
Practical Byte-Granular
Memory Blacklisting using

Califorms

Hiroshi Sasaki, Miguel A. Arroyo, Mohamed Tarek Ibn Ziad,
Koustubha Bhat, Kanad Sinha, Simha Sethumadhavan

1

Presenter
Presentation Notes
Let’s get to what I hope you’re all here for....

Califorms

2

Hiroshi Sasaki, Miguel A. Arroyo, Mohamed Tarek Ibn Ziad,
Koustubha Bhat, Kanad Sinha, Simha Sethumadhavan

Presenter
Presentation Notes
Califorms…Califorms enables an efficient solution to the LONGSTANDING problem of MEMORY SAFETY.
It does so with a simple modification to how data is stored in a CACHE LINE.

Why should we care about this aging MEMORY SAFETY problem…?

3

MEMORY SAFETY IS A SERIOUS PROBLEM!

Presenter
Presentation Notes
The LACK of MEMORY SAFETY is a SERIOUS PROBLEM
People can be discriminated against...

4

MEMORY SAFETY IS A SERIOUS PROBLEM!

Presenter
Presentation Notes
Spied on...

5

MEMORY SAFETY IS A SERIOUS PROBLEM!

Presenter
Presentation Notes
And targeted due to memory safety vulnerabilities.
Unfortunately, this problem REMAINS AS CURRENT today as it has ever been!

6

IT’S EASY TO MAKE MISTAKES

Presenter
Presentation Notes
The reality is that memory safety vulnerabilities are VERY EASY for developers to introduce UNWITTINGLY.

7

IT’S EASY TO MAKE MISTAKES

SEGFAULT!

Presenter
Presentation Notes
Just WHAT IS memory safety?
Put simply, it’s when you ACCESS MEMORY in an UNINTENDED way.
Think back to any time you mistakenly overflowed a buffer, forgot to free memory…

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

PREVALENCE OF MEMORY SAFETY VULNS

8

Microsoft Product CVEs

Presenter
Presentation Notes
To put into context just how COMMON these vulnerabilities are, consider that 70 percent of all the CVEs in Microsoft products EACH YEAR...are memory safety related.

9

Google OSS-Fuzz bugs from 2016-2018.

Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

Microsoft Product CVEs

PREVALENCE OF MEMORY SAFETY VULNS

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Presenter
Presentation Notes
Not to pick on Microsoft….BUT, Open Source software doesn’t fare any better!
With over 29% of bugs found by Google’s OSS-Fuzz being memory safety related.

https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

10

ATTACKERS

MEMORY SAFETY

Presenter
Presentation Notes
What makes the issue so PROMINENT is that attackers LOVE memory safety vulnerabilities.

11

ATTACKERS PREFER MEMORY SAFETY VULNS

Microsoft Product Exploits

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Presenter
Presentation Notes
Data about CVEs EXPLOITED in Microsoft products show that the OVERWHELMING MAJORITY are memory safety related!

So what can we do about this?

12

RESEARCHERS TOO

MEMORY SAFETY

Presenter
Presentation Notes
A number of solutions have been proposed over the years...

13

Low
Performance

Overhead

Low
Implementation

Complexity

Minor or no
software
changes

?

CURRENT SOLUTIONS AREN’T PRACTICAL

Presenter
Presentation Notes
...but they haven’t been PRACTICAL enough to be realized in COMMODITY DEVICES, whether it be because of PERFORMANCE or COMPLEXITY...

14

CALIFORMS
● Low Overhead
● Robust Security
● Legacy Software

Compatibility
● Easy to Implement
● 32-bit Compatible

Presenter
Presentation Notes
CALIFORMS is DIFFERENT:
It’s Low Overhead
Offers Robust Security
Is compatible with legacy software
Is easy to implement
And can be deployed across many devices.

15

MEMORY BLACKLISTING

A tripwire is a
blacklisted
location.

Program Memory

This is program data.

Presenter
Presentation Notes
We BUILD ON A CONCEPT known as blacklisting...

The idea is to insert “tripwires” RANDOMLY throughout memory...

16Program Memory

MEMORY BLACKLISTING

Accesses to this
region trigger an
exception!

Presenter
Presentation Notes
Going off if an attacker trips on them.

17Program Memory

MEMORY BLACKLISTING

Challenge

How to efficiently identify
blacklisted locations?

