Efficient Pointer Integrity For
Securing Embedded Systems

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny
Manzhosov, Vasileios P. Kemerlis, and Simha Sethumadhavan

gg%p COMPUTER SCIENCE EEI

Columbia University
Brown University
09/21/2021

Embedded systems are everywhere!

&

% Py, Systems
¢ ,?\ _

l
L

B o

Embedded systems are dominated by 32-bit.

m 2013 m2014 m2015 2017 m 2019
80%

- -

% 4
2 ' :
g 60% : W Over 60% of projects are
T I ' 32-bit!
= 40% I I
: ' I
qg 20% : i
o | I
X

w TnIn IRHan il ...

8 bit 16bit | 32bit , 64bit N/A

Main processor bit width

Why embedded system security is important?

Software has become increasingly complex.

0 10 20 30 40 160

Lines of Code (in millions)

Source: http://bit.ly/KIB_linesco de

Why embedded system security is important?

Software has become increasingly complex.

AL

0 10 20 30 40 160

Number of Bugs

Source: http://bit.ly/KIB_linesco de

Why embedded system security is important?

Software has k
"l “I i o

Heavily utilized software is predominantely
written in unsafe languages.

0 10 20 30 40 160

Lines.of Code (i millions!
Number of Bugs

ource: http://bit.ly/KIB_linescode

Why Memory Safety?

[t is the predominant source of vulnerabilities (ie. CVEs).

m Memory Safety Non-Memory Safety

100%

90%

80%

70%

60%

50%

% of CVEs

40%

30%

20%

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Patch Year

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Why Memory Safety?

Memory Safety CVEs are heavily exploited.

m Memory Safety Non-Memory Safety

100%

90%

80%

70%

60%

50%

40%

% of CVEs exploited

30%

20%

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Patch Year

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Return Address Integrity

CALL <Foo>

STORE

RET

Program Memory

Return Address Integrity

CALL <F0oO> =M

STORE Return Address

RET

Program Memory

Return Address Integrity

CALL <Foo>

STORE Return Address

RET

Program Memory

Return Address Integrity

CALL <Foo>

Return Address

Program

Memory

Return Address Integrity

CALL <Foo>

STORE Return Address

RET

Program Memory

Return Address Integrity

Return Address

Program

Memory

Return Address Integrity

Program Memory

2 es ad
CALL <Foo> |
0 avoid cra
.@ amm Return Address

16

Code Pointer Integrity

CPtrST A

CPtrLD

Program

Function Pointer

Memory

Code Pointer Integrity

CPtrST

Function Pointer

CPtrLD

Program Memory

Code Pointer Integrity

CPtrST

CPtrLD

Program

Function Pointer

Memory

19

Data Pointer Integrity

Works in the same way as

Code Pointer Integrity but
for data pointers!

DPtrST

DPtrLD

Program

Data Pointer

Memory

20

Cache Line Formats

Cache Line Formats

DEBRNNnn

Normal

Cache Line Formats

Nl o U

Normal

Cache Line Formats

bit-vector

s B __=uh

Nl o U

Normal

Cache Line Formats

Format Encoding Table

Normal

Cache Line Formats

Format Encoding Table

bit-vector

Function pointer 10

A | B C D

Normal

Cache Line Formats

Format Encoding Table

Return address 01
Function pointer 10
Data pointer 11

bit-vector

~
~..
S
S
S
~
S<
Seo

B C D

Normal

27

Cache Line Formats

Format Encoding Table
Regular data 00
Return address 01
Function pointer 10
Data pointer 11

bit-vector

~
~..
S
S
S
~
S<
Seo

B C D

Normal

28

Cache Line Formats

Format Encoding Table

Type

Regular data 00 o ‘bit-vector

---------------- LS

(
I
e i s = BN
I
\

Function pointer 10
(4] 20

Normal

Data pointer 11

29

Cache Line Formats

Using a bit-vector throughout the

memory hierarchy is inefficient!

bit-vector

.

30

Cache Line Formats

With EPI, we encode metadata

within unused pointer bits.

