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Embedded systems are everywhere!
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Embedded systems are dominated by 32-bit.
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Why embedded system security is important?

Software has become increasingly complex.
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Why embedded system security is important?

Software has k
"l “I i o

Heavily utilized software is predominantely
written in unsafe languages.
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Why Memory Safety?

[t is the predominant source of vulnerabilities (ie. CVEs).
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Why Memory Safety?

Memory Safety CVEs are heavily exploited.
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Return Address Integrity
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Return Address Integrity

Program Memory
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Code Pointer Integrity
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Code Pointer Integrity
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Data Pointer Integrity

Works in the same way as

Code Pointer Integrity but
for data pointers!
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Cache Line Formats

Format Encoding Table
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Cache Line Formats

Format Encoding Table
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Cache Line Formats
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Cache Line Formats

Using a bit-vector throughout the

memory hierarchy is inefficient!

bit-vector

.
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Cache Line Formats

With EPI, we encode metadata

within unused pointer bits.
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Cache Line Formats
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Cache Line Formats

With EPI, we encode metadata

within unused pointer bits.
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Cache Line Formats

With EPI, we encode metadata

within unused pointer bits.
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Cache Line Formats

With EPI, we encode metadata
within unused pointer bits.
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Cache Line Formats
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Cache Line Formats

With EPI, we encode metadata
within unused pointer bits.

What unused
pointer bits?
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Harvesting Unused Pointer Bits

Common software properties allow us
harvest extra bits from pointers on 32-bit
architectures.
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Harvesting Unused Pointer
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Harvesting Unused Pointer Bits

A

4 Bytes
Regular Data [0]

Return Address

Fixed-width instructions on RISC architectures allow us

to harvest the 2 LSBs.
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Harvesting Unused Pointer Bits

4 Bytes

A

Regular Data [0]

Return Address

Function Pointer

Aligning functions (e.g. -falign-functions)

allows to harvest the 4 LSBs.
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Harvesting Unused Pointer Bits

A

4 Bytes

Regular Data [0]

Return Address
Function Pointer

Compacting the code address space allows us to harvest

2 MSB:s.
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Harvesting Unused Pointer Bits

4 Bytes >
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Inserting padding bytes allows us to store a per-pointer ID.
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EPI Performance Overheads

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Software Modifications

* Our special load/stores do not change the binary size.

* The ClearMeta instructions are only called on memory
deallocation.

* Padding bytes are added to pointers only.



Performance Results

14t

Experimental Setup
We use emulate EPI on x86_64 by modifying LLVM to emit
new instructions.
* ClearMeta is emulated using dummy stores.
* Padding bytes & necessary LD/ST emulate extra memory
utilization.

51



Performance Results
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Performance Results
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Performance Results
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Performance Results

’—

K N

I 1

I I

: I

. I

3 :

A I

:

=)

I I

B I

I I

I I

1 [

\ ]

\~ ’

EPI-Return m EPI-Full B PAC-Return B PAC-Full
14
12
T 10
A 08
EO.6
:2 04
02
0.0
SRS VIS B IR RSO TR S NG SEUS S R SN S SRS I
S AR O R VO P I SRR AR - G
Q& a9 el ‘0\’ ,»Q'o 4% 6;»‘0 \,.b' (,;)cb.
2R ° ch:). oL



Performance Results

W N N BN B BN B BN BN BN BN BN BN BN BN BN BN BN B B B Sy

71 N
,' 8.5% ,
P10 ! PAC’s overheads are attributed to the extra
1 3 [ . . . .
! 2 1o : QARMA encryption invocations upon pointer:
E s 1 i  loads/stores
P : * usages
! 1 . !
N PAC-Full EPI-Full )
~ P4



Performance Results
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EPI reduces the average runtime overheads of

pointer integrity from 8.5% to 0.88%!
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EPI does not compromise on security

No Pointer Manipulation
Protects against all known pointer manipulation attacks
(e.g. ROP, JOP/COP, COOP, DOP).
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Handling Security Violations

Advisory Exceptions
 Skip faulty instructions.
* Do NOT crash the running process.
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Advisory Exceptions
 Skip faulty instructions.
* Do NOT crash the running process.

l Q Permit List

* Initialized during program startup
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Handling Security Violations

Advisory Exceptions
 Skip faulty instructions.
* Do NOT crash the running process.

l Q Permit List

* Initialized during program startup
* Avoid false alarms for non-type aware functions (e.g.,
memcpy and memmove)




Handling Third Party Code

% We can pick from the following options:
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Handling Third Party Code

% We can pick from the following options:

Compile with EPI
c Compile third party code with EPI support.
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Handling Third Party Code

We can pick from the following options:

Compile with EPI
Compile third party code with EPI support.

e Add to Permit List
Add to a permit list during program initialization.
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Handling Third Party Code

We can pick from the following options:

Compile with EPI
Compile third party code with EPI support.

Add to Permit List

Add to a permit list during program initialization.

Invoke ClearMeta
e ClearMeta is inserted before passing pointers to

external libraries.
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Limitations

Non-pointer Data Corruption
m These attacks require a full memory safety solution.
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An efficient pointer integrity mechanism

Specifically tailored for 32-bit embedded systems.

v" Offers Robust Security
v Easy to Implement

v Minimal Runtime Overheads
v" Low Power

v Increased Reliability
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