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Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.
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Testing alone is NOT enough!

Researchers: Beware of 10-Year-Old Linux
Vulnerability

Qualys Says Flaw in Sudo Utility Could Grant Attackers Root Access

Wasokan_akshaya

Microsoft patches critical 17-year-old DNS bug in
Windows Server

Chrome: 70% of all security bugs are memory
safety issues

Google software engineers are looking into ways of eliminating memory management-related bugs from Chrome.
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Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs
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Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs 0SS-Fuzz Bug Types
B Non-Memory Safety [l Memory Safety
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Microsoft Product CVEs Google OSS-Fuzz bugs from 2016-2018.
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Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019 Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
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Modern software design is useful for security

Increasing adoption of binning allocators
* Maintains memory locality.

* Implicit lookup of allocation information.



Modern software design is useful for security

Increasing adoption of binning allocators
* Maintains memory locality.

* Implicit lookup of allocation information.

@ mi-malloc G

Fre e BSD tcMalloc
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The benefits of No-FAT

Fuzz-Testing

Runtime Security

Resilience
to Spectre-V1

10X speedup over ASan

8% overheads for spatial &
temporal memory safety

Bounds aware memory
accesses
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Binning Memory Allocators

40.
41.
42.
50.

int main() {
char* ptr = malloc(12);

Virtual Memory

22



Binning Memory Allocators

40. 1int main() {
» 41. char* ptr = malloc(12);

42.
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Binning Memory Allocators

40. 1int main() {

41. char* ptr = malloc(12); KASTOInT is

» P ( ) ) requested by
42. the allocator.
50.  }

Virtual Memory
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Binning Memory Allocators

40. 1int main() { Memory is
» 41. char* ptr = malloc(12); divided into

42. bins.

50.  }

Bins

C

Virtual Memory
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Binning Memory Allocators

40.

» a1,

42.
50.

int main() {
char* ptr = malloc(12);

Each bin is
associated with
a size.

Bins

A

C

Virtual Memory

Sizes

16B

32B

64B
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Binning Memory Allocators

Bins Sizes

a0. 1int mai

N
B o <o P TN A

42.

50, }

B 32B

C 64B

Virtual Memory
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Binning Memory Allocators

40. 1int main() A ‘

41, char* ptr = malloc(12); N

50.  }
B 328

C 64B

Virtual Memory
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Binning Memory Allocators

Bins Sizes
a0. 1int main() { )
» a1. char* ptr = malloc(12); A, 168
42. = —p>
50.  }
B 32B
Given any pointer, we can derive its C .
allocation size and base address.

Virtual Memory



From Bins to Security



Spatial Memory Safety (Inter-Object)

The Problem

Bin A Object 1 Object 2

Virtual Memory
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Spatial Memory Safety (Inter-Object)

The Problem Adjacent objects can overflow into each
other.

Bin A Object 1 Object 2

Virtual Memory
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Spatial Memory Safety (Inter-Object)

40.
41.
42.
43.
50.

int main() {

char* ptr = malloc(12);

ptr[l] = ‘A’;

—

store ptr[1l], ‘A’

34



Spatial Memory Safety (Inter-Object)

40. int main() {

41, char* ptr = malloc(12);
42. ptr‘[l] = ‘A,J ‘ s_stor‘e ptr‘[l]) ‘A,, ptr‘tr‘usted_base
43. ..
s0. )} We add one extra operand for loads/stores.
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Spatial Memory Safety (Inter-Object)

40. int main() {

41.  char* ptr‘ = malloc(lZ),ﬂ
42, ptr[l] = 7

43,

-



Spatial Memory Safety (Inter-Object)

40. int main() {
41.  char* ptr = malloc(12);
42, ptr‘[l] = ‘A,3 S_Store Ptr‘[l]:‘A’ ptr\tr‘usted_base
43.

-

The compiler propagates the allocation base address.
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Spatial Memory Safety (Inter-Object)

40. int main() {
41. char* ptr = malloc(12);

42. ptr‘[l] = ‘A’; s_stor‘e ptr'[l]:‘A,:ptr‘trusted_base

43,

50.  }
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Spatial Memory Safety (Inter-Object)

s_stor'e ptr‘ [ 1] ) ‘A’ ) pt r“cr'us‘ced_base
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Spatial Memory Safety (Inter-Object)

= [N — G
= getSize( ptr‘tr‘usted_base )
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Spatial Memory Safety (Inter-Object)

= [ — I
m = getSize( ptr‘tr'usted_base )

Bounds Check

offset size
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Spatial Memory Safety (Inter-Object)

The allocation size information is made available to

the hardware to verify memory accesses.

= getSize( ptr‘tr‘usted_base )

T < EE ?
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Spatial Memory Safety (Inter-Object)

a0. int main() {

41, char* ptr = malloc(12);
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43.