31

Cache Line Formats

. Pointers

Normal

32

Cache Line Formats

With EPI, we encode metadata

within unused pointer bits.

. Pointers

Normal Is Ret? Is Pte? Encoded

oo oc) mmp [N[] 22 (o] clo e

33

Cache Line Formats

With EPI, we encode metadata

within unused pointer bits.

. Pointers

Normal L Ret? 1s Pir? Encoded

oo Dol Yool - BDenn

Nor mal Is Ret? Is Ptr? Nor mal

ol 2]3]4(506 7] mmmp [NJ] (01 23040506 7

Cache Line Formats

With EPI, we encode metadata
within unused pointer bits.

B rointers Extra bits add 0.39%
area overhead.
Normal Pisc iy Encoded
“ a :I [AIBICIDIE}
|
Normal i I | Nl

0]1[2]3]4[5]6]7]

) [~][5]

0|1]2]3]4]5]6]7]

Cache Line Formats

. Pointers

Normal L Ret? 1s Pir? Encoded

oo Dol Yool - BDenn

Normal Is Ret? s Ptr? Normal

0[1[2]3/4]5/6 7] NJ[N] o]1]2]3[4][5(6 7]

https://doi.org/10.1109/ISCA52012.2021.00082
https://doi.org/10.1145/3352460.3358299

Cache Line Formats

With EPI, we encode metadata
within unused pointer bits.

What unused
pointer bits?

37

Harvesting Unused Pointer Bits

Common software properties allow us
harvest extra bits from pointers on 32-bit
architectures.

00010010
101001101

38

Harvesting Unused Pointer

Bits

Regular Data [0]

4 Bytes

[31]

Harvesting Unused Pointer

Bits

Regular Data [0]

Return Address [0]

4 Bytes

[31]

[31]

40

Harvesting Unused Pointer Bits

A

4 Bytes
Regular Data [0]

Return Address

Fixed-width instructions on RISC architectures allow us

to harvest the 2 LSBs.

[31]

v

41

Harvesting Unused Pointer Bits

4 Bytes

A

Regular Data [0]

Return Address

Function Pointer

Aligning functions (e.g. -falign-functions)

allows to harvest the 4 LSBs.

v

[31]

42

Harvesting Unused Pointer Bits

A

4 Bytes

Regular Data [0]

Return Address
Function Pointer

Compacting the code address space allows us to harvest

2 MSB:s.

‘_______'

43

Harvesting Unused Pointer Bits

4 Bytes >

A

Regular Data [0] [31]

EUNEEN

Return Address

fB e 1B 2

|
I -
I
|

D v

Function Pointer

Inserting padding bytes allows us to store a per-pointer ID.

44

Performance

EPI Performance Overheads

Hardware Modifications

EPI Performance Overheads

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

EPI Performance Overheads

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Software Modifications
* Our special load/stores do not change the binary size.

EPI Performance Overheads

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Software Modifications

* Our special load/stores do not change the binary size.

* The ClearMeta instructions are only called on memory
deallocation.

EPI Performance Overheads

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Software Modifications

* Our special load/stores do not change the binary size.

* The ClearMeta instructions are only called on memory
deallocation.

* Padding bytes are added to pointers only.

Performance Results

14t

Experimental Setup
We use emulate EPI on x86_64 by modifying LLVM to emit
new instructions.
* ClearMeta is emulated using dummy stores.
* Padding bytes & necessary LD/ST emulate extra memory
utilization.

