
Revisiting Residue Codes for Modern Memories

Evgeny Manzhosov

Adam Hastings, Meghna Pancholi, Ryan Piersma, Mohamed Tarek Ibn Ziad, and Simha Sethumadhavan

Department of Computer Science
Columbia University

A New Way to Store Metadata

Revisiting Residue Codes for Modern Memories 2

PERFORMANCE

A New Way to Store Metadata

Revisiting Residue Codes for Modern Memories 3

$$$

PERFORMANCE SECURITY
RELIABILITY

A New Way to Store Metadata
• Metadata is widely used in computer architecture

Revisiting Residue Codes for Modern Memories 4

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead

Revisiting Residue Codes for Modern Memories 5

Data

Security Metadata

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

Revisiting Residue Codes for Modern Memories 6

Data

Security Metadata

Data ECC

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost

Revisiting Residue Codes for Modern Memories 7

Data

Security Metadata

Data ECC

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques

Revisiting Residue Codes for Modern Memories 8

Data

Security Metadata

Data ECC

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques

Revisiting Residue Codes for Modern Memories 9

Data

Security Metadata

Data ECC

Trade off?

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques
• Complicated system design to manage metadata

Revisiting Residue Codes for Modern Memories 10

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques
• Complicated system design to manage metadata

• Solution:

Revisiting Residue Codes for Modern Memories 11

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques
• Complicated system design to manage metadata

• Solution:
• MUSE (Multi-Use) ECC

Revisiting Residue Codes for Modern Memories 12

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques
• Complicated system design to manage metadata

• Solution:
• MUSE (Multi-Use) ECC w/ 30% less metadata overhead for Chip Kill ECC

Revisiting Residue Codes for Modern Memories 13

A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques
• Complicated system design to manage metadata

• Solution:
• MUSE (Multi-Use) ECC w/ 30% less metadata overhead for Chip Kill ECC
• Rowhammer defense w/ 40b hash w/o giving up on reliability

Revisiting Residue Codes for Modern Memories 14

Talk Outline

•ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 15

Talk Outline

•ChipKill with MUSE ECC
•Use Cases:
• Rowhammer defenses
• PIM Reliability

Revisiting Residue Codes for Modern Memories 16

Talk Outline

•ChipKill with MUSE ECC
•Use Cases:
• Rowhammer defenses
• PIM Reliability

•Paper Contents Overview

Revisiting Residue Codes for Modern Memories 17

MUSE ECC

Revisiting Residue Codes for Modern Memories 18

MUSE ECC

Revisiting Residue Codes for Modern Memories 19

𝑑𝑎𝑡𝑎

MUSE ECC

Revisiting Residue Codes for Modern Memories 20

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 = 𝑑𝑎𝑡𝑎× 𝑚

MUSE ECC

Revisiting Residue Codes for Modern Memories 21

Store To Memory𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 = 𝑑𝑎𝑡𝑎× 𝑚

MUSE ECC

Revisiting Residue Codes for Modern Memories 22

Read From Memory

Store To Memory𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 = 𝑑𝑎𝑡𝑎× 𝑚

MUSE ECC

Revisiting Residue Codes for Modern Memories 23

Read From Memory

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 mod 𝑚

Store To Memory𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 = 𝑑𝑎𝑡𝑎× 𝑚

MUSE ECC

Revisiting Residue Codes for Modern Memories 24

Read From Memory

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 mod 𝑚

Store To Memory𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 = 𝑑𝑎𝑡𝑎× 𝑚

𝑑𝑎𝑡𝑎 = 0𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑/𝑚 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 0

MUSE ECC

Revisiting Residue Codes for Modern Memories 25

Read From Memory

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 mod 𝑚

Store To Memory𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 = 𝑑𝑎𝑡𝑎× 𝑚

𝑑𝑎𝑡𝑎 = 0𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑/𝑚 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 0
𝑒𝑟𝑟𝑜𝑟 𝑒𝑙𝑠𝑒

MUSE ECC

Revisiting Residue Codes for Modern Memories 26

𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑠 ≡ # 𝑎𝑙𝑙 𝑒𝑟𝑟𝑜𝑟𝑠

S𝑖𝑛𝑔𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

What is ChipKill?

Revisiting Residue Codes for Modern Memories 27

What is ChipKill?

Revisiting Residue Codes for Modern Memories 28

X2
DRAM

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

What is ChipKill?

