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1.1 Introduction

Caching has been widely deployed to improve Web performance by reducing client-observed la-
tency and network bandwidth usage in addition to improving server scalability by reducing the load
on the servers. Web caches can be deployed at various points in the network. Forward proxy caches
are deployed close to the client at network entry points by ISPs to reduce the network bandwidth
usage and improve client latency by caching frequently accessed data. Such caches can be either
transparent to the client or be manually configured. With transparent caching the packets are in-
tercepted by an intermediate router (layer 4 or layer 7 switch) and transparently routed to a cache
which in turn responds to the client directly [cis]. Manual configuration requires the client to ex-
plicitly configure the browser to go via a proxy cache. In addition to forward proxies, caches can
be deployed as a front-end to a server farm to reduce server load and increase server scalability.
Such caches called reverse proxies are useful in eliminating the load of a hot-set from impacting the
server performance. Typically reverse proxies are in the same administrative domain as the server.

As with any caching system, Web caches need to use a cache replacement policy to decide what
to keep in the cache and a consistency mechanism on how to keep it current. Various cache re-
placement algorithms from LRU to Greedy-dual size have been studied in the context of the Web
to improve cache performance in terms of client response times and server throughput. For main-
taining consistency, Web objects may have explicit expiration times associated with them indicating
when they become obsolete. The problem with expiration times is that it is often not possible to tell
in advance when Web data will become obsolete. Furthermore, expiration times are not sufficient
for applications which have strong consistency requirements. Without expiration times the proxy
cache needs to always check the staleness of the data with the server using if-modified-since mes-
sages, thereby, increasing client response times. Stale cached data and the inability in many cases to
cache dynamic and personalized data limit the effectiveness of caching. Numerous proposals have
been made to extend the support for consistency such that stronger requirements can be met [Li
et al., 2000].

Simple proxy caching is limited by the space and processing capacity of a single caching server.
To further improve performance caching can be extended to include a group of cooperating caches
deployed in the network either in a hierarchical or distributed manner. Hierarchical caches such
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as the NLANR Squid [Squ, 1997] cache consist of a single tree with parent child relationship,
whereas other organizations include meshes with hierarchical or centralized directories [Wolman
et al., 1999]. A further extension of distributed caching are content distribution networks (CDNs)
that supplement the client side proxy caching to other points in the network controlled by the CDN
service provider. A CDN is a shared network of servers or caches that deliver content to users on
behalf of content providers by using various request routing techniques. The intent of a CDN is to
serve content to a client from a CDN server so that response time is decreased over contacting the
origin server directly. In doing so CDN’s also reduce the load on origin servers.

This chapter examines several issues related to cache management consistency maintenance and
the overall architecture and techniques for routing requests in CDNs. We also provide insight into
the performance improvements typically achieved by CDN’s.

1.2 Practical Issues in the Design of Caches

Web caches can be implemented at the application level [Iyengar, 1999], kernel level [Joubert et al.,
2001], or under an embedded operating system [Song et al., 2002]. Application-level caches are
the easiest to design and have the potential for the most features. Kernel-level caches are harder
to design but have the potential for better performance. Caches can also be designed for embed-
ded operating systems which may be optimized for certain features such as communication. Such
caches may offer comparable performance to kernel-level caches. A problem with using embedded
operating systems is that as processor technology improves, it may not be feasible for the embed-
ded operating system to keep up with new processors. This means that over time, the advantage
achieved by a cache running under an embedded operating system may decrease.

HTTP provides a standard interface for applications to utilize caches. An HTTP interface alone
is limiting, however, and doesn’t provide adequate support for explicitly managing the contents of
a cache. It is also not the most efficient interface and can be cumbersome for applications to use. It
is therefore preferable for the cache to define an interface which an application program can use to
explicitly add, delete, and update cached objects [Iyengar, 1999].

The number of transactions per unit time that a Web cache has to perform in order to achieve good
performance is orders of magnitude less than that needed by a processor cache. Therefore, Web
caches can employ more sophisticated consistency and replacement policies. Cache replacement
policies are applied when a cache becomes full and it is necessary to determine which objects in the
cache to keep. The least recently used algorithm (LRU) has been used for caching across a broad
range of disciplines. In LRU, the object which was accessed the farthest in the past is selected for
removal when the cache becomes full. LRU has the advantage that it is easy to implement. A doubly
linked list is used to order objects by access times. Whenever an object is accessed, it is moved to
the front of the list.

A number of cache replacement algorithms have been proposed which result in higher cache
hit rates than LRU. One of the most commonly used such algorithm is the GreedyDual-Size al-
gorithm [Cao and Irani, 1997]. The GreedyDual-Size algorithm associates a cost C(o) with each
object o. The cost would typically be associated with how expensive it is to fetch or create the
object. It is preferable to cache more expensive objects because doing so results in greater savings
in the event of a cache hit. GreedyDual-Size divides C(o) by the size of o, S(o); in order to arrive
at an estimate H(o) of the savings per unit of cache memory which would be achieved by caching
the object.