-



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43,
49.
50.

int main() {

char* ptr = malloc(12);
ptr‘[l] = ‘A,.; s_stor'e ptr[l]:rA,:ptr'tr-usted_base

gl =
' foo(ptr);!
}l _______ )

Let’s pass the pointer to another context (e.g., T00).
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Spatial Memory Safety (Inter-Object)

a0. int main() {

41, char* ptr = malloc(12);
42, ptr[l] = ‘A’;

43.

49, foo(ptr);

50.  }

s1. void Foo (char*)xptr){

52.

53. xptr[7] = ‘B’;

54.

. ..



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43.
49,
50.
51.
52.
53.
54.
60.

int main() {
char* ptr = malloc(12);
ptr[1l] = “A’;

;oo(ptr);
}

void Foo (char* xptr){

Xptl‘[7] = IB , 5 s_stor‘e Xptr\[7] ) ‘A’ :Xptr‘tr'usted_base
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Spatial Memory Safety (Inter-Object)

40. int main() {

41. char* ptr = malloc(12);
42. ptr[1l] = ‘A’; s_store ptr[l]:‘A,:ptr‘tr‘usted_base

43,

49, foo(ptr);
50.

s1. void Foo (char* xptr){

52. cee

53. xptr[7] = ‘B’; s store Xptr[7Z]; ‘A% Xptriysted base
54. cee
60. } How do we get this?
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Spatial Memory Safety (Inter-Object)

40.
41.
42.
43.
49,
50.
51.
52.
53.
54.
60.

int main() {
char* ptr = malloc(12);
ptr[1l] = “A’;

;oo(ptr);
}

void Foo (char* xptr)
Xptr\tr‘usted base < compBase(xptr‘[7])

xptr[7] = ‘B’;
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Spatial Memory Safety (Inter-Object)

Xptr\tr'usted base é compBase(xptr‘[7])



Spatial Memory Safety (Inter-Object)

m = > > PILeIs 65) 1 where S is the size of the bins.
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Spatial Memory Safety (Inter-Object)

where S is the size of the bins.
— getSize( Bin )
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Spatial Memory Safety (Inter-Object)

where S is the size of the bins.

NN = B =« (1/ B ) » EED
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Spatial Memory Safety (Inter-Object)

Xptr‘tr‘usted base é compBase(xptr‘[7])

where S is the size of the bins.

r ________ \

I\ Xpt r"cr'us’ced_base JI Xptr

Base pointer is implicitly derived!
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Spatial Memory Safety (Inter-Object)

a0. int main() {

41, char* ptr = malloc(12);
42, ptr[l] = ‘A’;

43.

29. foo(ptr);

50.  }



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43,
44,
49.
50.

int main() {

char* ptr - ma110c<12>;
s_store ptr[l]:‘A’:ptPUuﬂ£¢pmm

Pointer arithmetic can push the pointer out-of-bounds before
calling foo!
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Spatial Memory Safety (Inter-Object)

40.
41.
42.
43,
44,
45,
49.
50.

int main() {

char* ptr = malloc(12);
f

ptr[1] =

’ 3 S_Store ptr[l] ) ‘A’ ) pt r\tr=usted_base

,PEf.: EFP + 100;

| verifyBounds ptr, Py siad] s '

¥

foo(ptr),

Verify the bounds of all pointers that escape to

memory (or another function).
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Spatial Memory Safety (Intra-Object)

The Problem



Spatial Memory Safety (Intra-Object)

The Problem
4 N
typedef struct {
char a;
doub'le b;

Adjacent fields can be overflowed into.

void (xfp)();
AL

N /




Spatial Memory Safety (Intra-Object)

4 N 4 B

typedef struct { typedef struct {
char aj; char aj;
double,b° double b: typedef struct {

[ char c[3]; | At c xc_ptr; |
void (*fp)(); id (xfp) (); }A_t_c;

ALY ;

N Y N y

The Buf2Ptr transformation promotes intra-

allocation buffers to standalone allocations.
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Temporal Memory Safety

The Problem

malloc

—_— 0x00004000
#1
A

free

Time
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Temporal Memory Safety

The Problem

malloc

—_ 0x00004000
#1
A

free

malloc
#2

Time

0Xx00004000
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Temporal Memory Safety

The Problem

malloc

—_— 0x00004000
#1
A

free

malloc
#2

Different allocations

reuse old memory!

i

Time

0Xx00004000
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Temporal Memory Safety

No-FAT adds a 16-bit random
r tag is added to every pointer. l
malloc @xbee 1000 malloc O%caf 1000
H1 = R cccceeet #2 | veessear

free

Time
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ISA Extensions

G s store Addr, Dest, BaseAddr

e s load Addr, Src, BaseAddr
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’-----_