Presenter
Presentation Notes
The technical challenge lies in HOW TO efficiently identify blacklisted locations?

18Program Memory

MEMORY BLACKLISTING

Metadata

Simple
1-bit per byte

Presenter
Presentation Notes
The STRAIGHTFORWARD approach TO IDENTIFY any byte as blacklisted, needs 1-bit per byte.

19Program Memory

MEMORY BLACKLISTING

Metadata

Simple
1-bit per byte

12.5% memory overhead!

~200% runtime overhead!

Presenter
Presentation Notes
This can lead to PROHIBITIVE memory and runtime overheads.

20Program Memory

Califorms
1-bit per cache line

Metadata

MEMORY BLACKLISTING

Presenter
Presentation Notes
Califorms instead, MOVES the necessary metadata INSIDE the program memory.
This allows it to get away with JUST A SINGLE BIT per cache line.

21Program Memory

Califorms
1-bit per cache line

Metadata

MEMORY BLACKLISTING

0.2% memory overhead for
64B line!

~2-14% runtime overhead!

Presenter
Presentation Notes
DRASTICALLY improving performance!

OUR TALK

● Califorms

● Benefits

○ Performance, Security

● Related work

○ State-of-the-art Memory Safety Mitigations

● Conclusion
22

Presenter
Presentation Notes
For the rest of the talk, we’ll first dive into details of CALIFORMS, highlighting its security and performance benefits.
We’ll then touch on related work and how Califorms fits in with other memory safety techniques.

Finally we’ll conclude with some key takeaways about our solution.

CALIFORMS
MEMORY BLACKLISTING

23

Presenter
Presentation Notes
Hello everyone!
I am Mohamed and I am going to describe to you how Califorms actually works.
The key insight is to change how data is stored in cache lines

24

CALIFORMS: CACHE LINE FORMATS

Our Metadata: Encoded within unused data.

1 2 4 7 8

Normal

3 5 6

Presenter
Presentation Notes
Let's start with an example.
We refer to a cache line as normal if it has no blacklisted locations at all, like the one shown in the figure.

25

CALIFORMS: CACHE LINE FORMATS

Our Metadata: Encoded within unused data.

A B C D E

Blacklisted
Location

Normal

Presenter
Presentation Notes
Now, let's imagine a cache line with blacklisted locations.

26

CALIFORMS: CACHE LINE FORMATS

Our Metadata: Encoded within unused data.

A B C D E

Normal

Blacklisted
Location

bit-vector

Presenter
Presentation Notes
In this case, one simple way to identify those blacklisted locations is to use a single bit of metadata for every normal byte.
This is called BitVector format and It has the benefit of fast lookup, however ...

27

CALIFORMS: CACHE LINE FORMATS

Our Metadata: Encoded within unused data.

12.5% Memory
Overhead!A B C D E

Normal

Blacklisted
Location

bit-vector

Presenter
Presentation Notes
..., it introduces 12.5% memory overhead.

28

CALIFORMS: CACHE LINE FORMATS

Our Metadata: Encoded within unused data.

Califorms
A B C D E

Blacklisted
Location

Normal
A B C D EHeader

Presenter
Presentation Notes
In Califorms, we store metadata about the blacklisted locations within the blacklisted locations themselves!
How do we do that?
We first compress the regular data in one part of the cache line. Then, we use the other part of the cache line as a Califorms header, IN WHICH, we store the addresses of the blacklisted locations using special encoding.

29

CALIFORMS: CACHE LINE FORMATS

Our Metadata: Encoded within unused data.

Califorms
A B C D E

Normal
A B C D EHeaderY

Is
Califormed?

Blacklisted
Location

Presenter
Presentation Notes
In order to disambiguate between the blacklisted cache lines and the normal ones, we extend each and every cache line with an additional bit.
This bit is set to one for blacklisted cache lines.

Califorms

30

CALIFORMS: CACHE LINE FORMATS

Our Metadata: Encoded within unused data.

1 2 4 7 8

Normal
3 5 6

A B C D E

Normal
A B C D EHeaderY

Is
Califormed?

1 2 4 7 83 5 6N

NormalIs
Califormed?

Blacklisted
Location

Presenter
Presentation Notes
And is set to zero for non-blacklisted ones.

31

CALIFORMS: FULL SYSTEM

● Microarchitecture

● Architecture Support

● Software

Presenter
Presentation Notes
Now, In order to enable Califorms at the system level, we need to do a few changes.
Let's start with the microarchitecture.