When object o is first brought into the cache,H(o) is set toC(o)=S(o). When the cache becomes
full and an object needs to be removed, the object with the lowest H value, Hmin; is removed, and
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all objects reduce their H values by Hmin: When an object is accessed, its H value is restored to
C(o)=S(o): That way, objects which are accessed frequently will on average have higher H values
and are therefore less likely to be replaced.

A naive implementation would require n � 1 subtractions every time an object is replaced to
update H values for the remaining cached objects, where n is the number of cached objects. This
is inefficient. Instead, an inflation value, L; is maintained. When an object o is accessed, H(o)
is set to C(o)=S(o) + L. By adding L to compute the H value of an accessed object, it becomes
unnecessary to reduce H values for all remaining objects when an object is replaced. L is initially
set to 0. Whenever an object is replaced, L is updated to the H value of the replaced object.

The cost function C depends on resources the cache is trying to minimize. If the objective is
to maximize cache hit rates, then the cost function should be a constant for each object. If the
objective is to minimize time consumed fetching remote objects, then C(o) could be the expected
latency for fetching o: For a dynamic Web object, the CPU cycles consumed for creating the object
may have the most significant effect on performance. The cost function for such an object could
thus be proportional to the CPU cycles for creating the object.

Caches can be implemented using both main memory and disk storage. Main memory offers
better performance. In some cases, however, disk storage is essential. If the cache size exceeds the
main memory size, it may be desirable to store colder objects on disk instead of deleting the objects
to keep the cache within memory limits. Disk storage is also essential for persistence when a cache
must be shut down and later restarted. If the cache is totally purged each time the machine is shut
down, then performance is likely to be poor while the machine is being brought to a warm state
after start up. If, on the other hand, cached information is maintained on disk before the shutdown,
the cache can be brought to a warm state right after the system is restarted. Disk storage is also
important for fault tolerance. When a cache fails, if hot objects are maintained on disk, then the
cache can be quickly brought to a warm state after the failure.

File systems and databases can be used for persistently storing cached data. A key problem with
file systems and databases is that they can be inefficient. For Web caches, the rate at which objects
are added to and deleted from caches can be high [Markatos et al., 1999]. If a file system is used
and a different file is used to store each object, the overhead for creating and deleting files can be
significant. Customized disk storage allocators can often achieve much better performance. Good
performance for Web workloads has been achieved by maintaining multiple objects in a single
file and efficiently managing the storage space within the file [Iyengar et al., 2001]. A portable
disk storage allocator we have built in Java achieves considerably better performance than both file
systems and databases.

1.3 Cache Consistency

Caching has proven to be an effective and practical solution for improving the scalability and per-
formance of Web servers. Static Web page caching has been applied both at browsers at the client,
or at intermediaries that include isolated proxy caches or multiple caches or servers within a CDN
network. As with caching in any system, maintaining cache consistency is one of the main issues
that a Web caching architecture needs to address. As more of the data on the Web is dynamically
assembled, personalized, and constantly changing, the challenges of efficient consistency manage-
ment become more pronounced. To prevent stale information from being transmitted to clients, an
intermediary cache must ensure that the locally cached data is consistent with that stored on servers.
The exact cache consistency mechanism and the degree of consistency employed by an intermediary
depends on the nature of the cached data; not all types of data need the same level of consistency
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guarantees. Consider the following example.

Example
Online auctions: Consider a Web server that offers online auctions over the Internet. For each item
being sold, the server maintains information such as its latest bid price (which changes every few
minutes) as well as other information such as photographs and reviews for the item (all of which
change less frequently). Consider an intermediary that caches this information. Clearly, the bid
price returned by the intermediary cache should always be consistent with that at the server. In con-
trast, reviews of items need not always be up-to-date, since a user may be willing to receive slightly
stale information.

The above example shows that an intermediary cache will need to provide different degrees of
consistency for different types of data. The degree of consistency selected also determines the
mechanisms used to maintain it, and the overheads incurred by both the server and the intermediary.

1.3.1 Degrees of Consistency

In general the degrees of consistency that an intermediary cache can support fall into the following
four categories.

� strong consistency: A cache consistency level that always returns the results of the latest
(committed) write at the server is said to be strongly consistent. Due to the unbounded mes-
sage delays in the Internet, no cache consistency mechanism can be strongly consistent in
this idealized sense. Strong consistency is typically implemented using a two-phase message
exchange along with timeouts to handle unbounded delays.

� delta consistency: A consistency level that returns data that is never outdated by more than Æ
time units, where Æ is a configurable parameter, with the last committed write at the server is
said to be delta consistent. In practice the value of delta should be larger than t which is the
network delay between the server and the intermediary at that instant, i.e., t < Æ � 1.

� weak consistency: For this level of consistency, a read at the intermediary does not necessarily
reflect the last committed write at the server but some correct previous value.

� mutual consistency: A consistency guarantee in which a group of objects are mutually consis-
tent with respect to each other. In this case some objects in the group cannot be more current
than the others. Mutual consistency can co-exist with the other levels of consistency.

