
Towards High Performance Cryptographic Software
�

Erich Nahum
�
, Sean O’Malley

�
, Hilarie Orman

�
, and Richard Schroeppel

�

Department of Computer Science
�

Department of Computer Science
�

University of Massachusetts University of Arizona
Amherst, MA 01003 Tucson, AZ 85721

1 Introduction

A great deal of effort is currently being expended to pro-
vide some level of Internet security. An important ques-
tion is whether security can be provided at gigabit speeds.
The standard set of algorithms required to secure a con-
nection includes a bulk encryption algorithm such as DES
[1], a cryptographic checksum such as MD5 [13], a key ex-
change algorithm (such as Diffie-Hellman key exchange) to
securely distribute the DES key, and some form of digital
signature algorithm to authenticate the parties (e.g., RSA
[14]). The encryption and checksum algorithm must be ap-
plied to every packet going across a secure link, and there-
fore the performance of these algorithms directly affects
the achievable bandwidth. Furthermore, there are some
problems (such as sender authentication in multicast) that
require the use of expensive algorithms such as RSA signa-
tures on every packet. The other algorithms only need to be
run at connection set-up time, so they only affect the overall
bandwidth if the connections are short, the algorithms are
particularly expensive, and/or the overhead of using these
algorithms on busy servers reduces overall network perfor-
mance. Thus there are two important performance metrics
to consider: overall bandwidth and number of connections
per second.

A straightforward approach to improving cryptographic
performance is to implement cryptographic algorithms in
hardware. This approach has been shown to improve cryp-
tographic performance of single algorithms (e.g., DEC has
demonstrated a 1 Gbit/sec DES chip [5]). Unfortunately
there are several problems with this approach. First, a
secure network system requires the efficient implementa-
tion of a suite of algorithms, not just DES. Hosts clearly
need to be able to run both DES and MD5 efficiently, and
servers, at least, need to run them all efficiently. Second,
hosts need to implement Internet standards, and standards
change. In fact, most Internet security standards are written
to allow flexibility in algorithm selection. Third, security

�
This research supported in part by NSF under grant NCR-9206908,

by ARPA under contract F19628-92-C-0089, by ARPA under contract
DABT63-94-C-0002, and by NCSC under contract MDA 904-94-C-6110.

Protocol Performance
MD5 80 Mbits/sec
DES 15 Mbits/sec
3-DES 5 Mbits/sec
RSA Crypt-Decrypt 10 Kbits/sec
RSA Signature 20 signatures/sec
Diffie-Hellman 5 keys/sec

Key Exchange

Table 1: Current Cryptographic Algorithm Performance

algorithms can be broken (e.g. knapsack crypto-systems,
129 digit RSA, 192 bit Diffie Hellman Key exchange, and
any year now, DES). Hence, they may have to be changed
on short notice. Fourth, cryptographic hardware is not ubi-
quitous, cheap or readily exportable. It is clear that adding
more than one (and some people would say any) piece of
cryptographic hardware to a given host is unlikely, if only
for these reasons. Finally, implementing certain crypto-
graphic algorithms (e.g. MD5) in hardware provides only
limited increases in performance [19]. Thus we question
whether the traditional approach of implementing crypto-
graphic hardware is suitable for the current Internet envi-
ronment.

Thus we need cryptographic software. Therefore let us
consider the performance of a set of cryptographic algo-
rithms when implemented in software. Table 1 gives the
performance of a variety of standard cryptographic algo-
rithms as implemented in software on a 175 MHz Dec
Alpha 600. Clearly, implementing these algorithms in soft-
ware on a modern RISC workstation does not provide suf-
ficient bandwidth to drive a gigabit link. Furthermore, the
connection establishment overhead is so high that overall
performance on busy servers is likely to suffer. All of these
algorithms are compute bound and their performance will
scale nicely with increasing processor performance. Unfor-
tunately, we believe that most, if not all, of this increased
performance is already spoken for. Increasing network per-

formance will require improvements in cryptographic soft-
ware� performance, and improved processor performance
also helps an attacker. Thus, the strength (and hence the
computational cost) of the cryptographic algorithms must
be increased to keep up.

In this paper we will examine three different approaches
to improving the performance of cryptographic software:
new algorithm design, parallelization, and algorithm inde-
pendent hardware support.