32

CALIFORMS: MICROARCHITECTURE

CPU L1 Data L2
DRAM

Presenter
Presentation Notes
We modify the microarchitecture as follows:

33

CALIFORMS: MICROARCHITECTURE

CPU L1 Data L2
DRAM

Presenter
Presentation Notes
First, we modify the L1 and L2 caches in order to adopt our new cache line formats.
Our design goal is to keep the common case fast.

34

CALIFORMS: MICROARCHITECTURE

CPU L1 Data L2

BitVector Califorms
No Latency Overhead

12.5% memory overhead

DRAM

Presenter
Presentation Notes
So, in L1, we use bitvector Califorms (i.e, the one with a single metadata bit per byte) to guarantee fast lookup; resulting in a 12.5% memory overhead.

35

CALIFORMS: MICROARCHITECTURE

CPU L1 Data L2
DRAM

1-bit Califorms
1 Cycle or can be hidden
0.2% memory overhead

Presenter
Presentation Notes
On the other hand, for L2 cache and beyond, we only add one metadata bit per the whole cache line; resulting in 0.2% memory overhead.

36

CALIFORMS: MICROARCHITECTURE

CPU L1 Data L2
DRAM

1-bit Califorms
Stored in ECC bits

(if available)

Presenter
Presentation Notes
Similarly, we use the one-bit Califorms in DRAM. However, we make use of the spare ECC-bits to store our metadata bit per cache line so that we don’t add any complexities to DRAMs.

As the size of L1 cache is small compared to L2/L3 and main memory, the overall memory overhead is dominated by the 0.2%.

37

CALIFORMS: MICROARCHITECTURE

CPU L1 Data L2
DRAMC

C

Presenter
Presentation Notes
As cache lines are moving between L1 and L2 caches, we add two converters to switch between the two formats we are using in both directions.

How does that happen?

38

CALIFORMS: MICROARCHITECTURE

CPU L1 Data L2
DRAM

A B C D E

C

C

Presenter
Presentation Notes
Let us assume that a Blacklisting instruction is issued by the CPU to blacklist a few normal bytes.

L1 Data

39

CALIFORMS: MICROARCHITECTURE

CPU L2
DRAM

A B C D E

C

C

Presenter
Presentation Notes
In this case, within L1 data cache, the bitVector Califorms will be used for fast lookup.

L2

40

CALIFORMS: MICROARCHITECTURE

CPU L1 Data
DRAM

A B C D EHeaderY

C

C

Presenter
Presentation Notes
Only when this cache line is spilled out of L1 to L2, we convert the line format to the one-bit califorms.

L2

41

CALIFORMS: MICROARCHITECTURE

CPU L1 Data
DRAM

A B C D EHeaderY

C

C

Presenter
Presentation Notes
In L2, only 1 metadata bit is needed

L2

42

CALIFORMS: MICROARCHITECTURE

CPU L1 Data
DRAM

A B C D EHeaderY

C

C

Presenter
Presentation Notes
Same for DRAM, that’s why no converters are needed at that point.

DRAM
L2

43

CALIFORMS: MICROARCHITECTURE

CPU L1 Data

A B C D EHeaderY

C

C

Presenter
Presentation Notes
Please note that all of the described changes are equally applicable for 64-bit and 32-bit systems.

44

CALIFORMS: FULL SYSTEM

● Microarchitecture

○ Cache controller.

○ L1/L2 Califorms converters.

● Architecture Support

● Software

Presenter
Presentation Notes
In addition to the hardware changes, ...

45

CALIFORMS: FULL SYSTEM

● Microarchitecture

○ Cache controller.

○ L1/L2 Califorms converters.

● Architecture Support

○ A new Blacklisting instruction.

● Software

○ Compiler, memory allocator and OS extensions.

Presenter
Presentation Notes
.. we add a new (Blacklisting) instruction, write a couple of compiler passes, and modify the memory allocator.

● Microarchitecture

○ Cache controller.

○ L1/L2 Califorms converters.

● Architecture Support

○ A new Blacklisting instruction.

● Software

○ Compiler, memory allocator and OS extensions.
46

CALIFORMS: FULL SYSTEM

For more details, please
refer to our paper.

Presenter
Presentation Notes
For more details on those aspects, please refer to our paper.

47

CALIFORMS: SUMMARY

● Has no false positives

○ Precise storage (0-64 blacklisted locations per cache line).

