other connec-
tion management mechanisms are possible, replacing TCP is
extremely unlikely, given the large (and growing) investment
in the Internet, and in critical applications such as the WWW
that use TCP as their transport protocol.

This leads to a third approach, which is to use Transac-
tional TCP (T/TCP) [5, 6], an option in TCP designed to
improve the protocol’s usefulness for request-response com-

2

munication. T/TCP uses a timer-based connection manage-
ment mechanism that enables data to be sent in the first packet
along with the SYN bit. A network dispatcher for a cluster-
based WWW server could examine the request in the data
to use information content in its routing decision, before the
connection is actually established. Unfortunately, this ap-
proach requires modifying both the client and the server to
use T/TCP. This is likely to hinder deployment, especially
since the transport protocol is typically implemented in the
kernel. While individual vendors and users can upgrade their
servers and browsers to take advantage of T/TCP, a large
scale web server cannot rely on the presence of clients using
T/TCP to make its load balancing decision.

This leads us to introduce a novel mechanism, which
we call connection hand-off. In this approach, the network
dispatcher completes the connection establishment with the
client before deciding to which server to forward the request.
Once the three-way handshake has completed and the client
has sent the request, the dispatcher can examine the request to
aid its routing decision, enabling content-based load distrib-
ution. By adding an option to the TCP protocol specification,
we can enable connection hand-off in a way transparent to
the client. Thus, only the server cluster needs to be modi-
fied, and clients are unaffected. We describe the connection
hand-off mechanism in more detail in the Section 4.

3 Content-Based Load Distribution

In this Section we describe how load distribution policies
could exploit information content of client requests.

The connection routing approach described in the previous
Section generally routes requests to servers based solely on an
estimate of current load on each server. The next logical step
is to further refine the routing decision based on the content
of the request, which until now has been ignored. Exploiting
this has several advantages:

� Requests to the same page can be routed to the same
server, since that server is likely to have that page
cached. If a page is extremely popular, a subset of the
servers can be used to distribute load while maximizing
the cache usage.

� Recent work has shown that spatial locality exists in
WWW reference streams [1]. A dispatcher may be able
to exploit this locality by forwarding related streams to
the same server node, again improving cache utilization.

� The content type may used to forward to servers spe-
cialized for the content type [15]. For example, requests
for video clips may be sent to a server with an operating
system and file system customized for video playback.

In essence, we are allowing for a finer granularity of dis-
tribution of requests. Other methods, in particular the con-
nection routing approach, require that all the services asso-
ciated with an IP address and port number be homogenous
with respect to what they offer. In other words, they re-
quire all nodes in the cluster to be capable of providing the
same content. Distribution based on content eliminates this
requirement and allows servers to be heterogeneous.

The policy as to exactly how to route based on content is a
research topic that remains to be addressed, but it is clear that
a mechanism which enables routing based on content allows
choosing from a larger set of policies.

4 Migrating Established Connections

In this Section we describe the mechanism for doing connec-
tion hand-off in detail.

Conceptually, we wish to have the network dispatcher for
the cluster hand off the connection to an individual server
machine in a way that is transparent to the client. We want
to perform the hand-off after the connection has been es-
tablished, so that the URL can be examined to distribute
load based on information content, but before any transac-
tion occurs. Since an exchange of bytes may have almost
any meaning (e.g., executing a CGI/bin program), an arbi-
trary change of state can occur at the server (such as debiting
a bank account). It is infeasible to transfer this state with-
out a large process migration or DSM mechanism; thus it is
difficult transfer a connection at any arbitrary point in time.

However, until the client receives any bytes in response to
a request, or even an acknowledgment of the bytes sent, the
client cannot infer that any action has been taken in response
to the request. We take advantage of these TCP semantics,
and propose to transfer the connection right at the point the
connection has been established, but before any data or ac-
knowledgments have been received by the client. We can do
this by adding an option to the TCP protocol.