Strong consistency is useful for mirror sites that need to reflect the current state at the server.
Some applications based on financial transactions may also require strong consistency. Certain
types of applications can tolerate stale data as long as it is within some known time bound. For such
applications delta consistency is recommended. Delta consistency assumes that there is a bounded
communication delay between the server and the intermediary cache. Mutual consistency is useful
when a certain set of objects at the intermediary (e.g., the fragments within a sports score page,
or within a financial page) need to be consistent with respect to each other. To maintain mutual
consistency the objects need to be atomically invalidated such that they all either reflect the new
version or maintain the earlier stale version.

Most intermediaries deployed in the Internet today provide only weak consistency guarantees [Gw-
ertzman and Seltzer, 1996; Squ, 1997]. Until recently, most objects stored on Web servers were rela-
tively static and changed infrequently. Moreover, this data was accessed primarily by humans using
browsers. Since humans can tolerate receiving stale data (and manually correct it using browser
reloads), weak cache consistency mechanisms were adequate for this purpose. In contrast, many
objects stored on Web servers today change frequently and some objects (such as news stories or
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Overheads Polling Periodic polling Invalidates Leases TTL
File Transfer W 0 W 0 � Æ W 0 W 0 W 0

Control Msgs. 2R�W 0 2R=t� (W 0 � Æ) 2W 0 2W 0 W 0

Staleness 0 t 0 0 0
Write delay 0 0 notify(all) min(t, notify(all t)) 0
Server State None None All Allt None

Overheads of Different Consistency Mechanisms. Key: t is the period in periodic polling or the
lease duration in the leases approach. W 0 is the number of non-consecutive writes. All consecutive
writes with no interleaving reads are counted as a single write. R is the number of reads. Æ is the
number of writes that were not notified to the intermediary as only weak consistency was provided.
‘All’ means all of the subscribers for server-driven invalidation. ‘All t’ means all of the servers
within lease duration t.

stock quotes) are updated every few minutes [Barford et al., 1999]. Moreover, the Web is rapidly
evolving from a predominantly read-only information system to a system where collaborative ap-
plications and program-driven agents frequently read as well as write data. Such applications are
less tolerant of stale data than humans accessing information using browsers. These trends argue
for augmenting the weak consistency mechanisms employed by today’s proxies with those that pro-
vide strong consistency guarantees in order to make caching more effective. In the absence of such
strong consistency guarantees, servers resort to marking data as uncacheable, and thereby reduce
the effectiveness of proxy caching.

1.3.2 Consistency Mechanisms

The mechanisms used by an intermediary and the server to provide the degrees of consistency de-
scribed earlier fall into 3 categories: i) client-driven, ii) server-driven, and iii) explicit mechanisms
.

Server-driven mechanisms, referred to as server-based invalidation, can be used to provide strong
or delta consistency guarantees [Yin et al., 1999b]. Server-based invalidation, requires the server to
notify proxies when the data changes. This approach substantially reduces the number of control
messages exchanged between the server and the intermediary (since messages are sent only when
an object is modified). However, it requires the server to maintain per-object state consisting of a
list of all proxies that cache the object; the amount of state maintained can be significant especially
at popular Web servers. Moreover, when an intermediary is unreachable due to network failures, the
server must either delay write requests until it receives all the acknowledgments or a timeout occurs,
or risk violating consistency guarantees. Several new protocols have been proposed recently to pro-
vide delta and strong consistency using server-based invalidations. Web cache invalidation protocol
(WCIP) is one such proposal for propagating server invalidations using application-level multicast
while providing delta consistency [Li et al., 2000]. Web content distribution protocol (WCDP) is
another proposal that supports multiple consistency levels using a request-response protocol that
can be scaled to support distribution hierarchies [Tewari et al., 2002].

The client-driven approach, also referred to as client polling, requires that intermediaries poll
the server on every read to determine if the data has changed [Yin et al., 1999b]. Frequent polling
imposes a large message overhead and also increases the response time (since the intermediary must
await the result of its poll before responding to a read request). The advantage, though, is that it
does not require any state to be maintained at the server, nor does the server ever need to delay write
requests (since the onus of maintaining consistency is on the intermediary).

Most existing proxies provide only weak consistency by (i) explicitly providing a server specified
lifetime of an object (referred to as the time-to-live (TTL) value), or (ii) by periodic polling of the
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FIGURE 1.1
Efficacy of server-based invalidation and client polling for three different trace workloads
(DEC, Berkeley, Boston University). The figure shows that server-based invalidation has the
largest state space overhead; client polling has the highest control message overhead

the server to verify that the cached data is not stale [Cate, 1992; Gwertzman and Seltzer, 1996;
Squ, 1997]. The TTL value is sent as part of the HTTP response in an Expires tag or using the
Cache-Control headers. However, a priori knowledge of when an object will be modified is
difficult in practice and the degree of consistency is dependent on the clock skew between the server
and the intermediaries. With periodic polling the length of the period determines the extent of the
object staleness. In either case, modifications to the object before its TTL expires or between two
successive polls causes the intermediary to return stale data. Thus both mechanisms are heuristics
and provide only weak consistency guarantees. Hybrid approaches where the server specifies a
time-to-live value for each object and the intermediary polls the server only when the TTL expires
also suffer from these drawbacks.

