
RC22862 (W0307-114) July 15, 2003
Computer Science

IBM Research Report

Improving Web Site Performance

Arun K. Iyengar, Erich M. Nahum, Anees A. Shaikh, Renu Tewari

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Contents

1 Improving Web Site Performance 1
Arun Iyengar, Erich Nahum, Anees Shaikh, Renu Tewari IBM Research
1.1 Introduction . 1
1.2 Improving Performance at a Web Site . 1

1.2.1 Load Balancing . 2
1.2.2 Serving Dynamic Web Content . 8

1.3 Server Performance Issues . 9
1.3.1 Process-Based Servers . 10
1.3.2 Thread-Based Servers . 10
1.3.3 Event-Driven Servers . 11
1.3.4 In-Kernel Servers . 11
1.3.5 Server Performance Comparison . 12

1.4 Web Server Workload Characterization . 13
1.4.1 Request Methods . 14
1.4.2 Response Codes . 14
1.4.3 Object Popularity . 16
1.4.4 File Sizes . 16
1.4.5 Transfer Sizes . 19
1.4.6 HTTP Version . 19
1.4.7 Summary . 20

0-8493-0052-5/00/$0.00+$.50
c 2003 by CRC Press LLC 1

1

Improving Web Site Performance

Arun Iyengar, Erich Nahum, Anees Shaikh, Renu Tewari
IBM Research

CONTENTS
1.1 Introduction : 1
1.2 Improving Performance at a Web Site : 1
1.3 Server Performance Issues : 9
1.4 Web Server Workload Characterization : 12

Acknowledgement : 20

1.1 Introduction

The World Wide Web has emerged as one of the most significant applications over the past decade.
The infrastructure required to support Web traffic is significant, and demands continue to increase at
a rapid rate. Highly accessed Web sites may need to serve over a million hits per minute. Additional
demands are created by the need to serve dynamic and personalized data.

This chapter presents an overview of techniques and components needed to support high volume
Web traffic. These include multiple servers at Web sites which can be scaled to accommodate high
request rates. Various load balancing techniques have been developed to efficiently route requests to
multiple servers. Web sites may also be dispersed or replicated across multiple geographic locations.

Web servers can use several different approaches for handling concurrent requests including pro-
cesses, threads, event-driven architectures in which a single process is used with non-blocking I/O,
and in-kernel servers. Each of these architectural choices has certain advantages and disadvantages.
We discuss how these different approaches affect performance.

We also discuss Web server workload characterization and show properties of the workloads
related to performance such as document sizes, popularities, and protocol versions used. Under-
standing these properties about a Web site is critically important for optimizing performance.

1.2 Improving Performance at a Web Site

Highly accessed Web sites may need to handle peak request rates of over a million hits per minute.
Web serving lends itself well to concurrency because transactions from different clients can be
handled in parallel. A single Web server can achieve parallelism by multithreading or multitasking
between different requests. Additional parallelism and higher throughputs can be achieved by using
multiple servers and load balancing requests among the servers.

Figure 1.1 shows an example of a scalable Web site. Requests are distributed to multiple servers
via a load balancer. The Web servers may access one or more databases or other back-end systems

0-8493-0052-5/00/$0.00+$.50
c 2003 by CRC Press LLC 1

2 Practical Handbook of Internet Computing

Load Balancer

Web
Server

Web
Server

Web
Server

Database

Other
Back−end
System (s)

FIGURE 1.1
Architecture of a scalable Web site. Requests are directed from the load balancer to one of
several Web servers. The Web servers may access one or more databases or other back-end
systems for creating content.

for creating content. The Web servers would typically contain replicated content so that a request
could be directed to any server in the cluster. For storing static files, one way to share them across
multiple servers is to use a distributed file system such as AFS or DFS [Kwan et al., 1995]. Copies
of files may be cached in one or more servers. This approach works fine if the number of Web
servers is not too large and data doesn’t change very frequently. For large numbers of servers for
which data updates are frequent, distributed file systems can be highly inefficient. Part of the reason
for this is the strong consistency model imposed by distributed file systems. Shared file systems
require all copies of files to be completely consistent. In order to update a file in one server, all
other copies of the file need to be invalidated before the update can take place. These invalidation
messages add overhead and latency. At some Web sites, the number of objects updated in temporal
proximity to each other can be quite large. During periods of peak updates, the system might fail to
perform adequately.

Another method of distributing content which avoids some of the problems of distributed file
systems is to propagate updates to servers without requiring the strict consistency guarantees of
distributed file systems. Using this approach, updates are propagated to servers without first invali-
dating all existing copies. This means that at the time an update is made, data may be inconsistent
between servers for a little while. For many Web sites, these inconsistencies are not a problem, and
the performance benefits from relaxing the consistency requirements can be significant.

1.2.1 Load Balancing

1.2.1.1 Load Balancing via DNS

The load balancer in Figure 1.1 distributes requests among the servers. One method of load bal-
ancing requests to servers is via DNS servers. DNS servers provide clients with the IP address of
one of the site’s content delivery nodes. When a request is made to a Web site such as http:
//www.research.ibm.com/compsci/ , “www.research.ibm.com” must be translated to an

Improving Web Site Performance 3

IP address, and DNS servers perform this translation. A name associated with a Web site can map
to multiple IP addresses, each associated with a different Web server. DNS servers can select one
of these servers using a policy such as round robin [Brisco].

There are other approaches which can be used for DNS load balances which offer some advan-
tages over simple round robin [Cardellini et al., 1999b]. The DNS server can use information about
the number of requests per unit time sent to a Web site as well as geographic information. The Inter-
net2 Distributed Storage Infrastructure Project proposed a DNS that implements address resolution
based on network proximity information, such as round-trip delays [Beck and Moore, 1998].

One of the problems with load balancing using DNS is that name-to-IP mappings resulting from a
DNS lookup may be cached anywhere along the path between a client and a server. This can cause
load imbalance because client requests can then bypass the DNS server entirely and go directly
to a server [Dias et al., 1996]. Name-to-IP address mappings have time-to-live attributes (TTL)
associated with them which indicate when they are no longer valid. Using small TTL values can
limit load imbalances due to caching. The problem with this approach is that it can increase response
times [Shaikh et al., 2001]. Another problem with this approach is that not all entities caching name-
to-IP address mappings obey TTL’s which are too short.

Adaptive TTL algorithms have been proposed in which the DNS assigns different TTL values for
different clients [Cardellini et al., 1999a]. A request coming from a client with a high request rate
would typically receive a name-to-IP address mapping with a shorter lifetime than that assigned to
a client with a low request rate. This prevents a proxy with many clients from directing requests to
the same server for too long a period of time.

1.2.1.2 Load Balancing via Connection Routers

Another approach to load balancing is using a connection router (also known as “Dispatchers”,
“Web switches”, “content switches”) in front of several back-end servers. Connection routers hide
the IP addresses of the back-end servers. That way, IP addresses of individual servers won’t be
cached, eliminating the problem experienced with DNS load balancing. Connection routing can
be used in combination with DNS routing for handling large numbers of requests. A DNS server
can route requests to multiple connection routers. The DNS server provides coarse grained load
balancing, while the connection routers provide finer grained load balancing. Connection routers
also simplify the management of a Web site because back-end servers can be added and removed
transparently.