An initial TCP connection request, as received by the
network dispatcher contains the following information:

� Source and destination port numbers

� The SYN control bit set

� An initial send sequence number (ISS)

� A flow control window

� Possible options (e.g., segment size)

The response seen by the client contains the following:

3

Client ServerDispatcher

SYN
seq = ISS

SYN, ACK
seq = IRS
ack = ISS + 1

ACK, data (x bytes)
seq = ISS + 1
ack = IRS + 1

SYN+, data (x bytes)
seq = ISS
<Client IP, IRS>

SYN, ACK
seq = IRS
ack = ISS + 1

ACK
seq = ISS + 1 + x
ack = IRS + 1

ACK, data (y bytes)
seq = IRS + 1
ack = ISS + 1 + x

1

2

3

4

5

6

7

☞

Figure 2: TCP Connection Handoff

� Destination and source port numbers

� The SYN and ACK control bits set

� An initial receive sequence number (IRS)

� An acknowledgment of the client’s ISS

� The server’s flow control window

� Possible options (e.g., segment size)

The client, in turn, sends a packet acknowledging the
server’s receive sequence number (IRS), completing the
three-way handshake. Once the first data packet is received
by the dispatcher, the data can be examined to allow content-
based load distribution, and then the connection hand-off
can be performed. The key idea here is that the individual
server node can masquerade as the dispatcher as long as it
has the appropriate connection state. Almost all of this state
is contained in the original SYN packet; the exception is the
initial receive sequence number (IRS) that the dispatcher has

selected. To transfer the state, the dispatcher forwards the
original SYN to the selected server node, with one addition:
a connection hand-off option that contains the IRS selected
by the dispatcher and the IP address of the client.

Figure 2 shows the mechanism of the handoff in detail.
The numbers correspond to events in the handoff, proceeding
as follows:

� The client establishes a connection with the dispatcher,
using a three-way handshake as before, as shown in
Figure 2 with messages 1, 2, and 3.

� The dispatcher forwards a SYN packet to the server
node, illustrated with message 4. The SYN is similar
to the SYN sent by the client, except that it uses the
dispatcher’s address as the source IP address, includes
the client data received, and contains an option which
has the IP address of the client and the IRS selected by
the dispatcher.

� The server node goes through the normal connection
establishment process to the dispatcher, except that it
uses the passed IRS, rather than selecting its own. The
server node sends a SYN/ACK packet to the dispatcher,
as shown by message 5, notifying it that the server has
accepted the connection.

� The dispatcher completes the three-way handshake, il-
lustrated with message 6, notifying the server it is com-
pleting the hand-off. The dispatcher frees any extra state
associated with the connection, such as buffered data,
and subsequently acts in the same fashion as the original
connection router.

� The server node changes its connection state to use the
client’s IP address rather than the dispatcher’s, and re-
sponds to the the request directly, as shown by message
7, sending any resulting data to the client and acknowl-
edging the receipt of the request.

After this point, the client and server perform the nor-
mal TCP data transfer and connection termination. The only
change in the TCP protocol state is to understand the connec-
tion hand-off option, and to complete the handshake with the
dispatcher rather than the client.

Attention must be paid to several subtleties that arise in
connection hand-off due to the TCP protocol. For example,
the dispatcher cannot accept any options (such as the selec-
tive acknowledgment or SACK option [21]) from the client
that the server nodes are not capable of understanding. Sim-
ilarly, since the TCP protocol specification requires that an
advertised flow control window can never be retracted, the
dispatcher must choose an initial flow control window that
each server can satisfy.

4

With these changes, the network dispatcher can be modi-
fied to allow additional load balancing policies that can take
advantage of information content. When content is moved,
content is added, or new servers are added to the cluster, the
dispatcher must be notified so that the correct load distribu-
tion decision will be made.

Resonate Inc has announced a product [14] which per-
forms ‘connection hop,’ which may be similar to our ap-
proach. However, they do not describe the mechanism by
which connections are transferred; their system could use a
single system image.

5 Summary

In this paper, we described the current state of the art in
building scalable web servers using clusters and illustrated
the utility of distributing load based on information content.
We described a mechanism to hand off active connections and
how this mechanism enables routing based on content. We
have begun implementing the protocol and OS changes de-
scribed, and plan future research evaluating different policies
for content-based load distribution.