Server-based invalidation and client polling form two ends of a spectrum. Whereas the former
minimizes the number of control messages exchanged but may require a significant amount of state
to be maintained, the latter is stateless but can impose a large control message overhead. Figure
1.1 quantitatively compares these two approaches with respect to (i) the server overhead, (ii) the
network overhead, and (iii) the client response time. Due to their large overheads, neither approach
is appealing for Web environments. A strong consistency mechanism suitable for the Web must not
only reduce client response time, but also balance both network and server overheads.

One approach that provides strong consistency, while providing a smooth tradeoff between the
state space overhead and the number of control messages exchanged, is leases [Gray and Cheriton,
1989]. In this approach, the server grants a lease to each request from an intermediary. The lease
duration denotes the interval of time during which the server agrees to notify the intermediary if the
object is modified. After the expiration of the lease, the intermediary must send a message request-
ing renewal of the lease. The duration of the lease determines the server and network overhead. A
smaller lease duration reduces the server state space overhead, but increases the number of control
(lease renewal) messages exchanged and vice versa. In fact, an infinite lease duration reduces the ap-
proach to server-based invalidation, whereas a zero lease duration reduces it to client-polling. Thus,
the leases approach spans the entire spectrum between the two extremes of server-based invalidation
and client-polling.

The concept of a lease was first proposed in the context of cache consistency in distributed file
systems [Gray and Cheriton, 1989]. The use of leases for Web proxy caches was first alluded to
in [Liu and Cao, 1997] and was subsequently investigated in detail in [Yin et al., 1999b]. The
latter effort focused on the design of volume leases – leases granted to a collection of objects –
so as to reduce (i) the lease renewal overhead and (ii) the blocking overhead at the server due to
unreachable proxies. Other efforts have focused on extending leases to hierarchical proxy cache
architectures [Yin et al., 1999a; Yu et al., 1999]. The adaptive leases effort described analytical and
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quantitative results on how to select the optimal lease duration based on the server and message
exchange overheads [Duvvuri et al., 2000].

A qualitative comparison of the overheads of the different consistency mechanisms is shown in
Table 1.1. The message overheads of an invalidation-based or lease-based approach is smaller than
that of polling especially when reads dominate writes, as in the Web environment.

1.3.3 Invalidates and Updates

With server-driven consistency mechanisms, when an object is modified, the origin server notifies
each “subscribing” intermediary. The notification consists of either an invalidate message or an
updated (new) version of the object. Sending an invalidate message causes an intermediary to mark
the object as invalid; a subsequent request requires the intermediary to fetch the object from the
server (or from a designated site). Thus, each request after a cache invalidate incurs an additional
delay due to this remote fetch. An invalidation adds to 2 control messages and a data transfer (an
invalidation message, a read request on a miss, and a new data transfer) along with the extra latency.
No such delay is incurred if the server sends out the new version of the object upon modification.
In an update-based scenario, subsequent requests can be serviced using locally cached data. A
drawback, however, is that sending updates incurs a larger network overhead (especially for large
objects). This extra effort is wasted if the object is never subsequently requested at the intermediary.
Consequently, cache invalidates are better suited for less popular objects, while updates can yield
better performance for frequently requested small objects. Delta encoding techniques have been
designed to reduce the size of the data transferred in an update by sending only the changes to the
object[Krishnamurthy and Wills, 1997]. Note that delta encoding is not related to delta consistency.
Updates, however, require better security guarantees and make strong consistency management
more complex. Nevertheless, updates are useful for mirror sites where data needs to be “pushed”
to the replicas when it changes. Updates are also useful for pre-loading caches with content that is
expected to become popular in the near future.

A server can dynamically decide between invalidates and updates based on the characteristics of
an object. One policy could be to send updates for objects whose popularity exceeds a threshold
and to send invalidates for all other objects. A more complex policy is to take both popularity and
object size into account. Since large objects impose a larger network transfer overhead, the server
can use progressively larger thresholds for such objects (the larger an object, the more popular it
needs to be before the server starts sending updates).

The choice between invalidation and updates also affects the implementation of a strong consis-
tency mechanism. For invalidations only, with a strong consistency guarantee, the server needs to
wait for all acknowledgments of the invalidation message (or a timeout) to commit the write at the
server. With updates, on the other hand, the server updates are not immediately committed at the
intermediary. Only after the server receives all the acknowledgments (or a timeout) and then sends
a commit message to all the intermediaries is the new update version committed at the intermedi-
ary. Such two-phase message exchanges are expensive in practice and are not required for weaker
consistency guarantees.