In such environments a front-end connection router directs incoming client requests to one of the
physical server machines, as shown in Figure 1.2. The physical servers often share one or more
virtual IP addresses so that any server can respond to client requests. In other scenarios, the servers
have only private addresses, so the connection router accepts all connections destined for the site
virtual address. The request-routing decision can be based on a number of criteria, including server
load, client request, or client identity.

Connection routers are typically required to perform several functions related to the routing deci-
sion:

� monitor server load and distribute incoming requests to balance the load across servers

� examine client requests to determine which server is appropriate to handle the request

� identify the client to maintain session affinity with a particular server for e-business applica-
tions

In addition, many commercial connection routers provide functions important in a production
data center environment. These include:

� failover to a hot standby to improve availability

4 Practical Handbook of Internet Computing

origin servers
clients

dispatcher

FIGURE 1.2
A server-side connection router (labelled dispatcher) directs incoming client Web requests to
one of the physical servers in the cluster.

� detection and avoidance of many common denial-of-service attacks

� SSL acceleration to improve the performance of secure applications

� simplified configuration and management (e.g., Web browser-based configuration interface)

A variety of networking equipment and software vendors offer connection routers, including
Cisco Systems [cis, b,a], Nortel Networks [nor], IBM [ibm], Intel [int], Foundry Networks [fou],
and F5 Networks [f5:].

Request-routing may be done primarily in hardware, completely in software, or with a hardware
switch combined with control software. For example, several of the vendors mentioned above offer
dedicated hardware solutions consisting of multiple fast microprocessors, several Fast Ethernet and
Gigabit Ethernet ports, and plenty of memory and storage. Others offer software-only solutions that
can be installed on a variety of standard platforms.

IBM’s Network Dispatcher [Hunt et al., 1998] is one example of a connection router which hides
the IP address of back-end servers. Network Dispatcher uses Weighted Round Robin for load bal-
ancing requests. Using this algorithm, servers are assigned weights. Servers with a given weight
are given priority in receiving new connections over servers with a lesser weight. Consequently,
servers with higher weights get more connections than those with lower weights, and servers with
equal weights get an equal distribution of new connections.

With Network Dispatcher, requests from the back-end servers go directly back to the client. This
reduces overhead at the connection router. By contrast, some connection routers function as proxies
between the client and server in which all responses from servers go through the connection router
to clients.

Network Dispatcher has special features for handling client affinity to selected servers. These
features are useful for handling requests encrypted using the Secure Sockets Layer protocol (SSL).
SSL is commonly used for encryption on the Web. It can add significant overhead, however. When
an SSL connection is made, a session key must be negotiated and exchanged. Session keys are
expensive to generate. Therefore, they have a lifetime, typically 100 seconds, for which they exist
after the initial connection is made. Subsequent SSL requests within the key lifetime reuse the key.

Network dispatcher recognizes SSL requests by the port number (443). It allows certain ports to
be designated as “sticky”. Network Dispatcher keeps records of old connections on such ports for a

Improving Web Site Performance 5

designated affinity life span (e.g. 100 seconds for SSL). If a request for a new connection from the
same client on the same port arrives before the affinity life span for the previous connection expires,
the new connection is sent to the same server that the old connection utilized.

Using this approach, SSL requests from the same client will go to the same server for the lifetime
of a session key, obviating the need to negotiate new session keys for each SSL request. This can
cause some load imbalance, particularly since the client address seen by Network Dispatcher may
actually be a proxy representing several clients and not just the client corresponding to the SSL
request. However, the reduction in overhead due to reduced session key generation is usually worth
the load imbalance created. This is particularly true for sites which make gratuitous use of SSL. For
example, some sites will encrypt all of the image files associated with an HTML page and not just
the HTML page itself.

1.2.1.3 Content-based Routing

Connection routing is often done at layer 4 of the OSI model in which the connection router does
not know the contents of the request. Another approach is to perform routing at layer 7. In layer
7 routing, also known as content-based routing, the router examines requests and makes its routing
decisions based on the contents of requests [Pai et al., 1998]. This allows more sophisticated routing
techniques. For example, dynamic requests could be sent to one set of servers, while static requests
could be sent to another set. Different quality of service policies could be assigned to different
URL’s in which the content-based router sends the request to an appropriate server based on the
quality of service corresponding to the requested URL. Content-based routing allows the servers at
a Web site to be asymmetrical. For example, information could be distributed at a Web site so that
frequently requested objects are stored on many or all servers, while infrequently requested objects
are only stored on a few servers. This reduces the storage overhead of replicating all information
on all servers. The content-based router can then use information on how objects are distributed to
make correct routing decisions. The key problem with content-based routing is that the overhead
which is incurred can be high. In order to examine the contents of a request, the router must
terminate the connection with the client.

The use of layer-4 or layer-7 routers depends on the request-routing goal. Load-balancing across
replicated content servers, for example, typically does not require knowledge about the client request
or identity, and thus is well-suited to a layer-4 approach. Simple session affinity based on client IP
address, or directing requests to servers based on application (e.g., port 80 HTTP traffic vs. port 110
POP3 traffic) is also easily accomplished by examining layer-3/4 headers of packets while in transit
through the router. For example, the router may peek at the TCP header flags to determine when
a SYN packet arrives from a client indicating a new connection establishment. Then, once a SYN
is identified, the source and destination port numbers and IP addresses may be used to direct the
request to the right server. This decision is recorded in a table so that subsequent packets arriving
with the same header fields are directed to the same server.

Layer-4 routers, due to their relative simplicity, are often implemented as specialized hardware
since they need not perform any layer-4 protocol processing or maintain much per-connection state.
Although traffic from the clients must be routed via the router, the response traffic from the server,
which accounts for the bulk of the data in HTTP transactions, can bypass the router, flowing directly
back to the client. This is typically done by configuring each server to respond to traffic destined
for the virtual IP address(es), using IP aliasing, for example.

Although layer-4 routers are usually deployed as front-end appliances, an alternative is to al-
low back-end servers to perform load-balancing themselves by redirecting connections to rela-
tively underloaded machines [Bestavros et al., 1998]. However, even without such an optimization,
hardware-based layer-4 routers are able to achieve very high scalability and performance.

Request-routing based on the URL (or other application-layer information), on the other hand,
requires the router to terminate the incoming TCP connection and receive enough information to

6 Practical Handbook of Internet Computing

establish TCP conn.

establish TCP conn.

GET /index.html

(a) (b)

GET /index.html

HTTP response

(c) (d)

FIGURE 1.3
The connection router accepts the TCP connection transparently) from the client (a). Next, in
(b) the client sends a GET request on the established connection, prompting the router to open
a new TCP connection to the appropriate server. In (c) the router forwards the client request
to the server, and, in (d), returns the response to the client.

make a routing decision. In the case of Web traffic, for example, the router must accept the incoming
TCP connection and then wait for the client to send an HTTP request in order to view application-
layer information such as the requested URL, or HTTP cookie. Once enough information to make
a routing decision is received, the router can create a new connection to the appropriate server and
forward the client request. The server response is then passed back to the client via the router on
the client’s original connection. Figure 1.3 outlines these steps.

In the simplest realization, a layer-7 router may be implemented as a software application-level
gateway that transparently accepts incoming client connections (destined for port 80 to the server
virtual IP address) and reads the requests. After deciding which server should handle the request,
the application can forward it on a new or pre-established connection to the server. The router serves
as a bridge between the two connections, copying data from one to the other. From a networking
point of view, the router behaves much like a forward Web proxy installed at an enterprise site,
though the forward proxy’s primary function lies primarily in filtering and content caching, rather
than request routing. In this approach, the router can quickly become a bottleneck, since it must
perform connection termination and management for a large number of clients [Aron et al., 2000;
Cohen et al., 1999]. This limits the overall scalability of the data center in the number of clients it
can support simultaneously.