51

Performance Results

,’— ---------------------
'I 14
]
;2 0.47%
: « 10
o
: & 038
1 g
| £ 0.6
: Z. 04
1
: 02
L 00
N e Average
EPI-Return
14
12
T 10
A 08
g 06
S 0.4
02
0.0
~Q> cJcJJ/\ §}> D/ (;&} &ﬁ @5 Q> \g} ‘obj
& o & & & &y &
oS 9 9 4 o 4 &
o I

N e

52

Performance Results

o T -~
’ N
\
,l 14 ‘
: 1.2 -
) I
- ug 1.0 -
: A 0.8 :
I £ 06 !
1S I
: Z 04 "
I
: 0.2 I
I
\ 0.0 H
M e Average !
EPI-Return B EPI-Full
14
12
T 10
A~ 08
g 0.6
:2 04
0.2
0.0
\Qj 005 & / é\.} « '&/ / \&j by} Q}’ QO/ C\}_} \:)5 \o> AV(\)/ &(b,QO
AN S A S AN TN A N T
¥ N N, & o) SN SIS o ¢ S KW » 5 \
R G & T e
Q- : 5) N
N <V @:’) o ©

Performance Results

o T -~
/ N
'I 14 \‘
12 0 :
! 4%
« 1.0
| = |
08 !
I £ 06 !
1> I
" Z 04 :
I
: 0.2 :
I
\ 0.0 H
N e Average | __ A
EPI-Return W EPI-Full B PAC-Return
14
12
T L0
~ 08
E 0.6
:2 04
0.2
0.0
S 5 < S < S < S < S < < < < < < &
K X / / / / N/ < / / NS >/ o/ 4/ >
R S T R A R GV C
SR e F & & & & P F I F > > °
& 2 S NG N & 2 o8 F °

Performance Results

’—

K N

I 1

I I

: I

. I

3 :

A I

:

=)

I I

B I

I I

I I

1 [

\]

\~ ’

EPI-Return m EPI-Full B PAC-Return B PAC-Full
14
12
T 10
A 08
EO.6
:2 04
02
0.0
SRS VIS B IR RSO TR S NG SEUS S R SN S SRS I
S AR O R VO P I SRR AR - G
Q& a9 el ‘0\’ ,»Q'o 4% 6;»‘0 \,.b' (,;)cb.
2R ° ch:). oL

Performance Results

W N N BN B BN B BN BN BN BN BN BN BN BN BN BN BN B B B Sy

71 N
,' 8.5% ,
P10 ! PAC’s overheads are attributed to the extra
1 3 [. . . .
! 2 1o : QARMA encryption invocations upon pointer:
E s 1 i loads/stores
P : * usages
! 1 . !
N PAC-Full EPI-Full)
~ P4

Performance Results

W N N BN B BN B BN BN BN BN BN BN BN BN BN BN BN B B B Sy

EPI reduces the average runtime overheads of

pointer integrity from 8.5% to 0.88%!

,______________N
Norm. Perf.
— — —
() () o
B & &®
D S —————

————————————————————————

57

EPI does not compromise on security

No Pointer Manipulation
Protects against all known pointer manipulation attacks
(e.g. ROP, JOP/COP, COOP, DOP).

58

Handling Security Violations

Advisory Exceptions
 Skip faulty instructions.
* Do NOT crash the running process.

Handling Security Violations

Advisory Exceptions
 Skip faulty instructions.
* Do NOT crash the running process.

l Q Permit List

* Initialized during program startup

60

Handling Security Violations

Advisory Exceptions
 Skip faulty instructions.
* Do NOT crash the running process.

l Q Permit List

* Initialized during program startup
* Avoid false alarms for non-type aware functions (e.g.,
memcpy and memmove)

Handling Third Party Code

% We can pick from the following options:

62

Handling Third Party Code

% We can pick from the following options:

Compile with EPI
c Compile third party code with EPI support.

63

Handling Third Party Code

We can pick from the following options:

Compile with EPI
Compile third party code with EPI support.

e Add to Permit List
Add to a permit list during program initialization.

64

Handling Third Party Code

We can pick from the following options:

Compile with EPI
Compile third party code with EPI support.

Add to Permit List

Add to a permit list during program initialization.

Invoke ClearMeta
e ClearMeta is inserted before passing pointers to

external libraries.

65

Limitations

Non-pointer Data Corruption
m These attacks require a full memory safety solution.

66

An efficient pointer integrity mechanism

Specifically tailored for 32-bit embedded systems.

v" Offers Robust Security
v Easy to Implement

v Minimal Runtime Overheads
v" Low Power

v Increased Reliability

Il @