1.4 CDNs: Improved Web Performance through Distribution

End-to-end Web performance is influenced by numerous factors such as client and server network
connectivity, network loss and delay, server load, HTTP protocol version, and name resolution de-
lays. The content-serving architecture has a significant impact on some of these factors, as well
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FIGURE 1.2
Content-serving architectures

factors not related to performance such as cost, reliability, and ease of management. In a tradi-
tional content-serving architecture all clients request content from a single location, as shown in
Figure 1.2(a). In this architecture, scalability and performance are improved by adding servers,
without the ability to address poor performance due to problems in the network. Moreover, this
approach can be expensive since the site must be overprovisioned to handle unexpected surges in
demand.

Some ISPs address performance bottlenecks in the network by deploying caching proxies near
clients to reduce network traffic and improve client performance. Caching proxies are limited,
however, since they operate based only on user demand for a very large and diverse set of content.
Most proxy cache studies, for example, find they achieve only a 20–40% hit rate [IRCache Project
Daily Reports, 2002; Wolman et al., 1999].

Another way to address poor performance due to network congestion, or flash crowds at servers,
is to distribute popular content to servers or caches located closer to the edges of the network, as
shown in Figure 1.2(b). Such a distributed network of servers comprises a content distribution
network (CDN). A CDN is simply a network of servers or caches that delivers content to users on
behalf of content providers. The intent of a CDN is to serve content to a client from a CDN server
such that the response-time performance is improved over contacting the origin server directly. CDN
servers are typically shared, delivering content belonging to multiple Web sites though all servers
may not be used for all sites. Since CDN servers receive requests only for hosted content, cache
misses typically occur only for compulsory misses due to the initial request for some content.

CDNs have several advantages over traditional centralized content-serving architectures, includ-
ing [Verma, 2002]:

� improving client-perceived response time by bringing content closer to the network edge, and
thus closer to end-users

� off-loading work from origin servers by serving larger objects, such as images and multime-
dia, from multiple CDN servers

� reducing content provider costs by reducing the need to invest in more powerful servers or
more bandwidth as user population increases



Web Caching, Consistency, and Content Distribution 9

CDN server

origin server

client

distribution
system

request
router accounting

and billing

measure/track

measure/track

origin server

client

CDN server

1

request router

2

3

(a) CDN architectural elements (b) CDN request-routing

FIGURE 1.3
CDN architecture and request-routing

� improving site availability by replicating content in many distributed locations

Content distribution service providers (CDSPs) manage and operate the CDN, thus freeing con-
tent providers from the tasks of maintaining the servers themselves. Some network service providers
offer a CDN service in addition to network access service (e.g., AT&T and Cable&Wireless). Other
CDSPs focus primarily on providing a variety of CDN services (e.g., Akamai and Speedera).

CDN servers may be configured in tree-like hierarchies [Yu et al., 1999] or clusters of cooperating
proxies that employ content-based routing to exchange data [Gritter and Cheriton, 2001]. Commer-
cial CDNs also vary significantly in their size and service offerings. CDN deployments range from
a few tens of servers (or server clusters), to over ten thousand servers placed in hundreds of ISP
networks. A large footprint allows a CDSP to reach the majority of clients with very low latency
and path length.

Content providers use CDNs primarily for serving static content like images or large stored mul-
timedia objects (e.g., movie trailers and audio clips). A recent study of CDN-served content found
that 96% of the objects served were images [Krishnamurthy et al., 2001]. However, the remaining
few objects accounted for 40–60% of the bytes served, indicating a small number of very large
objects. Increasingly, CDSPs offer services to deliver streaming media and dynamic data such as
localized content or targeted advertising.

1.4.1 CDN Architectural Elements

As illustrated in Figure 1.3(a), CDNs have three key architectural elements in addition to the CDN
servers themselves: a distribution system, an accounting/billing system, and a request-routing sys-
tem [Day et al., 2002]. The distribution system is responsible for moving content from origin servers
into CDN servers and ensuring data consistency. Section 1.4.4 describes some techniques used to
maintain consistency in CDNs. The accounting/billing system collects logs of client accesses and
tracks CDN server usage for use primarily in administrative tasks. Finally, the request-routing sys-
tem is responsible for directing client requests to appropriate CDN servers. The request-routing
system may also interact with the distribution system to keep an up-to-date view of which content
resides on which CDN servers.
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FIGURE 1.4
Interaction between request router and CDN servers

The request-routing system operates as shown in Figure 1.3(b). Clients access content from the
CDN servers by first contacting a request router (step 1). The request router makes a server selection
decision and returns a server assignment to the client (step 2). Finally, the client retrieves content
from the specified CDN server (step 3).

1.4.2 CDN Request-Routing

Clearly, the request-routing system has a direct impact on the performance of the CDN. A poor
server selection decision can defeat the purpose of the CDN, namely to improve client response
time over accessing the origin server. Thus, CDNs typically rely on a combination of static and
dynamic information when choosing the best server. Several criteria are used in the request-routing
decision, including the content being requested, CDN server and network conditions, and client
proximity to the candidate servers.