Several techniques have been proposed to improve the performance and scalability of application-
level gateways used in various contexts, including as HTTP proxies. TCP connection splicing is one
such optimization in which packets are forwarded from one connection to the other at the network
layer, avoiding traversal of the transport layer and the user-kernel protection boundary [Maltz and
Bhagwat, 1998; Spatscheck et al., 2000; Cohen et al., 1999]. TCP splicing mechanisms are usually
implemented as kernel-level modifications to the operating system protocol stack with an interface
to allow applications to initiate the splice operation between two connections. Once the TCP splice
is completed, data is relayed from one connection to the other without further intervention by the
application. Figure 1.4(a) depicts the operation of TCP splicing. With splicing, care must be taken
to ensure that TCP header fields such as sequence numbers, checksums, and options, are correctly
relayed. TCP splicing has been shown to improve the performance of application-layer gateways to
the level of software IP routers. Variations to the kernel-based implementation include implemen-

Improving Web Site Performance 7

client conn.
server conn.

splice

server B

server A

HTTP response

server conn.

handoff

server B

server A

(a) (b)

FIGURE 1.4
With TCP splicing (a), the connection router splices the two connections after determining
that server B should handle the request. The response must be sent back through the router.
In the TCP handoff approach (b), the router, a simpler layer-4 device, initially forwards the
connection request to server A. After receiving the request, server A hands off the connection
state to server B. The response traffic can then flow directly back to the client, bypassing
the router. Client acknowledgements, however, still come through the router, and must be
forwarded to the server B.

tation in the kernel socket library (as opposed to the network layer) [Rosu and Rosu, 2002] and in a
hardware switch [Apostolopoulos et al., 2000].

Though TCP splicing can improve the scalability of a layer-7 router it is still limited by the fact
that a centralized node must terminate incoming connections, examine application-layer informa-
tion, and make request-routing decisions before initiating a splice. In addition, all traffic to and from
the servers must pass through the router to allow the header translation to occur. To address these
limitations, an alternate scheme using connection handoff was proposed [Pai et al., 1998; Aron et al.,
2000; Song et al., 2002]. In this approach, each back-end server can function as a router, effectively
distributing the content inspection and request-routing operations to multiple nodes. Client con-
nections are initially routed to any one of the servers, perhaps using a fast hardware switch. If the
initial server decides that another server is better suited to handle the request, it transfers the TCP
connection state to the alternate server. Using the transferred state, the new server can resume the
connection with the client without requiring that data pass through a front-end router. Figure 1.4(b)
shows the operation of TCP connection handoff.

While the connection handoff approach does remove the bottleneck of connection termination at a
single front-end, its scalability and performance are ultimately limited by the number and overhead
of TCP handoff operations. Furthermore, it still requires a special front-end layer-4 router, since
incoming packets (e.g., TCP acknowledgements) must be forwarded to the appropriate server after
the connection is handed off. Finally, TCP handoff requires kernel modifications to the server
operating systems to support handoff. The splicing approach, on the other hand, is transparent to
both servers and clients.

As Web application requirements evolve, there will be a need for more sophisticated connec-
tion routing, based on a variety of application information. This trend implies that the layer-4
approach of examining only transport-layer headers provides insufficient functionality. But layer-7
routers, while more sophisticated, suffer from the limitations on scalability and performance de-
scribed above.

1.2.1.4 Client-based Load Balancing

A number of client-based techniques have been proposed for load balancing. A few years ago,
Netscape implemented a scheme for doing load balancing at the Netscape Web site (before they
were purchased by AOL) in which the Netscape browser was configured to pick the appropriate
server [Mosedale et al., 1997]. When a user accessed the Web site www.netscape.com, the browser
would randomly pick a number i between 1 and the number of servers and direct the request to

8 Practical Handbook of Internet Computing

wwwi.netscape.com.
Another client-based technique is to use the client’s DNS [Fei et al., 1998; Rabinovich and

Spatscheck, 2002]. When a client wishes to access a URL, it issues a query to its DNS to get
the IP address of the site. The Web site’s DNS returns a list of IP addresses of the servers instead
of a single IP address. The client DNS selects an appropriate server for the client. An alternative
strategy is for the client to obtain the list of IP addresses from its DNS and do the selection itself.
An advantage to the client making the selection itself is that the client can collect information about
the performance of different servers at the site and make an intelligent choice based on this. The
disadvantages of client-based techniques is that the Web site loses control over how requests are
routed, and such techniques generally require modifications to the client (or at least the client’s
DNS server).

1.2.2 Serving Dynamic Web Content

Web servers satisfy two types of requests, static and dynamic. Static requests are for files that exist
at the time a request is made. Dynamic requests are for content that has to be generated by a server
program executed at request time. A key difference between satisfying static and dynamic requests
is the processing overhead. The overhead of serving static pages is relatively low. A Web server
running on a uniprocessor can typically serve several hundred static requests per second. Of course,
this number is dependent on the data being served; for large files, the throughput is lower.

The overhead for satisfying a dynamic request may be orders of magnitude more than the over-
head for satisfying a static request. Dynamic requests often involve extensive back-end processing.
Many Web sites make use of databases, and a dynamic request may invoke several database ac-
cesses. These database accesses can consume significant CPU cycles. The back-end software for
creating dynamic pages may be complex. While the functionality performed by such software may
not appear to be compute-intensive, such middleware systems are often not designed efficiently;
commercial products for generating dynamic data can be highly inefficient.

One source of overhead in accessing databases is connecting to the database. Many database sys-
tems require a client to first establish a connection with a database before performing a transaction
in which the client typically provides authentication information. Establishing a connection is often
quite expensive. A naive implementation of a Web site would establish a new connection for each
database access. This approach could overload the database with relatively low traffic levels.

A significantly more efficient approach is to maintain one or more long-running processes with
open connections to the database. Accesses to the database are then made with one of these long-
running processes. That way, multiple accesses to the database can be made over a single connec-
tion.

Another source of overhead is the interface for invoking server programs in order to generate
dynamic data. The traditional method for invoking server programs for Web requests is via the
Common Gateway Interface (CGI). CGI forks off a new process to handle each dynamic request;
this incurs significant overhead. There are a number of faster interfaces available for invoking
server programs [Iyengar et al., 2000]. These faster interfaces use one of two approaches. The first
approach is for the Web server to provide an interface to allow a program for generating dynamic
data to be invoked as part of the Web server process itself. IBM’s GO Web server API (GWAPI)
is an example of such an interface. The second approach is to establish long-running processes to
which a Web server passes requests. While this approach incurs some interprocess communication
overhead, the overhead is considerably less than that incurred by CGI. FastCGI is an example of the
second approach [Market].

In order to reduce the overhead for generating dynamic data, it is often feasible to generate data
corresponding to a dynamic object once, store the object in a cache, and subsequently serve requests
to the object from cache instead of invoking the server program again [Iyengar and Challenger,
1997]. Using this approach, dynamic data can be served at about the same rate as static data.