2 Secure Algorithm Design

An obvious way to improve the performance of crypto-
graphic software is to develop new and faster algorithms.
Unfortunately it is not sufficient for a security algorithm to
be correct, it also must be secure. Showing that an algo-
rithm is secure is a time consuming problem. This makes
the creation of entirely new algorithms problematic: new
algorithms are assumed to be insecure. We address this
problem in three ways. First, there are a large number of
existing security algorithms which, while not widely used,
have at least been around long enough to have withstood
some amount of attack. Second, existing security algo-
rithms can often be implemented in a variety of different
ways. Finally, it is often possible to make small modifica-
tions to an existing algorithm with a strong assurance that
the resulting algorithm is not significantly weaker than the
original.

An example of this approach is a set of modifications
to the Diffie-Hellman key exchange algorithm(DHKX) that
we (and others) have implemented. The DHKX algorithm
[4] is a secure method for initiating a conversation between
two previously un-introduced parties. It relies on exponen-
tiation in a large group, and the software implementation
of the group operation is usually computationally intensive.
The algorithm has been proposed as an Internet standard
[18], and as such its performance is of great importance. A
straightforward implementation of DHKX uses the multi-
plication group of integers modulo � , where � is a prime
on the order of � �	��
 (this is the implementation timed in
Table 1). However, the DHKX algorithm can also be im-
plemented with the same level of security using the group of
points on an elliptic curve over the Galois field

�
	
���� [10].
By choosing an appropriate mapping from elliptic curve
operations to the

�
	
���� operations to the host machine in-
structions, one can gain significant improvements. In [16]
we showed an improved method of computing reciprocals in�
	
���� which increases the overall performance of the DHKX
algorithm by a factor of 6, bringing it down to 30 millisec-
onds per key exchange. A further increase in performance
(about a factor of 2.5) can be achieved by precomputing a
table of generator powers [3]. The resulting table size is
small (in the low kilobytes) and as such is well worth the
time-space trade off.

What is more important than the results on any specific

algorithm is the approach. One can choose from a variety
of algorithms in the literature. Then, in the case of num-
ber theoretic algorithms, one can choose the underlying
mathematical structures for implementation. If careful im-
plementation techniques for the structure representation and
operators are used, performance improvements are some-
times possible.

3 Parallelism

Another approach to improving software encryption perfor-
mance is to use parallelism. At least three types of paral-
lelism can be used: per-connection, per-packet, and intra-
packet (or functional) parallelism. Connection-level par-
allelism is straightforward, but does not allow parallelism
to improve the throughput of a single connection. Packet-
level parallelism associates processing with each packet,
regardless of the connection. Intra-packet parallelism asso-
ciates multiple processing units with a single packet, and is
only feasible if the encryption algorithm allows it. For ex-
ample, DES with Electronic Code Book (ECB) allows sep-
arate eight-byte blocks to be encrypted in parallel, and thus
could be parallelized at an intra-packet granularity. How-
ever, ECB is susceptible to simple-substitution code attacks
and cut-and-paste forgery. Thus, most implementations use
the Cipher-Block Chaining (CBC) mode of DES, where the
output of each encryption is xor’ed into the next block
of plaintext. Although each block cannot be encrypted in
parallel with DES CBC mode, they can be decrypted in
parallel.

To examine the impact of parallelism on cryptographic
software, we used a version of the x-kernel [6] augmented
to support packet-level parallelism [11]. The system runs
in user space on Silicon Graphics R4400-based shared-
memorymultiprocessors. We ran a set of send-side through-
put tests with DES and MD5 to see how well encryption
protocols scale using packet-level parallelism. Given that
the granularity of parallelism in this study is packet-sized,
DES parallelism here means that separate packets are en-
crypted in parallel using CBC mode.

Figure 1 shows sending throughputs in Megabits per
second for three protocol stacks: a TCP/IP stack, a
TCP/MD5/IP stack, and a DES/TCP/IP stack

�
. These

throughputs were measured on an 8-processor 100MHz
Challenge machine, using a single TCP connection with
4 KB packets. Figure 2 shows the corresponding rela-
tive speedup for the three TCP stacks, where speedup is
normalized relative to the appropriate stack’s uniprocessor
throughput. Each data point is the average of 10 runs, and
throughput graphs include 90 percent confidence intervals.
More details can be found in [11].

