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i Introduction

= Solving systems of linear equations represents the
core operation in a wide variety of applications in
fundamental sciences.

= One of the most widely used methods for solving
dense linear systems (DLS) is the Gauss-Jordan
Elimination (GJE) method.

= Current FPGA implementations of the GJE on FPGAs
only care about area and throughput. There are no
energy-aware hardware implementations.



i Contributions

= A pipelined architecture for solving DLS using the GJE
algorithm with single-precision floating-point (FP)
accuracy.

= A detailed experimental analysis of the design logic
utilization, time performance, and power
consumption.

= A performance comparison and evaluation of our
proposed technique against similar hardware
implementations with respect to time and area.
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= The Gauss-Jordan Elimination Algorithm



The Gauss-Jordan Elimination
i Algorithm

= Inputs: matrix, A and RHS vector, b.
= Output: solution vector, x.
= Steps:
v Pivot element location.
v"Row exchange.
v Current row normalization.
v"Row elimination.




The Gauss-Jordan Elimination
i Algorithm - Example

= Simple DLS: = Augmented matrix:
(4x+4y+4z=20 4 4 20
{2x+3y+5z=8 m) 2 3 5 8
| 4x+5z=2 4 0 5 2
= Rows eI|m|nat|on = 15t row normalization:
1 1 1 1 5
0 ] \ lz 3 5 8]
0 —4 1 —18 4 0 5 2




The Gauss-Jordan Elimination
‘L Algorithm — Example (2)

= Pivot element Iocatlon = Rows elimination:
[1 ] 1 |0 =2 7 ]
0 0 |1 3 -2
0—41—18- 0 0] @3 —26
= Rows elimination: = 3'd row normalization:
1 0 |0 |3 - 1 0 =2 7
0 1 |0 4] [0 1 3 —2]
0 0 |1 |-2 00 1 =2

X
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Hardware Implementation
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= Our architecture includes three main components; memory, control
unit, and ALU.



Hardware Implementation -

i
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= Our memory unit is a three-port memory with depth equals the number
of equations, n.

= Write/read enable signals are used to enable memory in specific times
and disable it otherwise to reduce power consumption.



Hardware Implementation -

i ALU
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= Our ALU consists of only one single-precision FP divider and n + 1
processing elements (PES).

= All PEs are identical and are mainly used to perform the row elimination
step in parallel.



Hardware Implementation -
Control Unit

Control Skip
logic module

Memory | g

3

t

/I c

A L U \ K Row_data_1
Single-precision floating-point divider <I
PE PE PE PE PE N
1 2 3 209 n n+1 ALU output

4 V

FP_width * (n+1)

The control unit consists mainly of two submodules; the control logic,
which is responsible for controlling the signals connected to memory
and ALU, and the skip module, which skips the normalization step
when the pivot element is already 1 and skips the elimination step
when the eliminated element is already 0.
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Hardware Implementation -
i Floating-point (FP) Modules

= We utilize single-precision FP modules, generated
using FloPoCo, an open source generator of operators
written in C++.

= The used FP modules are deeply pipelined in order to
obtain the maximum performance.

= Although the FP modules operate on 34 bit operands
instead of 32 bit ones, FloPoCo provides simple
conversion operators from and to the IEEE-754
standard formats.
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i Experiments and Analysis

No. of equations 5 10 15 20 235
No. of slice registers || 3,979 | 6,313 | 9,197 | 11,737 | 14,262
No. of slice LUTSs 6,480 11.022. | 17.312 | 23494 | 32,773
No. of DSP48Es 24 44 64 84 104
Maximum frequency || 198.230 | 179.880 | 149.897 | 141.606 | 140.183

Hardware resource utilization for our single-precision FP design

on Virtex-5 XC5VLX330T FPGA using different test cases.

It is worth mentioning that we did not optimize the code for a

certain FPGA, while FPGA-specific optimizations might yield

better area usage.

17



Experiments and Analysis (2)
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= Timing results of our GJE implementation on Virtex-5
XC5VLX330T FPGA using different test cases.



* Experiments and Analysis (3)
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XC5VLX330T FPGA using
different test cases.
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i Experiments and Analysis (4)

Our design GJE design [4]
Matrix size 4 8 4 8
No. of slice registers 3823 5369 3048 4321
No. of slice LUTs 5820 9184 4476 7396
No. of DSP48Es 20 36 10 10
Number of cycles 136 304 608 1204
Maximum frequency (MHz) 196.142 179277 263.116 263.116
Execution time (us) 0.693 1.696 2311 4.576

= Resources and timing comparisons against the GJE design in [4]
using Virtex-5 LX50T FPGA.

= direct comparisons against in terms of energy efficiency are not
applicable as the authors in [4] does not offer power analysis of
presented implementations.
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i Conclusion

= We presented a single-precision FP architecture for
solving generic DLS of equations using the GJE
algorithm.

= We implemented our design on a Virtex-5 FPGA and
discussed detailed experimental results to show time,
area, and power costs.

= We aim to investigate the trade-off between
obtaining higher solution accuracy by using double
and quadruple FP precision and maintaining area and
energy efficiency in the future work.
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i Thank you

FOR QUESTIONS: PLEASE CONTACT
MOHAMED.TAREK@ENG.ASU.EDU.EG
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