Improving Web Site Performance 9

However, there are types of dynamic data that cannot be precomputed and served from a cache.
For instance, dynamic requests that cause a side effect at the server such as a database update
cannot be satisfied merely by returning a cached page. As an example, consider a Web site that
allows clients to purchase items using credit cards. At the point at which a client commits to buying
something, that information has to be recorded at the Web site; the request cannot be solely serviced
from a cache.

Personalized Web pages can also negatively affect the cacheability of dynamic pages. A person-
alized Web page contains content specific to a client, such as the client’s name. Such a Web page
could not be used for another client. Therefore, caching the page is of limited utility since only a
single client can use it. Each client would need a different version of the page.

One method which can reduce the overhead for generating dynamic pages and enable caching
of some parts of personalized pages is to define these pages as being composed of multiple frag-
ments [Challenger et al., 2000]. In this approach, a complex Web page is constructed from several
simpler fragments. A fragment may recursively embed other fragments. This is efficient because
the overhead for assembling a Web page from simpler fragments is usually minor compared to the
overhead for constructing the page from scratch, which can be quite high.

The fragment-based approach also makes it easier to design Web sites. Common information that
needs to be included on multiple Web pages can be created as a fragment. In order to change the
information on all pages, only the fragment needs to be changed.

In order to use fragments to allow partial caching of personalized pages, the personalized infor-
mation on a Web page is encapsulated by one or more fragments that are not cacheable, but the
other fragments in the page are. When serving a request, a cache composes pages from its con-
stituent fragments, many of which are locally available. Only personalized fragments have to be
created by the server. As personalized fragments typically constitute a small fraction of the entire
page, generating only them would require lower overhead than generating all of the fragments in
the page.

Generating Web pages from fragments provides other benefits as well. Fragments can be con-
structed to represent entities that have similar lifetimes. When a particular fragment changes but
the rest of the Web page stays the same, only the fragment needs to be invalidated or updated in the
cache, not the entire page. Fragments can also reduce the amount of cache space taken up by mul-
tiple pages with common content. Suppose that a particular fragment is contained in 2000 popular
Web pages which should be cached. Using the conventional approach, the cache would contain a
separate version of the fragment for each page resulting in as many as 2000 copies. By contrast, if
the fragment-based method of page composition is used, only a single copy of the fragment needs
to be maintained.

A key problem with caching dynamic content is maintaining consistent caches. It is advantageous
for the cache to provide a mechanism, such as an API, allowing the server to explicitly invalidate or
update cached objects so that they don’t become obsolete. Web objects may be assigned expiration
times that indicate when they should be considered obsolete. Such expiration times are generally
not sufficient for allowing dynamic data to be cached properly because it is often not possible to
predict accurately when a dynamic page will change.

1.3 Server Performance Issues

A central component of the response time seen by Web users is, of course, the performance of the
origin server that provides the content. There is great interest, then, understanding the performance
of Web servers: How quickly can they respond to requests? How well do they scale with load? Are

10 Practical Handbook of Internet Computing

they capable of operating under overload, i.e., can they maintain some level of service even when
the requested load far outstrips the capacity of the server?

A Web server is an unusual piece of software in that it must communicate with potentially thou-
sands of remote clients simultaneously. The server thus must be able to deal with a large degree of
concurrency. A server cannot simply respond to each client in a non-preemptive, first-come first-
serve manner, for several reasons. Clients are typically located far away over the wide-area Internet,
and thus connection lifetimes can last many seconds or even minutes. Particularly with HTTP 1.1,
a client connection may be open but idle for some time before a new request is submitted. Thus a
server can have many concurrent connections open, and should be able do work for one connection
when another is quiescent. Another reason is that a client may request a file which is not resident in
memory. While the server CPU waits for the disk to retrieve the file, it can work on responding to
another client. For these and other reasons, a server must be able to multiplex the work it has to do
through some form of concurrency.

A fundamental factor which affects the performance of a Web server is the architectural model
that it uses to implement that concurrency. Generally, Web servers can be implemented using one of
four architectures: processes, threads, event-driven, and in-kernel. Each approach has its advantages
and disadvantages which we go into more detail below. A central issue in this decision of which
model to use is what sort of performance optimizations are available under that model. Another is
how well that model scales with the workload, i.e., how efficiently it can handle growing numbers
of clients.

1.3.1 Process-Based Servers

Processes are perhaps the most common form of providing concurrency. The original NCSA server
and the widely-known Apache server [Project] use processes as the mechanism to handle large
numbers of connections. In this model, a process is created for each new request, which can block
when necessary, for example waiting for data to become available on a socket or for file I/O to be
available from the disk. The server handles concurrency by creating multiple processes.

Processes have two main advantages. First, they are consistent with a programmers’ way of think-
ing, allowing the developer to proceed in a step-by-step fashion without worrying about managing
concurrency. Second, they provide isolation and protection between different clients. If one process
hangs or crashes, the other processes should be unaffected.

The main drawback to processes is performance. Processes are relatively heavyweight abstrac-
tions in most operating systems, and thus creating them, deleting them, and switching context be-
tween them is expensive. Apache, for example, tries to ameliorate these costs by pre-forking a
number of processes and only destroys them if the load falls below a certain threshold. However,
the costs are still significant, as each process requires memory to be allocated to them. As the num-
ber of processes grow, large amounts of memory are used which puts pressure on the virtual memory
system, which could use the memory for other purposes, such as caching frequently-accessed data.
In addition, sharing information, such as a cached file, across processes can be difficult.

1.3.2 Thread-Based Servers

Threads are the next most common form of concurrency. Servers that use threads include JAWS [Hu
et al., 1997] and Sun’s Java Web Server [Inc., b]. Threads are similar to processes but are considered
lighter-weight. Unlike processes, threads share the same address space and typically only provide
a separate stack for each thread. Thus, creation costs and context-switching costs are usually much
lower than for processes. In addition, sharing between threads is much easier. Threads also maintain
the abstraction of an isolated environment much like processes, although the analogy is not exact
since programmers must worry more about issues like synchronization and locking to protect shared
data structures.

Improving Web Site Performance 11

Threads have several disadvantages as well. Since the address space is shared, threads are not
protected from one another the way processes are. Thus, a poorly programmed thread can crash
the whole server. Threads also require proper operating system support, otherwise when a thread
blocks on something such as a file I/O, the whole address space will be stopped.

1.3.3 Event-Driven Servers

The third form of concurrency is known as the event-driven architecture. Servers that use this
method include Flash [Pai et al., 1999] and Zeus [Inc., c]. With this architecture, a single process is
used with non-blocking I/O. Non-blocking I/O is a way of doing asynchronous reads and writes on
a socket or file descriptor. For example, instead of a process reading a file descriptor and blocking
until data is available, an event-driven server will return immediately if there is no data. In turn,
the O.S. will let the server process know when a socket or file descriptor is ready for reading or
writing through a notification mechanism. This notification mechanism can be an active one such
as a signal handler, or a passive one requiring the process to ask the O.S. such as the select()
system call. Through these mechanisms the server process will essentially respond to events and is
typically guaranteed to never block.

Event-driven servers have several advantages. First, they are very fast. Zeus is frequently used
by hardware vendors to generate high Web server numbers with the SPECWeb99 benchmark [Cor-
poration, 1999]. Sharing is inherent, since there is only one process, and no locking or synchro-
nization is needed. There are no context-switch costs or extra memory consumption that are the
case with threads or processes. Maximizing concurrency is thus much easier than with the previous
approaches.