Revisiting Residue Codes for Modern Memories 29

X2
DRAM

X2
DRAM

X X b2 b3 bN-1 bN…

What is ChipKill?

Revisiting Residue Codes for Modern Memories 30

b0 b1 b2 b3 bN-1 bN…

X2
DRAM

X2
DRAM

X X b2 b3 bN-1 bN…

ChipKill
Error Correction

ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 31

b0 b1 b2 b3 bN-1 bN

Memory Controller IO

…

X2
DRAM

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 32

b0 b1 b2 b3 bN-1 bN

Memory Controller IO

…

X2
DRAM

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 33

b0 b1 b2 b3 bN-1 bN

Memory Controller IO

…

X2
DRAM

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 34

b0 b1 b2 b3 bN-1 bN

Memory Controller IO

…

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

𝑏!𝒃𝟏 → 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟#
𝒃𝟎𝑏# → 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟%
𝒃𝟎𝒃𝟏 → 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟&

ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 35

b0 b1 b2 b3 bN-1 bN

Memory Controller IO

…

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

𝑏%𝒃𝟑 → 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(
𝒃𝟐𝑏& → 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(
𝒃𝟐𝒃𝟑 → 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟*

ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 36

𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑠 ≡ # 𝑎𝑙𝑙 𝑠𝑦𝑚𝑏𝑜𝑙 𝑒𝑟𝑟𝑜𝑟𝑠

𝐶ℎ𝑖𝑝𝐾𝑖𝑙𝑙

ChipKill with MUSE ECC

Revisiting Residue Codes for Modern Memories 37

𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑠 ≡ # 𝑎𝑙𝑙 𝑠𝑦𝑚𝑏𝑜𝑙 𝑒𝑟𝑟𝑜𝑟𝑠

𝐶ℎ𝑖𝑝𝐾𝑖𝑙𝑙

12b instead of 16b

DDR4 MUSE: 25% fewer ECC bits

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 38

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 39

𝐴 = 𝜋𝑟!
𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝒆𝒓𝒓𝒐𝒓𝟏 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝒆𝒓𝒓𝒐𝒓𝟐

𝐶ℎ𝑖𝑝𝐾𝑖𝑙𝑙

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 40

b0 b3

Memory Controller IO

…

X2
DRAM

X2
DRAM

X2
DRAM

b0 b3 …

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 41

b0 b1 b2 b3

Memory Controller IO

…

X2
DRAM

X2
DRAM

X2
DRAM

b0 b3 b2 b1 …

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 42

b0 b1 b2 b3

Memory Controller IO

X2
DRAM

X2
DRAM

X2
DRAM

b0 b3 b2 b1 bK bN…

bNbK ……

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 43

b0 b1 b2 b3

Memory Controller IO

X2
DRAM

X2
DRAM

X2
DRAM

b0 b3 b2 b1 bK bN…

bNbK ……

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 44

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

b0 …b1

MUSE Chip Kill

X2
DRAM

X2
DRAM

b0 b3 b2 b1 bK bN…

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 45

X2
DRAM

X2
DRAM

b0 b1 b2 b3 bN-1 bN…

b0 b3 …b0 …b1

MUSE ChipKill MUSE ChipKill w/ Shuffling

MUSE ECC: Shuffling

Revisiting Residue Codes for Modern Memories 46

𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑠 ≡ # 𝑎𝑙𝑙 𝑠𝑦𝑚𝑏𝑜𝑙 𝑒𝑟𝑟𝑜𝑟𝑠

𝐶ℎ𝑖𝑝𝐾𝑖𝑙𝑙

MUSE (Multi-Use) ECC

Revisiting Residue Codes for Modern Memories 47

ChipKill
Guarantees

Multi-Use (MUSE) ECC

Revisiting Residue Codes for Modern Memories 48

ChipKill
Guarantees

Storage Efficient

Multi-Use (MUSE) ECC

Revisiting Residue Codes for Modern Memories 49

ChipKill
Guarantees

FlexibleStorage Efficient

Outline

•ChipKill with MUSE ECC
•Use Cases:
• Rowhammer defenses
• PIM Reliability

•Paper Contents Overview

Revisiting Residue Codes for Modern Memories 50

Use Cases

Revisiting Residue Codes for Modern Memories 51

Use Case 1: Rowhammer Defense

Revisiting Residue Codes for Modern Memories 52

DDR5 w/
128B Cache Lines

80b channel

Use Case 1: Rowhammer Defense

Revisiting Residue Codes for Modern Memories 53

+
DDR5 w/

128B Cache Lines MUSE(80,69) ECC

80b codeword with 64b data and 5b metadata

Use Case 1: Rowhammer Defense

Revisiting Residue Codes for Modern Memories 54

+
DDR5 w/

128B Cache Lines MUSE(80,69) ECC

=
40b hash for

64B data

40b aggregated across 8 DRAM transactions

Use Case 1: Rowhammer Defense

Revisiting Residue Codes for Modern Memories 55

+
DDR5 w/

128B Cache Lines MUSE(80,69) ECC

=
40b hash for

64B data

Chance of successful attack is 𝟐#𝟒𝟎
Faking hash value will take a lot of time [1]