Presenter
Presentation Notes
To summarize, we note that Califorms has the following interesting properties:
First, it has no false positives
In other words, it supports precise information storage as it can handle from 0 to 64 blacklisted locations per cache line.

48

CALIFORMS: SUMMARY

● Has no false positives

○ Precise storage (0-64 blacklisted locations per cache line).

● Supports existing performance optimizations

○ Critical word first.

Presenter
Presentation Notes
Second, It supports existing performance optimizations
Such as critical word first

49

CALIFORMS: SUMMARY

● Has no false positives

○ Precise storage (0-64 blacklisted locations per cache line).

● Supports existing performance optimizations

○ Critical word first.

● Integrates into existing microarchitectures

○ Does NOT disturb coherency.

Presenter
Presentation Notes
Finally, It can be easily integrated into existing microarchitectures
For example, it doesn’t disturb coherency.

CALIFORMS
PERFORMANCE

50

Presenter
Presentation Notes
Now, let us talk about the performance cost of our technique.

CALIFORMS: PERFORMANCE OVERHEADS

51

● Hardware Overheads

● Blacklisting Overheads

Presenter
Presentation Notes
Califorms’ performance overheads are mainly due to two sources:
Our hardware modifications that are needed to support Califorms and
The way we handle the blacklisted bytes in the program memory.

CALIFORMS: PERFORMANCE OVERHEADS

52

● Hardware Overheads

● Blacklisting Overheads

Presenter
Presentation Notes
The results of our VLSI implementation showed that our hardware modifications have no impact on the cache access latency and can be totally hidden within the pipeline.

Due to time limit, we’ll leave the details of the hardware overheads to the paper, and focus on the blacklisting overheads.

CALIFORMS: PERFORMANCE OVERHEADS

53

● Hardware Overheads

● Blacklisting Overheads

Presenter
Presentation Notes
The amount of blacklisting does affect performance. To quantify that effect, we need to first understand the different insertion policies that we use for adding blacklisted bytes.

CALIFORMS: INSERTION POLICIES

54
Tripwire Insertion Policies

struct A_opportunistic
{

char c;
char tripwire[3];
int i;
char buf[64];
void (*fp)();

}

(1) Opportunistic

Presenter
Presentation Notes
Our compiler pass has 3 distinct policies for inserting tripwires.
The first policy, which we refer to as the opportunistic policy only makes use of the naturally occurring dead-bytes (paddings) within a struct (for example, the ones that exist to satisfy language alignment requirements).

CALIFORMS: INSERTION POLICIES

55
Tripwire Insertion Policies

struct A_opportunistic
{

char c;
char tripwire[3];
int i;
char buf[64];
void (*fp)();

}

struct A_full {
char tripwire[2];
char c;
char tripwire[1];
int i;
char tripwire[3];
char buf[64];
char tripwire[2];
void (*fp)();
char tripwire[1];

}

(1) Opportunistic (2) Full

Presenter
Presentation Notes
The second insertion policy, which we refer to as the full policy, adds randomly sized tripwires between all fields of a struct.

CALIFORMS: INSERTION POLICIES

56
Tripwire Insertion Policies

struct A_opportunistic
{

char c;
char tripwire[3];
int i;
char buf[64];
void (*fp)();

}

struct A_full {
char tripwire[2];
char c;
char tripwire[1];
int i;
char tripwire[3];
char buf[64];
char tripwire[2];
void (*fp)();
char tripwire[1];

}

struct A_intelligent {
char c;
int i;
char tripwire[3];
char buf[64];
char tripwire[2];
void (*fp)();
char tripwire[3];

}

(1) Opportunistic (2) Full (3) Intelligent

Presenter
Presentation Notes
Our third (and last) policy, which we refer to as the intelligent policy, adds tripwires only between those fields which are more prone to exploitation (such as;. arrays and function pointers).

CALIFORMS
EVALUATION METHODOLOGY

57

Presenter
Presentation Notes
Now, we are going to describe our evaluation methodology for those different insertion policies.

CALIFORMS: EVALUATION METHODOLOGY

58

● Emulating the Blacklisting instruction

○ Inserting dummy stores to blacklisted bytes.

Presenter
Presentation Notes
First, while the program is running, our new blacklisting instructions have to be invoked by the memory allocator in order to pass the blacklisted locations info from software to hardware.
For emulating the effect of these blacklisting instructions, we insert dummy store instructions that write some value to the corresponding blacklisted-byte in the cache line.