Event-driven servers have downsides as well. Like threads, a failure can halt the whole server.
Event-driven servers can tax operating system resource limits, such as the number of open file de-
scriptors. Different operating systems have varying levels of support for asynchronous I/O, so a
fully event-driven server may not be possible on a particular platform. Finally, event-driven servers
require a different way of thinking from the programmer, who must understand and account for
the ways in which multiple requests can be in varying stages of progress simultaneously. In this
approach, the degree of concurrency is fully exposed to the developer, with all the attendant advan-
tages and disadvantages.

1.3.4 In-Kernel Servers

The fourth and final form of server architectures is the in-kernel approach. Servers that use this
method include AFPA [Joubert et al., 2001] and Tux [Inc., a]. All of the previous architectures
place the Web server software in user space; in this approach the HTTP server is in kernel space,
tightly integrated with the host TCP/IP stack.

The in-kernel architecture has the advantages that it is extremely fast, since potentially expensive
transitions to user space are completely avoided. Similarly, no data needs to be copied across the
user-kernel boundary, another costly operation.

The disadvantages for in-kernel approaches are several. First, it is less robust to programming
errors; a server fault can crash the whole machine, not just the server! Development is much harder,
since kernel programming is more difficult and much less portable than programming user-space
applications. Kernel internals of Linux, FreeBSD, and Windows vary considerably, making deploy-
ment across platforms more work. The socket and thread APIs, on the other hand, are relatively
stable and portable across operating systems.

Dynamic content poses an even greater challenge for in-kernel servers, since an arbitrary pro-
gram may be invoked in response to a request for dynamic content. A full-featured in-kernel web
server would need to have a PHP engine or Java runtime interpreter loaded in with the kernel! The
way current in-kernel servers deal with this issue is to restrict their activities to the static content

12 Practical Handbook of Internet Computing

0

500

1000

1500

2000

2500

Tux Flash Apache

S
er

ve
r

T
hr

ou
gh

pu
t i

n
H

T
T

P
 o

ps
/s

ec

Tux 2.0
Flash

Apache 1.3.20

FIGURE 1.5
Server Throughput

component of Web serving, and pass dynamic content requests to a complete server in user space,
such as Apache. For example, many entries in the SPECWeb99 site [Corporation, 1999] that use
the Linux operating system use this hybrid approach, with Tux serving static content in the kernel
and Apache handling dynamic requests in user space.

1.3.5 Server Performance Comparison

Since we are concerned with performance, it is thus interesting to see how well the different server
architectures perform. To evaluate them, we took a experimental testbed setup and evaluate the
performance using a synthetic workload generator [Nahum et al., 2001] to saturate the servers with
requests for a range of web documents. The clients were eight 500 MHz PC’s running FreeBSD,
and the server was a 400 MHz PC running Linux 2.4.16. Each client had a 100 Mbps Ethernet
connected to a gigabit switch, and the server was connected to the switch using Gigabit Ethernet.
Three servers were evaluated as representatives of their architecture: Apache as a process-based
server, Flash as an event-driven server, and Tux as an in-kernel server.

Figure 1.5 shows the server throughput in HTTP operations/sec of the three servers. As can be
seen, Tux, the in-kernel server, is the fastest at 2193 ops/sec. However, Flash is only 10 percent
slower at 2075 ops/sec, despite being implemented in user space. Apache, on the other hand, is
significantly slower at 875 ops/sec. Figure 1.6 shows the server response time for the three servers.
Again, Tux is the fastest, at 3 msec, Flash second at 5 msec, and Apache slowest at 10 msec.

Since multiple examples of each type of server architecture exist, there is clearly no consensus
for what is the best model. Instead, it may be that different approaches are better suited for different
scenarios. For example, the in-kernel approach may be most appropriate for dedicated server ap-
pliances, or as content distribution (CDN) nodes, whereas a back-end dynamic content server will
rely on the full generality of a process-based server like Apache. Still, web site operators should be
aware of how the choice of architecture will affect Web server performance.

Improving Web Site Performance 13

0

2

4

6

8

10

12

Tux Flash Apache

S
er

ve
r

R
es

po
ns

e
T

im
e

in
 m

se
c

Tux 2.0
Flash

Apache 1.3.20

FIGURE 1.6
Server Response Time

Name: Chess Olympics IBM World Cup Dept. Store IBM
1997 1998 1998 1998 2000 2001

Desc.: Kasparov- Sporting Corporate Sporting Online Corporate
Deep Blue Event Site Presence Event Site Shopping Presence
Event Site

Period: 2 weeks in 1 day in 1 day in 31 days in 12 days in 1 day in
May 1997 Feb. 1998 June 1998 June 1998 June 2000 Feb. 2001

Hits: 1,586,667 11,485,600 5,800,000 1,111,970,278 13,169,361 12,445,739
KBytes: 14,171,711 54,697,108 10,515,507 3,952,832,722 43,960,527 28,804,852
Clients: 256,382 86,021 80,921 2,240,639 254,215 319,698
URLs: 2,293 15,788 30,465 89,997 11,298 42,874

Logs used in examples

1.4 Web Server Workload Characterization

Workload characterization is frequently necessary in order to better understand the performance of
a Web site. Typical workload questions include: What do requests look like? How popular are some
documents versus others? How large are Web transfers? What level of HTTP protocol deployment
exists on the Web?

Over time, Web server workload characterization has answered some of those questions, which
we provide an overview of here. In this section we describe various characteristics or performance
metrics identified in the literature. To help illustrate the characteristics, we also present examples
derived from several logs. Table 1.1 gives an overview of the logs used in the examples, several of
which are taken from high-volume Web sites that were managed by IBM. One log, taken from an
online department store, is taken from a site hosted by but not designed or managed by IBM. We
also include most of the 1998 World Cup logs [Arlitt and Jin, 2000], which are publicly available at
the Internet Traffic Archive [Laboratory]. Due to the size of these logs, we limit our analysis to the

14 Practical Handbook of Internet Computing

Request Chess Olymp. IBM W. Cup Dept. IBM
Method 1997 1998 1998 1998 2000 2001
GET 92.18 99.37 99.91 99.75 99.42 97.54
HEAD 03.18 00.08 00.07 00.23 00.45 02.09
POST 00.00 00.02 00.01 00.01 00.11 00.22

HTTP Request Methods (percent)

busiest four weeks of the trace, June 10th through July 10th (days 46 through 76 on the web site).
Since our analysis is based on Web logs, certain interesting characteristics cannot be examined.

For example, persistent connections, pipelining, network round-trip times and packet loss all have
significant effects on both server performance and client-perceived response time. These character-
istics are not captured in Apache Common Log format and typically require more detailed packet-
level measurements using a tool such as tcpdump. These sorts of network-level measurements are
difficult to obtain due to privacy and confidentiality requirements.

An important caveat worth reiterating is that any one Web site may not be representative of a
particular application or workload. For example, the behavior of a very dynamic Web site such as
eBay, which hosts a great deal of rapidly changing content, is most likely very different from an
online trading site like Schwab, which conducts most of its business encrypted using the Secure
Sockets Layer (SSL). Several example Web sites given here were all run by IBM, and thus may
share certain traits not observed by previous researchers in the literature. As we will see, however,
the characteristics from the IBM sites are consistent with those described in the literature.