[1]: Exploiting correcting codes: On the effectiveness of ECC memory against rowhammer attacks.
Cojocar, L., Razavi, K., Giuffrida, C. and Bos, H., In 2019 IEEE Symposium on Security and Privacy.

Use Case 2: Processing-In-Memory

PIM with MUSE:

Revisiting Residue Codes for Modern Memories 56

Use Case 2: Processing-In-Memory

PIM with MUSE:
üSingle code for both storage and arithmetic reliability

Revisiting Residue Codes for Modern Memories 57

Use Case 2: Processing-In-Memory

PIM with MUSE:
üSingle code for both storage and arithmetic reliability
üECC check is done in parallel to compute

Revisiting Residue Codes for Modern Memories 58

Use Case 2: Processing-In-Memory

PIM with MUSE:
üSingle code for both storage and arithmetic reliability
üECC check is done in parallel to compute
üStorage efficient: 256b data needs 12b ECC (out of 32b)

Revisiting Residue Codes for Modern Memories 59

Outline

•ChipKill with MUSE ECC
•Use Cases:
• Rowhammer defenses
• PIM Reliability

•Paper Contents Overview

Revisiting Residue Codes for Modern Memories 60

In the paper

Revisiting Residue Codes for Modern Memories 61

DDR4 & DDR5
MUSE Codes

In the paper

Revisiting Residue Codes for Modern Memories 62

DDR4 & DDR5
MUSE Codes

More Case
Studies

In the paper

Revisiting Residue Codes for Modern Memories 63

DDR4 & DDR5
MUSE Codes

More Case
Studies uArch details

In the paper

Revisiting Residue Codes for Modern Memories 64

DDR4 & DDR5
MUSE Codes

Performance
Evaluation

More Case
Studies uArch details

Conclusion

MUSE ECC is the only ECC scheme that:
• Provides ChipKill with only 9.3% storage overhead
• Offers in-lined metadata storage for any purpose
• Drop-in replacement for existing ECC schemes

Revisiting Residue Codes for Modern Memories 65

Backup slides

Revisiting Residue Codes for Modern Memories 66

Background: Residue Codes

Revisiting Residue Codes for Modern Memories 67

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑: 1101111……………………………11001010

0

Background: Residue Codes

Revisiting Residue Codes for Modern Memories 68

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑!: 11𝟏1111……………………………11001010
LSB MSB

Background: Residue Codes

Revisiting Residue Codes for Modern Memories 69

decoding
𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑& = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 + 𝟐𝟐

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑!: 11𝟏1111……………………………11001010

Background: Residue Codes

Revisiting Residue Codes for Modern Memories 70

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 + 𝟐𝟐 mod𝑚

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑!: 11𝟏1111……………………………11001010

decoding

Background: Residue Codes

Revisiting Residue Codes for Modern Memories 71

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 + 𝟐𝟐 mod𝑚 = 𝟐𝟐mod𝑚

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑!: 11𝟏1111……………………………11001010

decoding

Background: Residue Codes

Revisiting Residue Codes for Modern Memories 72

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ≠ 0 ⟹ 𝑑𝑎𝑡𝑎 =
𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 − 𝑓'((𝟐𝟐𝑚𝑜𝑑 𝑚

𝑚

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 + 𝟐𝟐 mod𝑚 = 𝟐𝟐mod𝑚

𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑!: 11𝟏1111……………………………11001010

decoding

Background: Linearity of Residue Codes

Revisiting Residue Codes for Modern Memories 73

𝑥 𝐎𝐏 𝑦 mod 𝑀 = 𝑥 mod 𝑀 𝐎𝐏 𝑦 mod 𝑀 mod 𝑀

e.g., 𝑥 + 𝑦 mod 𝑀 = 𝑥 mod 𝑀 + 𝑦 mod 𝑀 mod 𝑀