CALIFORMS: EVALUATION METHODOLOGY

59

● Emulating the Blacklisting instruction

○ Inserting dummy stores to blacklisted bytes.

● NO simulations

○ Taking results from a real Skylake-based machine.

Presenter
Presentation Notes
This allows us to use real machine for our evaluation instead of relying on microarchitectural simulations.
So, we use a robust machine with Intel Skylake-based processor.

CALIFORMS: EVALUATION METHODOLOGY

60

● Emulating the Blacklisting instruction

○ Inserting dummy stores to blacklisted bytes.

● NO simulations

○ Taking results from a real Skylake-based machine.

● Using SPEC2006 benchmarks with reference inputs

○ Running experiments to completion.

Presenter
Presentation Notes
Finally, we used SPEC2006 benchmark suite with reference inputs.
We run all experiments to completion

Now, we are going to show you the slowdowns for using those three policies.

61

CALIFORMS: POLICIES OVERHEADS

7.9%

Presenter
Presentation Notes
First, we show the results for the opportunistic policy. The average slowdown in this case is almost 8%, as shown in the bottom figure.

62

CALIFORMS: POLICIES OVERHEADS

7.9%
13.9%

Presenter
Presentation Notes
But what would happen if we used the full policy? Remember; that is the one that inserts randomly sized tripwires between all fields of a struct?

In this case, the average slowdowns will increase to almost 14%.

63

CALIFORMS: POLICIES OVERHEADS

7.9%
13.9%

1.5%

Presenter
Presentation Notes
Finally, we show the results for the intelligent policy. The average slowdowns in this case are only 1.5%.

CALIFORMS: POLICIES OVERHEADS

64
Tripwire Insertion Policies

struct A_opportunistic
{

char c;
char tripwire[3];
int i;
char buf[64];
void (*fp)();

}

struct A_full {
char tripwire[2];
char c;
char tripwire[1];
int i;
char tripwire[3];
char buf[64];
char tripwire[2];
void (*fp)();
char tripwire[1];

}

struct A_intelligent {
char c;
int i;
char tripwire[3];
char buf[64];
char tripwire[2];
void (*fp)();
char tripwire[3];

}

(1) Opportunistic (2) Full (3) Intelligent

Provides the best
performance-security
tradeoff.

Presenter
Presentation Notes
As the results show, the intelligent policy provides the best performance-security tradeoff as it protects the security-critical fields with less than 2% performance overhead!

CALIFORMS
SECURITY BENEFITS

65

Presenter
Presentation Notes
Now, let’s talk more about the security benefits of Califorms.

66

CALIFORMS: SECURITY BENEFITS

Program
Memory

?
● Blacklisted locations must

be placed unpredictably.

Presenter
Presentation Notes
To ENSURE Caliform’s security benefits, it's CRITICAL that blacklisted locations be placed UNPREDICTABLY.
OTHERWISE, an attacker MAY BYPASS them.

67

CALIFORMS: SECURITY BENEFITS

Program
Memory

?
Blacklisted
Locations

Allocated
Memory

● Blacklisted locations must

be placed unpredictably.

Presenter
Presentation Notes
GENERALLY, the attacker’s PROBABILITY OF SUCCESS depends on the total number of blacklisted locations vs the total amount of allocated memory.

This, though, is an APPROXIMATE view...it doesn’t take into account OTHER KEY FACTORS such as the DIVERSITY of objects or general LAYOUT of memory, which the attacker needs to IDENTIFY FIRST.

GIVEN that it would be COMPLEX TO GENERALIZE ...Instead, let’s focus on the RARE, best case scenario for an attacker.

68

CALIFORMS: SECURITY BENEFITS

This is the best case for me.
Only one object!

We insert up
to 7 tripwires
between fields

4

5

2

3

0

1

6

7

int pin;

Presenter
Presentation Notes
The RARE instance in which there’s only a SINGLE OBJECT in memory.
The attacker ONLY needs to TRAVERSE an object’s FIELDS, in order to find what they want to disclose.
Because we insert 1-7 byte wide tripwires...

69

CALIFORMS: SECURITY BENEFITS

Field may be
anywhere in
this region 4

5

2

3

0

1

6

7

int pin;

Let me guess where the field
is.