The most obvious request routing strategy is to direct the client to a CDN server that hosts the
content being requested. This is complicated, however, if the request router does not know what
content is being requested, for example if request-routing is done in the context of name resolution.
In this case the request contains only a server hostname (e.g., www.service.com) as opposed to
the full HTTP URL.

For good performance the client should be directed to a relatively unloaded CDN server. This
requires that the request router actively monitor the state of CDN servers. If each CDN location
consists of a cluster of servers and local load-balancer or connection router, it may be possible to
query a server-side agent for server load information, as shown in Figure 1.4. After the client makes
its request, the request router consults an agent at each CDN site load-balancer (step 2), and returns
an appropriate answer back to the client.

As Web response time is heavily influenced by network conditions, it is important to choose a
CDN server to which the client has good connectivity. Upon receiving a client request, the re-
quest router can determine which CDN server is closest to the client and then respond to the client
appropriately.

A common strategy used in CDN request-routing is to choose a server “nearby” the client, where
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proximity is defined in terms of network topology, geographic distance, or network latency. Exam-
ples of proximity metrics include autonomous system (AS) hops or network hops. These metrics are
relatively static compared with server load or network performance, and are also easier to measure.

Note that it is unlikely that any one of these metrics will be suitable in all cases. Most request
routers use a combination of proximity and network or server load to make server selection deci-
sions. For example, client proximity metrics can be used to assign a client to a “default” CDN server,
which provides good performance most of the time. The selection can be temporarily changed if
load monitoring indicates that the default server is overloaded.

Request-routing techniques fall into three main categories: transport-layer mechanisms, application-
layer redirection, and DNS-based schemes [Barbir et al., 2002]. Transport-layer request routers use
information in the transport-layer headers to determine which CDN server should serve the client.
For example, the request router can examine the client IP address and port number in a TCP SYN
packet and forward the packet to an appropriate CDN server. The target CDN server establishes
the TCP connection and proceeds to serve the requested content. Forward traffic (including TCP
acknowledgments) from the client to the target server continues to be sent to the request router and
forwarded to the CDN server. The bulk of traffic (i.e., the requested content) will travel on the direct
path from the CDN server to the client.

Application-layer request-routing has access to much more information about the content being
requested. For example, the request-router can use HTTP headers like the URL, HTTP cookies,
and Language. A simple implementation of an application-layer request router is a Web server that
receives client requests and returns an HTTP redirect (e.g., status code 302) to the client indicating
the appropriate CDN server. The flexibility afforded by this approach comes at the expense of added
latency and overhead, however, since it requires TCP connection establishment and HTTP header
parsing.

With request-routing based on the Domain Name System (DNS), clients are directed to the nearest
CDN server during the name resolution phase of Web access. Typically, the authoritative DNS
server for the domain or subdomain is controlled by the CDSP. In this scheme, a specialized DNS
server receives name resolution requests, determines the location of the client and returns the address
of a nearby CDN server or a referral to another nameserver. The answer may only be cached at the
client-side for a short time so that the request router can adapt quickly to changes in network or
server load. This is achieved by setting the associated time-to-live (TTL) field in the answer to a
very small value (e.g., 20 seconds).

DNS-based request routing may be implemented with either full- or partial-site content deliv-
ery [Krishnamurthy et al., 2001]. In full-site delivery, the content provider delegates authority for
its domain to the CDSP or modifies its own DNS servers to return a referral (CNAME or NS record)
to the CDSP’s DNS servers. In this way, all requests for www.company.com, for example, are re-
solved to a CDN server which then delivers all of the content. With partial-site delivery, the content
provider modifies its content so that links to specific objects have hostnames in a domain for which
the CDSP is authoritative. For example, links to http://www.company.com/image.gif
are changed to http://cdsp.net/company.com/image.gif. In this way, the client re-
trieves the base HTML page from the origin server but retrieves embedded images from CDN
servers to improve performance. This type of URL rewriting may also be done dynamically as
the base page is retrieved, though this may increase client response time.

The appeal of DNS-based server selection lies in both its simplicity – it requires no change to
existing protocols, and its generality – it works across any IP-based application regardless of the
transport-layer protocol being used. This has led to adoption of DNS-based request routing as the de
facto standard method by many CDSPs and equipment vendors. Using the DNS for request-routing
does have some fundamental drawbacks, however, some of which have been recently studied and
evaluated [Shaikh et al., 2001; Mao et al., 2002; Barbir et al., 2002].

One problem is that request-routing is done on the granularity of DNS domains, rather than per-
object, thus limiting the ability to make object-specific server selection decisions. A second problem
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is that requests usually come to the DNS server not from clients, but from their local nameservers.
Hence, the CDN server is chosen based on the local nameserver address instead of the client, which
may lead to poor decisions if clients and their local nameservers are not proximal. Finally, as
mentioned earlier, DNS request routers return answers with small TTLs to facilitate fine-grained
load balancing. This may actually increase Web access latency because clients must contact the
DNS server more frequently to refresh the name-to-address mapping.