Dynamic content [Amza et al., 2002; Cecchet et al., 2002; Challenger et al., 2000; Iyengar
and Challenger, 1997] is becoming a central component of modern transaction-oriented Web sites.
While dynamic content generation is clearly a very important issue, there is currently no consensus
as to what constitutes a “representative” dynamic workload, and so we do not present any charac-
teristics of dynamic content here.

1.4.1 Request Methods

The first trait we examine is how frequent different request methods appear in server workloads.
Several methods were defined in the HTTP 1.0 standard [Berners-Lee et al., 1996] (e.g., HEAD,
POST, DELETE), and multiple others were added in the 1.1 specification [Fielding et al., 1997,
1999] (e.g., OPTIONS, TRACE, CONNECT). GET requests are the primary method by which
documents are retrieved; the method “means retrieve whatever information ... is identified by the
Request-URI” [Berners-Lee et al., 1996]. The HEAD method is similar to the GET method ex-
cept that only meta-information about the URI is returned. The POST method is a request for the
server to accept information from the client, and is typically used for filling out forms and invoking
dynamic content generation mechanisms. The literature has shown [Krishnamurthy and Rexford,
2001] that the vast majority of methods are GET requests, with a smaller but noticeable percent-
age being HEAD or POST methods. Table 1.2 shows the percentage of request methods seen in
the various logs. Here, only those methods which appear a non-trivial fraction are shown, in this
case defined as greater than one hundredth of a percent. While different logs have slightly varying
breakdowns, they are consistent with the findings in the literature.

1.4.2 Response Codes

The next characteristic we study are the response codes generated by the server. Again, the HTTP
specifications define a large number of responses, the generation of which depends on multiple
factors such as whether or not a client is allowed access to a URL, whether or not the request is

Improving Web Site Performance 15

Response Chess Olymp. IBM W.Cup Dept. IBM
Code 1997 1998 1998 1998 2000 2001
200 OK 85.32 76.02 75.28 79.46 86.80 67.73
206 Partial Content 00.00 00.00 00.00 00.06 00.00 00.00
302 Found 00.05 00.05 01.18 00.56 00.56 15.11
304 Not Modified 13.73 23.25 22.84 19.75 12.40 16.26
403 Forbidden 00.01 00.02 00.01 00.00 00.02 00.01
404 Not Found 00.55 00.64 00.65 00.70 00.18 00.79

Server Response Codes (percent)

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 tr
an

sf
er

s

Document Rank by Popularity

1997 Deep Blue Chess
1998 Nagano Olympics
1998 WWW.IBM.COM

1998 World Cup
2000 Dept. Store

2001 WWW.IBM.COM

FIGURE 1.7
Document Popularity

properly formed, etc. However, certain responses are much more frequent than others.

Table 1.3 shows those responses seen in the logs that occur with a non-trivial frequency, again
defined as greater than one hundredth of a percent. We see that the majority of the responses are
successful transfers, i.e., the 200 OK response code.

Perhaps the most interesting aspect of this data is, however, the relatively large fraction of 304
Not Modified responses. This code is typically generated in response to a client generating a GET
request with the If-Modified-Since option, which provides the client’s notion of the URL’s last-
modified time. This request is essentially a cache-validation option and asks the server to respond
with the full document if the client’s copy is out of date. Otherwise, the server should respond with
the 304 code if the copy is OK. As can be seen, between 12 and 23 percent of responses are 304
codes, indicating that clients re-validating up-to-date content is a relatively frequent occurrence,
albeit in different proportions at different Web sites.

Other responses, such as 403 Forbidden or 404 Not Found, are not very frequent, on the order
of a tenth of a percent, but appear occasionally. The IBM 2001 log is unusual in that roughly 15
percent of the responses use the 302 Found code, which is typically used as a temporary redirection
facility.

16 Practical Handbook of Internet Computing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

F
ra

ct
io

n
of

 F
ile

s

File Size in Bytes

1997 Deep Blue Chess
1998 Nagano Olympics
1998 WWW.IBM.COM

1998 World Cup
2000 Dept. Store

2001 WWW.IBM.COM

FIGURE 1.8
Document Size (CDF)

1.4.3 Object Popularity

Numerous researchers [Almeida et al., 1996; Arlitt and Williamson, 1997; Crovella and Bestavros,
1997; Padmanabhan and Qui, 2000] have observed that, in origin Web servers, the relative proba-
bility with which a web page is accessed follows a Zipf-like distribution. That is,

p(r) � C=r�

where p(r) is the probability of a request for a document with rank r, andC is a constant (depending
on � and the number of documents) that ensures that the sum of the probabilities is one. Rank is
defined by popularity; the most popular document has rank 1, the second-most popular has rank 2,
etc. When � equals 1, the distribution is a true Zipf; when � is another value the distribution is
considered “Zipf-like.” Server logs tend to have � values of one or greater; proxy server logs have
lower values ranging from 0.64 to 0.83 [Breslau et al., 1999].

Figure 1.7 shows the fraction of references based on document rank generated from the sample
Web logs. Note that both the X and Y axes use a log scale. As can be seen, all the curves follow a
Zipf-like distribution fairly closely, except towards the upper left of the graph and the lower right of
the graph.

This Zipf property of document popularity is significant because it shows the effectiveness of doc-
ument caching. For example, one can see that by simply caching the 100 most popular documents,
assuming these documents are all cacheable, the vast majority of requests will find the document in
the cache, avoiding an expensive disk I/O operation.

1.4.4 File Sizes

The next characteristic we examine is the range of sizes of the URLs stored on a Web server. File
sizes give a picture of how much storage is required on a server, as well as how much RAM might be
needed to fully cache the data in memory. Which distribution best captures file size characteristics
has been a topic of some controversy. There is consistent agreement that sizes range over multiple
orders of magnitude and that the body of the distribution (i.e., that excluding the tail) is Log-Normal.

Improving Web Site Performance 17

Statistic Chess Olympics IBM W. Cup Dept. IBM
1997 1998 1998 1998 2000 2001

Min 1 23 1 1 2 1
Median 8,697 7,757 3,244 328 3,061 7,049
Mean 45,012 12,851 20,114 6,028 4,983 29,662
Max 8,723,751 2,646,058 17,303,027 64,219,310 99,900 61,459,221
Std Dev 384,175 44,618 193,892 253,481 6,115 394,088

File Size Statistics (bytes)

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
om

pl
em

en
t o

f F
ra

ct
io

n

File Size in Bytes

1997 Deep Blue Chess
1998 Nagano Olympics
1998 WWW.IBM.COM

1998 World Cup
2000 Dept. Store

2001 WWW.IBM.COM

FIGURE 1.9
Document Size (CCDF)

However, the shape of the tail of the distribution has been debated, with claims that it is Pareto
[Crovella and Bestavros, 1997], Log-Normal [Downey, 2001], and even that the amount of data
available is insufficient to statistically distinguish the the two [Gong et al., 2001]. Figure 1.8 shows
the CDF of file sizes seen in the logs. Note that the X axis is in log scale. Table 1.4 presents
the minimum, maximum, median, mean, and standard deviation of the file sizes. As can be seen,
sizes range from a single byte to over 64 megabytes, varying across several orders of magnitude. In
addition, the distributions show the rough ‘S’ shape of the Log-Normal distribution.