Presenter
Presentation Notes
 the attacker needs to GUESS IN WHICH of 7 possible offsets they can find the field of interest.

70

CALIFORMS: SECURITY BENEFITS

4

5

2

3

0

1

6

7 int pin;

1
7

Field may be
anywhere in
this region

Let me guess where the field
is.

Presenter
Presentation Notes
OR...a 1/7 chance of succeeding.

71

CALIFORMS: SECURITY BENEFITS

4
5

2
3

0
1

6
7 int pin;

4
5

2
3

0
1

6
7 int creditcard;

1
7

1
7

Presenter
Presentation Notes
And THE MORE FIELDS the attacker is interested in...

72

CALIFORMS: SECURITY BENEFITS

4
5

2
3

0
1

6
7 int pin;

4
5

2
3

0
1

6
7 int creditcard;

The more I need to disclose the
harder it is!

1
7n

where n is the
number of fields to
be disclosed.

Presenter
Presentation Notes
The harder it gets...COMPOUNDING the 1/7 probability.

73

CALIFORMS: SECURITY BENEFITS

Can I disable blacklisted
memory?

Presenter
Presentation Notes
A natural QUESTION TO ASK… is whether the attacker can make their LIVES EASIER by just DISABLING the blacklisted locations using the same mechanism used to enable them...

74

Can I disable blacklisted
memory?

✔

They would first need to bypass Califorms.

CALIFORMS: SECURITY BENEFITS

Presenter
Presentation Notes
The answer is...NO.
To do so the attacker would FIRST need to BYPASS Califorms...
That is they have to exploit a memory safety vulnerability, scan for the necessary gadgets and use them….

MEMORY SCANNING ATTACK
WITH CALIFORMS

75

Presenter
Presentation Notes
To see this more concretely, let’s walk through an ESSENTIAL PART of every attacker’s WORKFLOW, a memory scanning attack.

76

EXAMPLE: MEMORY SCANNING ATTACK
Memory

char *p;

Attacker Controlled
Pointer

char *errMsg =
“Wrong Password!”;

Memory

Unallocated

char *Msg = “Wrong
Password!”;

int id;
short age;

char username[28];

char password[12];

char tripwireA[2];

char tripwireB[4];

Presenter
Presentation Notes
We start with an attacker controlling a pointer p...

77

EXAMPLE: MEMORY SCANNING ATTACK
Memory

char *p;

Attacker Controlled
Pointer

char *errMsg =
“Wrong Password!”;

Memory

Unallocated

char *Msg = “Wrong
Password!”;

int id;
short age;

char username[28];

char password[12];

char tripwireA[2];

char tripwireB[4];

Where can I find the password?

Presenter
Presentation Notes
Trying to FIND the password LOCATED SOMEWHERE in memory.

78

EXAMPLE: MEMORY SCANNING ATTACK

char *p;

Attacker Controlled
Pointer

These memory regions are
blacklisted by Califorms!

char *errMsg =
“Wrong Password!”;

Memory

Unallocated

char *Msg = “Wrong
Password!”;

Memory

int id;
short age;

char username[28];

char password[12];

char tripwireA[2];

char tripwireB[4];

Presenter
Presentation Notes
The STRUCT OF INTEREST is PADDED with Caliform tripwires as is the unallocated memory.

79

EXAMPLE: MEMORY SCANNING ATTACK

char *p;

Attacker Controlled
Pointer

char *errMsg =
“Wrong Password!”;

Memory

Unallocated

char *Msg = “Wrong
Password!”;

Memory

int id;
short age;

char username[28];

char password[12];

char tripwireA[2];

char tripwireB[4];

Oh no! I’ve triggered an exception!

Presenter
Presentation Notes
Upon scanning memory, the attacker lands on a tripwire in an unallocated region, triggering a Califorms Exception...causing the program to terminate.

80

EXAMPLE: MEMORY SCANNING ATTACK

char *p;

Attacker Controlled
Pointer

char *errMsg =
“Wrong Password!”;

Memory

Unallocated

char *Msg = “Wrong
Password!”;

Memory

int id;
short age;

char username[28];

char password[12];

char tripwireA[2];

char tripwireB[4];

Califorms provides intra-
object protection!

Presenter
Presentation Notes
They try again this time landing in a tripwire between 2 fields.
It’s IN THIS WAY that Califorms effectively PROVIDES intra-object memory safety!