1.4.3 Request-Routing Metrics and Mechanisms

Request-routing systems use a number of metrics and techniques in deciding which CDN server
is best suited for a given client. This section describes some specific metrics and techniques used
in commercially available load-balancing and request-routing products. Note that these techniques
are not necessarily limited to CDNs – they are applicable to load-balancing and request-routing in
many replicated content-serving architectures.

Determining server availability and load

Server availability is often the most critical criterion used in request routing. Availability is usually
determined using “health checks” initiated by the request-router. These probes may be implemented
at layer-3 with ICMP (Internet Control Message Protocol) ping, or layer-4 by checking that TCP
connections can be established, for example. In addition, the request router is often configured
to perform application-layer health checks, such as retrieving a specified file using HTTP or FTP,
or interacting with an IMAP mail server or telnet server. Application-layer checks are important
to detect cases when a host machine may be operational, but a mission-critical application is not,
hence making the server unsuitable for handling client requests.

As described in Section 1.4.2, the request router may consult a local load-balancing switch at each
site to determine the relative load at candidate server sites. The local load balancer typically keeps
track of statistics like the number of active client connections, the aggregate packet and connection
arrival rates, and number of available servers. Using agents that reside on the servers themselves, the
local load balancer may also collect information such as per-server CPU load and memory usage.
All or some of these statistics can be queried by the request-router to assess the relative load of each
server or server cluster.

In most vendor solutions the request router is tightly integrated with an agent at the server-side
load-balancer which reports statistics, or an aggregate “score.” This scheme usually requires that
the request router and load-balancer are from the same vendor since they often communicate using
proprietary protocols. Limited support may also be available for communicating with heterogeneous
local load balancers or servers. This is often done using the Simple Network Management Protocol
(SNMP), since most products and operating systems support SNMP queries of information such as
packet arrival rate or number of active concurrent connections. The request router may also use the
responsiveness of application-layer health checks as an indication of the site or server load. These
checks appear as normal client requests and thus do not require special protocols.

Determining network proximity and performance

Since network performance plays an important role in overall end-to-end Web performance, the re-
quest router tries to direct clients to the nearest server in terms of geographic or topological location,
or network latency. In a typical DNS-based request-routing system, however, this is complicated by
several factors. The network performance (e.g., delay, loss, throughput) may change dynamically
and dramatically over time, requiring that the notion of “nearest” be updated regularly. Also, the
client’s actual location may be difficult to determine if the local nameserver that sends DNS requests
on behalf of the client is not nearby the client. Finally, the network performance must be determined
from the point of view of each server site, rather than from the request router.
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One approach is for the request router to ask candidate CDN servers to measure network latency
to the client (or its nameserver) using ICMP echo (i.e., ping) and report the measured values. The
request router then responds to the client with the address of the CDN server reporting the lowest
delay. Since these measurements are done on line, this technique has the advantage of adapting the
request-routing decision to the most current network network. Measurement results are reported
back to the request router and can be cached for a short time to serve subsequent requests from the
same or nearby clients. On the other hand, this technique can introduce additional latency for the
client as the request router waits for responses from the CDN servers.

In a slightly different approach the request router can forward the request to agents at several sites,
each of which then respond directly to the client. The client uses the response that reaches it first,
thus automatically choosing the nearest site. For a fair “race”, the request router must know its one-
way latency to each site, and delay the forwarding accordingly, to ensure that each site receives the
forwarded request at the same time. This approach avoids actively probing the client nameserver
from each server site, but it does require that each responding agent spoof the IP address of the
request router (to which the request was originally sent). Otherwise the client may not accept the
response.

Another alternative approach is to passively monitor client connections to the CDN servers to
build a performance database that can be consulted by the request router when making its decision.
For example, the local load balancer can capture and examine TCP packets to estimate the round-
trip time between the site and a particular client. Using these estimates, the request router can
determine which site has the lowest delay to some group of clients. This technique must address
several issues, however, such as how to collect a sufficient number of samples at each CDN server,
and how to aggregate client performance statistics. It also requires tight integration between the
request router and the performance monitoring entity at each server. Note that all three of these
approaches for determining client network proximity have been used in vendor products.

In addition to dynamic metrics such as network latency, request routing systems often depend
on more static notions of network proximity, based either on hopcount or geographic location. A
hopcount-based metric may be implemented by simply using a UDP-based traceroute from each
server site to the client nameserver, similar to the ICMP echo technique described above. If the
request router has access to network routers at the server sites, it can consult interdomain routing
tables at each site to find out the distance between the site and the client subnet in terms of AS-hops.
This requires a specialized agent or protocol on the network routers, however. Moreover, several
studies have shown hopcount to be a poor predictor of network latency [Crovella and Carter, 1995;
Obraczka and Silva, 2000].