As mentioned earlier, a metric of frequent interest in the research community is the “tail” of the
distribution. While the vast majority of files are small, the majority of bytes transferred are found
in large files. This is sometimes known as the “Elephants and Mice” phenomenon. To illustrate this
property, we graphed the complement of the cumulative distribution function, or CCDF, of the logs.
These are shown in Figure 1.9. The Y values for this graph are essentially the complement of the
corresponding Y values from Figure 1.8. Unlike Figure 1.8, however, note here that the Y-axis uses
a log scale to better illustrate the tail. We observe that all the logs have maximum files in the range
of 1 to 10 MB, with the exception of the Department Store log, which has no file size greater than
99990 bytes.

18 Practical Handbook of Internet Computing

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Transfer Size in Bytes

1997 Deep Blue Chess
1998 Nagano Olympics
1998 WWW.IBM.COM

1998 World Cup
2000 Dept. Store

2001 WWW.IBM.COM

FIGURE 1.10
Transfer Size (CDF)

Statistic Chess Olympics IBM W. Cup Dept. IBM
1997 1998 1998 1998 2000 2001

Median 1506 886 265 889 1339 344
Mean 10847 4851 1856 4008 3418 2370
Std Dev 100185 31144 29134 32945 6576 35986

Transfer Size Statistics (bytes)

Improving Web Site Performance 19

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
om

pl
em

en
t o

f F
ra

ct
io

n

File Size in Bytes

1997 Deep Blue Chess
1998 Nagano Olympics
1998 WWW.IBM.COM

1998 World Cup
2000 Dept. Store

2001 WWW.IBM.COM

FIGURE 1.11
Transfer Size (CCDF)

1.4.5 Transfer Sizes

A metric related to Web file sizes is Web transfer sizes, or the size of the objects sent “over the
wire.” Transfer sizes are significant since they connote how much bandwidth is used by the Web
server to respond to clients. In Apache Common Log Format, transfer size is based on the amount
of content sent, and does not include the size from any HTTP headers or lower-layer bytes such as
TCP or IP headers. Thus, here transfer size is based on the size of the content transmitted. The
distribution of transfer sizes is thus influenced by the popularity of documents requested, as well as
by the proportion of unusual responses such as 304 Not Modified and 404 Not Found.

Figure 1.10 shows the CDF of the object transfers from the logs. Table 1.5 presents the median,
mean, and standard deviation of the transfer sizes. As can be seen, transfers tend to be small; for
example, the median transfer size from the IBM 2001 log is only 344 bytes! An important trend is
to note that a large fraction of transfers are for zero bytes, as much as 28 percent in the 1998 IBM
log. The vast majority of these zero-byte transfers are the 304 Not Modified responses noted above
in Section 1.4.2. When a conditional GET request with the If-Modified-Since option is successful, a
304 response is generated and no content is transferred. Other return codes, such as 403 Forbidden
and 404 Not Found, also result in zero-byte transfers, but they are significantly less common. The
exception is the IBM 2001 log, where roughly 15 percent of the 302 Found responses contribute to
the fraction of zero-byte transfers.

Figure 1.11 shows the CCDF of the transfer sizes, in order to illustrate the “tail” of the distribu-
tions. Note again that the Y axis uses a log scale. The graph looks similar to Figure 1.9, perhaps
since these transfers are so uncommon that weighting them by frequency does not change the shape
of the graph, as it does with the bulk of the distribution in Figure 1.10.

1.4.6 HTTP Version

Another question we are interested in is what sort of HTTP protocol support is being used by
servers. While HTTP 1.1 was first standardized in 1997 [Fielding et al., 1997], the protocol has
undergone some updating [Fielding et al., 1999; Krishnamurthy and Rexford, 2001] and in some

20 Practical Handbook of Internet Computing

Protocol Chess Olymp. IBM W. Cup Dept. IBM
Version 1997 1998 1998 1998 2000 2001
HTTP 1.0 95.30 78.56 77.22 78.62 51.13 51.08
HTTP 1.1 00.00 20.92 18.43 21.35 48.82 48.30
Unclear 04.70 00.05 04.34 00.02 00.05 00.06

HTTP Protocol Versions (percent)

ways is still being clarified [Krishnamurthy et al., 1999; Mogul, 2002]. The transition from 1.0 to
1.1 is a complex one, requiring support from browsers, servers, and any proxy intermediaries as
well.

Table 1.6 shows the HTTP protocol version that the server used in responding to requests. A clear
trend is that over time, more requests are being serviced using 1.1. In the most recent logs, from
2000 and 2001, HTTP 1.1 is used in just under half the responses.

Given the depth and complexity of the HTTP 1.1 protocol, the numbers above only scratch the
surface of how servers utilize HTTP 1.1. Many features have been added in 1.1, including new
mechanisms, headers, methods, and response codes. How these features are used in practice is still
an open issue, and as mentioned earlier, server logs are insufficient to fully understand HTTP 1.1
behavior.

1.4.7 Summary

This work has presented some of the significant performance characteristics observed in Web server
traffic. An interesting observation is that many of them have not fundamentally changed over time.
Some, such as HTTP 1.1 support, have changed as we would expect, albeit more slowly than we
might anticipate. Still, certain characteristics seem to be invariants that hold both across time and
across different Web sites.

Acknowledgement

Some of the material in this chapter appeared in the paper Enhancing Web Performance by the same
authors in Proceedings of the 2002 IFIP World Computer Congress (Communication Systems: The
State of the Art), edited by Lyman Chapin, published by Kluwer Academic Publishers, Boston,
copyright 2002, International Federation for Information Processing.

References

Alteon ACEdirector. http://www.nortelnetworks.com/products/01/acedir .

BIG-IP controller. http://www.f5.com/f5products/bigip/ .

Cisco CSS 1100. http://www.cisco.com/warp/public/cc/pd/si/11000/ , a.

Cisco LocalDirector 400 series. http://www.cisco.com/warp/public/cc/pd/cxsr/
400/ , b.

Foundry ServerIron. http://www.foundrynet.com/products/webswitches/
serveriron .

Intel NetStructure 7175 traffic director. http://www.intel.com/network/idc/
products/director_7175.htm .

Websphere edge server. http://www.ibm.com/software/webservers/
edgeserver/ .

Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Characterizing refer-
ence locality in the WWW. In Proceedings of PDIS’96: The IEEE Conference on Parallel and
Distributed Information Systems, Miami Beach, Florida, December 1996.

Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Alan Cox, Romer Gil,
Julie Marguerite, Karthick Rajamani, and Willy Zwaenepoel. Bottleneck characterization of
dynamic Web site benchmarks. Technical Report TR02-388, Rice University Computer Science
Department, February 2002.

George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Pradhan, and Debanjan Saha. De-
sign, implementation and performance of a content-based switch. In Proceedings of IEEE INFO-
COM, March 2000.

Martin F. Arlitt and Tai Jin. Workload characterization of the 1998 World Cup Web site. IEEE
Network, 14(3):30–37, May/June 2000.

Martin F. Arlitt and Carey L. Williamson. Internet Web servers: Workload characterization and
performance implications. IEEE/ACM Transactions on Networking, 5(5):631–646, Oct 1997.

Mohit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel. Scalable content-aware re-
quest distribution in cluster-based network servers. In Proceedings of USENIX Annual Technical
Conference, San Diego, CA, June 2000.

Micah Beck and Terry Moore. The Internet2 distributed storage infrastructure project: An ar-
chitecture for Internet content channels. In Proceedings of the 3rd International Web Caching
Workshop, 1998.

Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Hypertext transfer protocol – HTTP/1.0. In
IETF RFC 1945, May 1996.