RELATED WORK

81

Presenter
Presentation Notes
Understanding both the security and performance benefits of Califorms, we are now BETTER SUITED TO POSITION IT against existing techniques.

82

RELATED WORK

Technique Program Memory Footprint Performance Overhead

Base & Bound ∝ # of pointers ∝ # of pointer dereferences

Presenter
Presentation Notes
Base & Bounds techniques, like Intel’s MPX, rely on storing 2 ADDITIONAL WORDS (namely the base and bounds)...as metadata for every pointer...
This leads to ADDITIONAL ACCESSES to this metadata on every pointer dereference.

83

RELATED WORK

Technique Program Memory Footprint Performance Overhead

Base & Bound ∝ # of pointers ∝ # of pointer dereferences

FAT Pointers ∝ # of pointers and physical mem. ∝ # of pointer operations

Presenter
Presentation Notes
FAT pointers instead rely on INCREASING a POINTER’s WIDTH in order to EMBED the metadata WITHIN the pointer itself.
This makes pointer operations significantly more expensive.

84

Technique Program Memory Footprint Performance Overhead

Base & Bound ∝ # of pointers ∝ # of pointer dereferences

FAT Pointers ∝ # of pointers and physical mem. ∝ # of pointer operations

Califorms ∝ # blacklisted locations ∝ # of blacklisting instructions

RELATED WORK

Presenter
Presentation Notes
In contrast to these...Califorms MAY add ADDITIONAL BYTES to objects DEPENDING on the insertion POLICY.
As a result, Caliform’s performance scales ACCORDING TO HOW OFTEN blacklisted locations CHANGE during program execution...

CONCLUSION

85

● Califorms can be applied to non 64-bit

systems (e.g IoT, CPS, etc).

● Califorms’ blacklisting is an efficient

solution to memory safety:

○ Is easy to implement.

○ Has low overheads.

○ Offers robust security.

Presenter
Presentation Notes
As we’ve EMPHASIZED in multiple ways...Califorms is not only simple, BUT ARCHITECTURE WIDTH AGNOSTIC.
It can be applied to a wide variety of systems, making it well suited for everything from servers to resource constrained IoT and CPS.

We believe Califorms strives across this entire spectrum as it:
Is easy to implement
Has lower overheads
And offers robust security.

For more details on topics we couldn’t cover during the presentation, we encourage you to read the paper.

Thank you for listening...

CONCLUSION

86

● Califorms can be applied to non 64-bit

systems (e.g IoT, CPS, etc).

● Califorms’ blacklisting is an efficient

solution to memory safety:

○ Is easy to implement.

○ Has low overheads.

○ Offers robust security.

QUESTIONS?
Stop by during the

poster session to chat!
2:50-4:00pm

BACKUPS

87

88

califorms-bitvector califorms-sentinel

CALIFORMS: ENCODING SCHEMES

89

CALIFORMS: HARDWARE DIAGRAM

90

CALIFORMS: HARDWARE DIAGRAM

91
Slowdown with additional one-cycle access latency for both L2 and L3 caches.

CALIFORMS: CONSERVATIVE ANALYSIS

Presenter
Presentation Notes
We perform detailed microarchitectural simulations using the ZSim simulator on SPEC2006 benchmarks with reference inputs.

We found out that the average performance slowdown is less than 1% which is in the range of error when executed on real systems

92

CALIFORMS: HARDWARE PERFORMANCE

Presenter
Presentation Notes
Furthermore, we measure the access latency impact and area overheads of adding califorms on a 32KByte pipelined L1 cache.
We used 65nm technology with ARM memory compilers for generating SRAMs.
As expected, the overheads associated with Califorms are minor in terms of delay (1.85%) and power consumption (2.12%). We found the SRAM area to be the dominant component in the total cache area (consuming around 98%) where the overhead is 18.69% (slightly higher than the theoretical 12.5% one).
[32KB direct mapped L1 cache in the context of a typical energy optimized tag and data, formatting L1 pipeline with multicycle fill/spill handling]

We also implemented the fill/spill modules that are responsible for converting the Califorms format at the L1/L2 interface.
The latency impact of the fill operation is within the access period of the L1 design. Thus, the transformation can be folded completely within the pipeline stages that bring cache lines from L2 to L1.
However, this is not the case for the spill operation (5.5ns vs. 1.4ns) as we use pure combinational logic to construct the califorms-L2 format in one cycle. We note that the spell operation is less sensitive to the pipeline. Therefore, we believe that the latency of both the fill and spill operations can be minimal (or completely hidden) in the pipeline.