Many request routing systems attempt to direct clients to the geographically nearest site, often
based on coarse notions of regions (e.g., U.S. East coast) or continents (e.g., Asia-Pacific clients).
Determining geographic proximity based on IP addresses remains an active and open research topic
and though a number of heuristics have been developed, they are not always accurate [Moore et al.,
2000; Padmanabhan and Subramanian, 2001]. Nevertheless, it is possible to use information pub-
lished by regional Internet registries to obtain rough per-country address block allocations [ian,
2003]. These can be used to determine, to some extent, the location of the client in order to direct
it to the nearest site. Most request-routing products also offer the ability to manually specify IP
addresses and their associated geographic regions. This is useful, for example, when the requests
are anticipated from known clients (e.g., remote branch offices).

1.4.4 Consistency Management for CDNs

An important issue that must be addressed in a CDN is that of consistency maintenance. The
problem of consistency maintenance in the context of a single proxy used several techniques such
as time-to-live (TTL) values, client-polling, server-based invalidation, adaptive refresh [Srinivasan
et al., 1998], and leases [Yin et al., 2001]. In the simplest case, a CDN can employ these techniques
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at each individual CDN server or proxy – each proxy assumes responsibility for maintaining consis-
tency of data stored in its cache and interacts with the server to do so independently of other proxies
in the CDN. Since a typical CDN may consist of hundreds or thousands of proxies (e.g., Akamai
currently has a footprint of more than 14,000 servers), requiring each proxy to maintain consis-
tency independently of other proxies is not scalable from the perspective of the origin servers (since
the server will need to individually interact with a large number of proxies). Further, consistency
mechanisms designed from the perspective of a single proxy (or a small group of proxies) do not
scale well to large CDNs. The leases approach, for instance, requires the origin server to maintain
per-proxy state for each cached object. This state space can become excessive if proxies cache a
large number of objects or some objects are cached by a large number of proxies within a CDN.

A cache consistency mechanism for hierarchical proxy caches was discussed in [Yu et al., 1999].
The approach does not propose a new consistency mechanism, rather it examines issues in instan-
tiating existing approaches into a hierarchical proxy cache using mechanisms such as multicast.
They argue for a fixed hierarchy (i.e., a fixed parent-child relationship between proxies). In addition
to consistency, they also consider pushing of content from origin servers to proxies. Mechanisms
for scaling leases are studied in [Yin et al., 2001]. The approach assumes volume leases, where
each lease represents multiple objects cached by a stand-alone proxy. They examine issues such as
delaying invalidations until lease renewals and discuss prefetching and pushing lease renewals.

Another effort describes cooperative consistency along with a mechanism, called cooperative
leases, to achieve it [Ninan et al., 2002]. Cooperative consistency enables proxies to cooperate with
one another to reduce the overheads of consistency maintenance. By supporting delta consistency
semantics and by using a single lease for multiple proxies, the cooperative leases mechanism allows
the notion of leases to be applied in a scalable manner to CDNs. Another advantage of the approach
is that it employs application-level multicast to propagate server notifications of modifications to
objects, which reduces server overheads. Experimental results show that cooperative leases can
reduce the number of server messages by a factor of 3.2 and the server state by 20% when compared
to original leases, albeit at an increased proxy-proxy communication overhead.

Finally, numerous studies have focused on specific aspects of cache consistency for content dis-
tribution. For instance, piggybacking of invalidations [Krishnamurthy and Wills, 1997], the use of
deltas for sending updates [Mogul et al., 1997], an application-level multicast framework for Inter-
net distribution [Francis, 2000] and the efficacy of sending updates versus invalidates [Fei, 2001].

1.4.5 CDN Performance Studies

Several research studies have recently tried to quantify the extent to which CDNs are able to im-
prove response-time performance. An early study by Johnson et al. focused on the quality of the
request-routing decision [Johnson et al., 2000]. The study compared two CDSPs that use DNS-
based request-routing. The methodology was to measure the response time to download a single
object from the CDN server assigned by the request router and the time to download it from all
other CDN servers that could be identified. The findings suggested that the server selection did not
always choose the best CDN server, but it was effective in avoiding poorly performing servers, and
certainly better than choosing a CDN server randomly. The scope of the study was limited, however,
since only three client locations were considered, performance was compared for downloading only
one small object, and there was no comparison with downloading from the origin server.

A study done in the context of developing the request mirroring Medusa Web proxy, evaluated
the performance of one CDN (Akamai) by downloading the same objects from CDN servers and
origin servers [Koletsou and Voelker, 2001]. The study was done only for a single-user workload,
but showed significant performance improvement for those objects that were served by the CDN,
when compared with the origin server.

More recently, Krishnamurthy et al. studied the performance of a number of commercial CDNs
from the vantage point of approximately 20 clients [Krishnamurthy et al., 2001]. The authors con-



Web Caching, Consistency, and Content Distribution 15

clude that CDN servers generally offer much better performance than origin servers, though the
gains were dependent on the level of caching and the HTTP protocol options. There were also sig-
nificant differences in download times from different CDNs. The study finds that, for some CDNs,
DNS-based request routing significantly hampers performance due to multiple name lookups.
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