�
For purposes of this study, we ignore for the moment that TCP does

not preserve packet boundaries on the receive side. In this case, on the
send side, packet boundaries are preserved.

T
hr

ou
gh

pu
t (

M
B

its
/s

ec
)

Processors
�1 2

�
3
�

4
�

5
�

6
�

7
�

8
�

0
�

50
�

100

150

200
�

250
�

TCP/IP
�TCP/MD5/IP
DES/TCP/IP
�

Figure 1: DES/MD5/TCP Throughputs

Figure 1 illustrates the performance cost of doing cryp-
tography in software. MD5 exacts roughly an order of
magnitude in performance, and DES roughly two orders
of magnitude. Figure 2 shows, however, that although
the baseline TCP scales badly, speedup with encryption is
close to linear, for the number of processors tested. This is
because the encryption protocols are compute-bound, over-
shadowing any locking cost, and the encryption is done
outside the scope of any locks. Similar linear speedups
were observed for cryptographic UDP-based stacks, not
shown due to space limitations.

Previous work [2, 11] has shown limited packet-level par-
allelism using a single TCP connection, barring any other
protocol processing. Given that the locked component of
manipulating the TCP connection-state limits the through-
put to about 200 Mbits on this platform, we estimate that
the TCP/MD5/IP stack would bottleneck at about 16 proces-
sors, and that the DES stack would scale to 40 processors.
More compute-intensive protocols, such as triple-DES and
RSA, should scale linearly as well.

This study is still preliminary, and many factors remain
to be explored. We have examined only send-side through-
puts, and receive-side processing may behave differently.
Our results suggest, however, that software encryption pro-
tocol performance can be improved using parallelism.

4 Algorithm Independent Hardware Sup-
port

Instead of implementing entire algorithms in hardware we
propose to improve the performance of a broad selection of

Sp
ee

du
p

Processors
�1 2

�
3
�

4
�

5
�

6
�

7
�

8
�

1

2

3
�

4
�

5
�

6
�

7
�

8
�

TCP/IP
�TCP/MD5/IP
DES/TCP/IP
�

Figure 2: DES/MD5/TCP Speedup

cryptographic software. The basic idea is to do classic RISC
processor (or co-processor) design on a large set of crypto-
graphic software implementations. The idea is to add to a
standard RISC instruction set only those instructions which
significantly improve the overall performance of the test
suite. Careful examination of current implementations of
cryptographic software has identified three basic problems
with implementations on modern RISC machines: opera-
tions on sub-wordsize units, operations on super-wordsize
units, and operations of groups other than that of integers.
We believe that the addition of a small number of new CPU
instructions could significantly increase the performance of
a wide variety of cryptographic algorithms.

For example providing a single instruction to better sup-
port arithmetic in the Galois field

�
	
���� can significantly
improve the performance of DHKX presented in section 2.
The polynomials that make up these groups can be repre-
sented as bit vectors where each bit n represents �! #" �%$'& .
With this representation ((and)) in this group can be
implemented as *�+-,/.1032 64 bit XOR’s. Multiplication in the
field is exactly analogous to integer multiplication with the
addition operation replaced with XOR. The lack of carries
makes this significantly easier to implement in hardware
than integer multiply. A rough estimate is that a 64 bit
XOR multiply implemented on the Alpha chip would take
8 cycles. In the algorithm used in Section 2, this would
probably result in a 30% improvement in the DHKX run-
ning time. By redesigning the algorithm to take advantage
of the cheap XOR-multiply operation, we believe that we
could reduce the running time of the DHKX algorithm by
a factor of 4. Note that this instruction would be useful

for any security algorithm that uses
�
54 and may have ap-

plication6 beyond security in such areas as error correcting
codes.