93

Dead Memory

Memory that is never be used
by the program.

SPEC CPU2006 C and C++ Benchmarks

Normally Occurring Dead Bytes

V8 JavaScript Engine

CALIFORMS: OPPORTUNISTIC POLICY

Struct density = ∑i#fields(sizeof(fieldi))/sizeof(struct)

Presenter
Presentation Notes
A natural question to ask then is, just how prevalent these dead-bytes or padding actually are.
Here we collect the struct density for SPEC2006 and the V8 Javascript Engine, which we define to be the sum of size of each field divided by the total size of the struct.

	Practical Byte-Granular Memory Blacklisting using Califorms
	Califorms
	MEMORY SAFETY IS A SERIOUS PROBLEM!
	MEMORY SAFETY IS A SERIOUS PROBLEM!
	MEMORY SAFETY IS A SERIOUS PROBLEM!
	IT’S EASY TO MAKE MISTAKES
	IT’S EASY TO MAKE MISTAKES
	PREVALENCE OF MEMORY SAFETY VULNS
	PREVALENCE OF MEMORY SAFETY VULNS
	Slide Number 10
	ATTACKERS PREFER MEMORY SAFETY VULNS
	Slide Number 12
	CURRENT SOLUTIONS AREN’T PRACTICAL
	Slide Number 14
	MEMORY BLACKLISTING
	MEMORY BLACKLISTING
	MEMORY BLACKLISTING
	MEMORY BLACKLISTING
	MEMORY BLACKLISTING
	MEMORY BLACKLISTING
	MEMORY BLACKLISTING
	OUR TALK
	CALIFORMS
MEMORY BLACKLISTING
	CALIFORMS: CACHE LINE FORMATS
	CALIFORMS: CACHE LINE FORMATS
	CALIFORMS: CACHE LINE FORMATS
	CALIFORMS: CACHE LINE FORMATS
	CALIFORMS: CACHE LINE FORMATS
	CALIFORMS: CACHE LINE FORMATS
	CALIFORMS: CACHE LINE FORMATS
	CALIFORMS: FULL SYSTEM
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: MICROARCHITECTURE
	CALIFORMS: FULL SYSTEM
	CALIFORMS: FULL SYSTEM
	CALIFORMS: FULL SYSTEM
	CALIFORMS: SUMMARY
	CALIFORMS: SUMMARY
	CALIFORMS: SUMMARY
	CALIFORMS
PERFORMANCE
	CALIFORMS: PERFORMANCE OVERHEADS	
	CALIFORMS: PERFORMANCE OVERHEADS	
	CALIFORMS: PERFORMANCE OVERHEADS	
	CALIFORMS: INSERTION POLICIES
	CALIFORMS: INSERTION POLICIES
	CALIFORMS: INSERTION POLICIES
	CALIFORMS
EVALUATION METHODOLOGY
	CALIFORMS: EVALUATION METHODOLOGY	
	CALIFORMS: EVALUATION METHODOLOGY		
	CALIFORMS: EVALUATION METHODOLOGY		
	CALIFORMS: POLICIES OVERHEADS
	CALIFORMS: POLICIES OVERHEADS
	CALIFORMS: POLICIES OVERHEADS
	CALIFORMS: POLICIES OVERHEADS
	CALIFORMS
SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	CALIFORMS: SECURITY BENEFITS
	MEMORY SCANNING ATTACK
WITH CALIFORMS
	EXAMPLE: MEMORY SCANNING ATTACK
	EXAMPLE: MEMORY SCANNING ATTACK
	EXAMPLE: MEMORY SCANNING ATTACK
	EXAMPLE: MEMORY SCANNING ATTACK
	EXAMPLE: MEMORY SCANNING ATTACK
	RELATED WORK
	RELATED WORK
	RELATED WORK
	RELATED WORK
	CONCLUSION
	CONCLUSION
	BACKUPS
	CALIFORMS: ENCODING SCHEMES
	CALIFORMS: HARDWARE DIAGRAM
	CALIFORMS: HARDWARE DIAGRAM
	CALIFORMS: CONSERVATIVE ANALYSIS
	CALIFORMS: HARDWARE PERFORMANCE
	CALIFORMS: OPPORTUNISTIC POLICY