References

[1] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana
de Oliveira. Characterizing reference locality in the WWW.
In Proceedings of PDIS’96: The IEEE Conference on Parallel
and Distributed Information Systems, Miami Beach, Florida,
December 1996.

[2] Thomas Anderson, David Culler, and David Patterson. A case
for NOW (networks of workstations). IEEE Micro, 15(1):54–
64, Feb 1995.

[3] Hari Balakrishnan, Srinivasan Seshan, Mark Stemm, and
Randy Katz. Analyzing stability in wide-area network per-
formance. In Proceedings of the ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, Seattle,
WA, June 1997.

[4] D. Borman, R. Braden, and V. Jacobson. TCP extensions for
high performance. Request for Comments (Proposed Stan-
dard) RFC 1323, Internet Engineering Task Force, May 1992.

[5] Robert Braden. Extending TCP for transactions – concepts. In
Network Information Center RFC 1379, November 1992.

[6] Robert Braden. T/TCP – TCP extensions for transactions
functional specification. In Network Information Center RFC
1644, July 1994.

[7] IBM Corporation. 1996 summer olympic web site.
http://www.atlanta.olympics.org.

[8] IBM Corporation. IBM interactive network dispatcher.
http://www.ics.raleigh.ibm.com/ics/isslearn.htm.

[9] Netscape Communications Corporation. 2.9 million visitors
propel netscape internet site to over 100 million hits a day.
http://www.netscape.com/newsref/pr/newsrelease238.html,
September 1996.

[10] Rad Network Devices. Web server director.
http://www.radinc.com.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. Hypertext transfer protocol – HTTP/1.1. In Network
Information Center RFC 2068, January 1997.

[12] German Goldszmidt and Guerney Hunt. Scalable servers using
the TCP connection router. Technical report, IBM T.J. Watson
Research Center, Hawthorne, NY, 1997. In preparation.

[13] Cisco Systems Inc. LocalDirector. http://www.cisco.com.

[14] Resonate Inc. Resonate dispatch.
http://www.resonateinc.com.

[15] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger,
and Deborah A. Wallach. Server operating systems. In
1996 SIGOPS European Workshop, Connemara, Ireland,
Sept. 1996.

[16] Yousef A. Khalidi, Jose M. Bernabeu, Vlada Matena, Ken
Shirriff, and Moti Thadani. Solaris MC: A multi computer OS.
In Proceedings of the USENIX Annual Technical Conference,
pages 75–85, San Diego, CA, Jan 1996.

[17] Povl T. Koch, Robert J. Fowler, and Eric Jul. Message-driven
relaxed consistency in a software distributed shared memory.
In Proceedings of the First USENIX Symposium on Operating
Systems Design and Implementation, pages 75–85, November
1994.

[18] F5 Labs. BIG/ip. http://www.f5.com.

[19] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels,
and John S. Quarterman. The Design and Implementation
of the 4.3BSD UNIX Operating System. Addison Wesley,
Reading, Massachusetts, 1989.

[20] Kai Li and Paul Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321–359, Nov 1989.

[21] Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
Romanow. TCP selective acknowledgment options. In Net-
work Information Center RFC 2018, October 1996.

[22] Jeffrey C. Mogul. The case for persistent-connection HTTP.
In ACM SIGCOMM Symposium on Communications Archi-
tectures and Protocols, Cambridge, MA, August 1995.

[23] Jeffrey C. Mogul. Network behavior of a busy web server
and its clients. Technical Report 95/5, Digital Equipment
Corporation Western Research Lab, Palo Alto, CA, October
1995.

[24] Jon Postel. Transmission Control Protocol. Network Informa-
tion Center RFC 793, pages 1–85, September 1981.

[25] HydraWEB Technologies. HydraWEB.
http://www.hydraweb.com.

[26] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated
Volume 2. Addison Wesley, Reading, Massachusetts, 1995.

5

