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A New Way to Store Metadata
• Metadata is widely used in computer architecture
• Modern hardware security solutions: ~1 to 21% overhead
• Reliability techniques: e.g., ChipKill ECC w/ 12.5% overhead

• Problem: metadata increases cost
• Forces architects to choose among multiple important techniques
• Complicated system design to manage metadata

• Solution: 
• MUSE (Multi-Use) ECC w/ 30% less metadata overhead for Chip Kill ECC
• Rowhammer defense w/ 40b hash w/o giving up on reliability
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# 𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑠 ≡ # 𝑎𝑙𝑙 𝑠𝑦𝑚𝑏𝑜𝑙 𝑒𝑟𝑟𝑜𝑟𝑠

𝐶ℎ𝑖𝑝𝐾𝑖𝑙𝑙

12b instead of 16b

DDR4 MUSE: 25% fewer ECC bits
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𝐴 = 𝜋𝑟!
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+
DDR5 w/ 

128B Cache Lines MUSE(80,69) ECC

=
40b hash for

64B data

Chance of successful attack is 𝟐#𝟒𝟎
Faking hash value will take a lot of time [1]

[1]: Exploiting correcting codes: On the effectiveness of ECC memory against rowhammer attacks.
Cojocar, L., Razavi, K., Giuffrida, C. and Bos, H., In 2019 IEEE Symposium on Security and Privacy.
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Use Case 2: Processing-In-Memory

PIM with MUSE:
üSingle code for both storage and arithmetic reliability
üECC check is done in parallel to compute 
üStorage efficient: 256b data needs 12b ECC (out of 32b)
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Conclusion

MUSE ECC is the only ECC scheme that:
• Provides ChipKill with only 9.3% storage overhead
• Offers in-lined metadata storage for any purpose
• Drop-in replacement for existing ECC schemes
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𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑: 1101111……………………………11001010
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𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑!: 11𝟏1111……………………………11001010
LSB MSB
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decoding
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𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ≠ 0 ⟹ 𝑑𝑎𝑡𝑎 =
𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 − 𝑓'(( 𝟐𝟐𝑚𝑜𝑑 𝑚

𝑚

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 + 𝟐𝟐 mod𝑚 = 𝟐𝟐mod𝑚
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Background: Linearity of Residue Codes
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𝑥 𝐎𝐏 𝑦 mod 𝑀 = 𝑥 mod 𝑀 𝐎𝐏 𝑦 mod 𝑀 mod 𝑀

e.g., 𝑥 + 𝑦 mod 𝑀 = 𝑥 mod 𝑀 + 𝑦 mod 𝑀 mod 𝑀