Azer Bestavros, Mark Crovella, Jun Liu, and David Martin. Distributed packet rewriting and its
application to scalable server architectures. In Proceedings of IEEE International Conference on

0-8493-0052-5/00/$0.00+$.50
c 2003 by CRC Press LLC 21

22 Practical Handbook of Internet Computing

Network Protocols, Austin, TX, October 1998.

Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and Zipf-like
distributions: Evidence and implications. In Proceedings of the Conference on Computer Com-
munications (IEEE Infocom), New York, NY, March 1999.

Thomas P. Brisco. DNS support for load balancing. Number IETF RFC 1974, April 1995.

Valeria Cardellini, Michele Colajanni, and Philip S. Yu. DNS dispatching algorithms with state
estimators for scalable Web server clusters. World Wide Web, 2(2), July 1999a.

Valeria Cardellini, Michele Colajanni, and Philip S. Yu. Dynamic load balancing on Web-server
systems. IEEE Internet Computing, pages 28–39, May/June 1999b.

Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite, and Willy Zwaenepoel. A
comparison of software architectures for e-business applications. Technical Report TR02-389,
Rice University Computer Science Department, February 2002.

Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. A publishing system
for efficiently creating dynamic Web content. In Proceedings of IEEE INFOCOM, March 2000.

Ariel Cohen, Sampath Ragarajan, and Hamilton Slye. On the performance of TCP splicing for
URL-aware redirection. In Proceedings of USENIX Symposium on Internet Technologies and
Systems, Boulder, CO, October 1999.

The Standard Performance Evaluation Corporation. SPECWeb99. http://www.spec.org/
osg/web99 , 1999.

Mark Crovella and Azer Bestavros. Self-similarity in World Wide Web traffic: Evidence and possi-
ble causes. IEEE/ACM Transactions on Networking, 5(6):835–846, Nov 1997.

Dan Dias, William Kish, Rajat Mukherjee, and Renu Tewari. A scalable and highly available Web
server. In Proceedings of the 1996 IEEE Computer Conference (COMPCON), February 1996.

Allen Downey. The structural cause of file size distributions. In Proceedings of the Ninth Inter-
national Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), Cincinnati, OH, Aug 2001.

Zongming Fei, Samrat Bhattacharjee, Ellen Zegura, and Mustapha Ammar. A novel server selec-
tion technique for improving the response time of a replicated service. In Proceedings of IEEE
INFOCOM, 1998.

Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, and Tim Berners-Lee. Hypertext transfer
protocol – HTTP/1.1. In IETF RFC 2068, January 1997.

Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach, and Tim
Berners-Lee. Hypertext transfer protocol – HTTP/1.1. In IETF RFC 2616, June 1999.

Weibo Gong, Yong Liu, Vishal Misra, and Don Towsley. On the tails of Web file size distributions.
In Proceedings of the 39th Allerton Conference on Communication, Control, and Computing,
Monticello, Illinois, Oct 2001.

James C. Hu, Irfan Pyarali, and Douglas C. Schmidt. Measuring the impact of event dispatching and
concurrency models on Web server performance over high-speed networks. In Proceedings of the
2nd Global Internet Conference (held as part of GLOBECOM ’97), Phoenix, AZ, Nov 1997.

Guerney Hunt, German Goldszmidt, Richard King, and Rajat Mukherjee. Network dispatcher: A
connection router for scalable Internet services. In Proceedings of the 7th International World
Wide Web Conference, April 1998.

Improving Web Site Performance 23

Red Hat Inc. The Tux WWW server. http://people.redhat.com/˜mingo/
TUX-patches/ , a.

Sun Microsystems Inc. The Java Web server. http://wwws.sun.com/software/
jwebserver/index.html , b.

Zeus Inc. The Zeus WWW server. http://www.zeus.co.uk , c.

Arun Iyengar and Jim Challenger. Improving Web server performance by caching dynamic data.
In Proceedings of the USENIX Symposium on Internet Technologies and Systems, Monterey, CA,
December 1997.

Arun Iyengar, Jim Challenger, Daniel Dias, and Paul Dantzig. High-performance Web site design
techniques. IEEE Internet Computing, 4(2), March/April 2000.

Philippe Joubert, Robert King, Richard Neves, Mark Russinovich, and John Tracey. High-
performance memory-based Web servers: Kernel and user-space performance. In Proceedings of
the USENIX Annual Technical Conference, Boston, MA, June 2001.

Balachander Krishnamurthy, Jeffrey C. Mogul, and David M. Kristol. Key differences between
HTTP/1.0 and HTTP/1.1. In Proceedings of WWW-8 Conference, Toronto, Canada, May 1999.

Balachander Krishnamurthy and Jennifer Rexford. Web Protocols and Practice. Addison Wesley,
2001.

Thomas T. Kwan, Robert E. McGrath, and Daniel A. Reed. NCSA’s World Wide Web server:
Design and performance. IEEE Computer, 28(11):68–74, November 1995.

Lawrence Berkeley National Laboratory. The Internet traffic archive. http://ita.ee.lbl.
gov/ .

David Maltz and Pravin Bhagwat. TCP splicing for application layer proxy performance. Technical
Report RC 21139, IBM TJ Watson Research Center, 1998.

Open Market. FastCGI. http://www.fastcgi.com/.

Jeffrey C. Mogul. Clarifying the fundamentals of HTTP. In Proceedings of WWW 2002 Conference,
Honolulu, HA, May 2002.

Dan Mosedale, William Foss, and Rob McCool. Lessons learned administering Netscape’s Internet
site. IEEE Internet Computing, 1(2):28–35, March/April 1997.

Erich M. Nahum, Marcel Rosu, Srinivasan Seshan, and Jussara Almeida. The effects of wide-area
conditions on WWW server performance. In Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, Cambridge, MA, June 2001.

Venkata N. Padmanabhan and Lili Qui. The content and access dynamics of a busy Web
site: Findings and implications. In ACM SIGCOMM Symposium on Communications
Architectures and Protocols, pages 111–123, 2000. URL citeseer.nj.nec.com/
padmanabhan00content.html .

Vivek Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and portable Web server. In
USENIX Annual Technical Conference, Monterey, CA, June 1999.

Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel, Willy Zwaenepoel,
and Erich M. Nahum. Locality-aware request distribution in cluster-based network servers. In Ar-
chitectural Support for Programming Languages and Operating Systems, pages 205–216, 1998.
URL citeseer.nj.nec.com/article/pai98localityaware.html .

24 Practical Handbook of Internet Computing

The Apache Project. The Apache WWW server. http://httpd.apache.org .

Michael Rabinovich and Oliver Spatscheck. Web Caching and Replication. Addison-Wesley, 2002.

Marcel-Catalin Rosu and Daniela Rosu. An evaluation of TCP splice benefits in Web proxy servers.
In Proceedings of the 11th International World Wide Web Conference (WWW2002), Honolulu,
Hawaii, May 2002.

Anees Shaikh, Renu Tewari, and Mukhesh Agrawal. On the effectiveness of DNS-based server
selection. In Proceedings of IEEE INFOCOM 2001, 2001.

Junehua Song, Arun Iyengar, Eric Levy, and Daniel Dias. Architecture of a Web server accelerator.
Computer Networks, 38(1), 2002.

Oliver Spatscheck, Jorgen S. Hansen, John H. Hartman, and Larry L. Peterson. Optimizing TCP
forwarder performance. IEEE/ACM Transactions on Networking, 8(2):146–157, April 2000.