Is it practical to add instructions to a RISC processor?
We think so. First, there is no real shortage of chip area
on most modern RISC processors [7], and second, many
modern super-scalar processors have more ALU’s than are
needed for the amount of instruction level parallelism found
in most applications [17]. The real problem is the cost of
the design work required to implement these instructions in
very high clock-rate technologies. The question then is one
of economics: is the market for such a chip large enough for
the vendor to make a profit? The UltraSPARC and HP PA-
7100LC may provide existence proofs that this approach
is viable given a large enough market. The UltraSPARC
design contains a set of special purpose instructions to speed
up pixel operations and MPEG play [8]; a similar technique
is used in the PA-7100LC chips [9]. This increases the
performance of multimedia applications and reduces cost
by eliminating the necessity of providing special purpose
graphics hardware off chip. The market for crypto hardware
may reach a size where this approach is profitable. If we
can demonstrate that enhancing a standard CPU core by a
minimal number of RISC-style instructions improves the
performance of several security (and perhaps non-security)
algorithms, then the viability of that market may well be
increased.

5 Conclusion

Current software implementations of current cryptographic
software is orders of magnitude slower than required to se-
cure a gigabit network. We have proposed three techniques
to solve this problem. We believe that in combination these
approaches could go a long way to improving cryptographic
protocol performance without the inflexibility required for
the current generation of cryptographic hardware support.

6 Acknowledgements

Joe Touch and David Yates provided valuable comments on
earlier drafts of this paper.

References

[1] A. N. S. I. (ANSI). American national standard data en-
cryption standard. Technical report ANSI X3.92-1981, Dec.
1980.

[2] M. Björkman and P. Gunningberg. Locking effects in multi-
processor implementations of protocols. In ACM SIGCOMM
Symposium on Communications Architectures and Proto-
cols, pages 74–83, San Francisco, CA, Sept. 1993.

[3] E. Brickell, D. Gordon, K. McCurley, and D. Wilson. Fast
exponentiation with precomputation (extended abstract). In

Lecture Notes in Computer Science 658, pages 200–207,
1993.

[4] W. Diffie and M. E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644–
654, Feb. 1993.

[5] H. Eberle. A high-speed DES implementation for network
applications. Technical Report 90, Digital Equipment Cor-
poration Systems Research Center, Sept. 1992.

[6] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An
architecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1):64–76, Jan-
uary 1991.

[7] N. Jouppi and S. Wilton. Tradeoffs in two-level on-chip
caching. Technical Report Research Report 93/3, DEC
WRL, Oct. 1993.

[8] L. Kohn, G. Maturana, A. Prabhu, and G. Zyner. The visual
instruction set (VIS) in UltraSPARC. In Compcon Spring
95, pages 462–469, March 1995.

[9] R. B. Lee. Accelerating multimedia with enhanced micro-
processors. IEEE Micro, 15(2):22–32, Apr. 1995.

[10] A. J. Menezes. Elliptic Curve Public Key Cryptosystems.
Kluwer Academic Publishers, 1993.

[11] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley.
Performance issues in parallelized network protocols. In
First USENIX Symposium on Operating Systems Design and
Implementation, Monterey, CA, Nov. 1994.

[12] H. Orman, S. O’Malley, R. Schroeppel, and D. Schwartz.
Paving the road to network security, or the value of small
cobblestones. In Proceedings of the 1994 Internet Society
Symposium on Network and Distributed System Security,
Feb. 1994.

[13] R. Rivest. The MD5 message-digest algorithm. In Network
Information Center RFC 1321, pages 1–21,Menlo Park, CA,
Apr. 1992. SRI International.

[14] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryposystems. Com-
munications of the ACM, pages 120–126, Feb. 1978.

[15] D. C. Schmidt and T. Suda. Measuring the performance of
parallel message-based process architectures. In Proceed-
ings of the Conference on Computer Communications (IEEE
Infocomm), Boston, MA, Apr. 1995.

[16] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck.
Fast key exchange with elliptic curve systems. Technical
Report 95-03, Department of Computer Science, University
of Arizona, Feb. 1995.

[17] M. D. Smith, M. Johnson, and M. A. Howowitz. Lim-
its on multiple instruction issue. In Proceedings Third In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS III),
pages 290–302, Boston MA, April 1989.

[18] The Internet Engineering Task Force Working Group on
Security for IPv4. Ipsec draft. Technical report, 1995.

[19] J. Touch. Performance analysis of MD5. In ACM SIG-
COMM Symposium on Communications Architectures and
Protocols, Boston MA, Aug. 1995.