ISA Extensions

“ s store Addr, Dest, BaseAddr'

e s load Addr, Src, BaseAddr

e verifyBounds Addr, BaseAddr

\
1
|
|
1
|
|
|
|
|
|
1
I

Exceptions are thrown in the
case the target memory address
does not match BaseAddr.
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’-----_

ISA Extensions

------------------------------------

a s store Addr, Dest, BaseAddr

e s load Addr, Src, BaseAddr

e verifyBounds Addr, BaseAddr

e compBase Addr, Dest

\
1
i
i
i
i
i
i
i
i
i
1
I

Exceptions are thrown in the
case the target memory address
does not match BaseAddr.
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Microarchitectural Overview

Dedicated Register File

CPU LI-D L2

DRAM
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Microarchitectural Overview

1-KiB Memory Allocation
Sizes Table (MAST)

CPU LI-D L2

DRAM
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Microarchitectural Overview

NO changes to the memory subsystems!
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Resilience to Common Exploits

Buffer
Over-/Under-flows

o

Cannot corrupt
memory.

Buffer A Buffer B
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Resilience to Common Exploits

Buffer
Over-/Under-flows

Cannot corrupt
memory.

o

Buffer A Buffer B

Original:
Buffer A Buffer B

O N
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Resilience to Common Exploits

Buffer
Over-/Under-flows

Cannot corrupt
memory.

o

Buffer A Buffer B

Original:
Buffer A Buffer B

I S A Buffer B

No-FAT: —
éh
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Resilience to Common Exploits

®

Buffer
Over-/Under-flows

Cannot corrupt
memory.

Use-after-free

Each allocation
instance is tagged
randomly.

. .

Tag Virtual Address

Tag is propagated with the allocation base address.

83



Resilience to Common Exploits

6 Spectre-V1

Buffer

Over-/Under-flows Use-after-free
Each allocation
instance is tagged

randomly.
L) S ——

Cannot corrupt
memory.

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];
// secret is leaked

val = b[64 * secret];
}
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Resilience to Common Exploits

Buffer

Over-/Under-flows Use-after-free
Each allocation
instance is tagged

randomly.
— —

Spectre-V1

Speculative loads are
aware of the legitimate
allocation-bounds.

Cannot corrupt
memory.

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];

// secret is leaked
val = b[64 * secret];
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Resilience to Common Exploits

Buffer
Over-/Under-flows Use-after-free Spectre-V1
Cannot corrupt Each allqcation Speculative loads are
memory. instance is tagged aware of the legitimate
y
randomly. allocation-bounds.
— —
D
// mispredicted branch .
if (i < sizeof(a)) { * Speculative out-of-
bounds loads are not
secret = a[il; allowed to change the
cache state or forward
// secret is leaked values to dependent

val = b[64 * secret]; instructions.
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Resilience to Common Exploits

Buffer
Over-/Under-flows Use-after-free Spectre-V1
Cannot corrupt Each allo.cation Speculative loads are
memory. instance is tagged aware of the legitimate
randomly. allocation-bounds.
— —
D
// mispredicted branch .
if (i < sizeof(a)) { * Speculative out-of-
bounds loads are not
secret = a[il; allowed to change the
cache state or forward
// secret is leaked values to dependent

val = b[64 * secret]; instructions.

87



\EA

No
FAT

\d
Performance




Performance Overheads

Hardware Modifications

Our measurements show minimal latency/area/power overheads.
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Performance Overheads

Hardware Modifications

Our measurements show minimal latency/area/power overheads.

Software Modifications

* Our special load/stores do not change the binary size.
*  We verify pointer bounds before storing them to memory.
*  We compute the allocation base address of arbitrary pointers

when they are loaded from memory.



Performance Results (x86 64)

- W—
—()—
- V-

Experimental Setup

We use emulate NO-FAT on x86_64 by modifying LLVM to
emit new instructions.

* CompBase is emulated using two multiplications
followed by a store.

* VerifyBounds is emulated using dummy stores.
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Performance Results (x86 64)
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Performance Results (x86 64)
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Performance Results (x86 64)
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Performance Results (x86 64)
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Performance Results (x86 64)

We reduce the average runtime overheads of full

memory safety from 100% to 8%!

’—------
------
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Explicit Base & Bounds N-bits per pointer or Complete
allocation
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Related Work

Explicit Base & Bounds N-bits per pointer or Complete
allocation

Memory Tagging N-bits per pointer & Limited by tag width
allocation

Tripwires N-bits per allocation Susceptible to non-

adjacent overflows
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Related Work

Explicit Base & Bounds N-bits per pointer or Complete
allocation

Memory Tagging N-bits per pointer & Limited by tag width
allocation

Tripwires N-bits per allocation Susceptible to non-

adjacent overflows

No-FAT Fixed (1K) bits per process
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Takeaways

W\ Having no metadata

Improves Fuzzing
Improves Runtime Security
No Improves Resilience to Spectre-V1
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Takeaways

W\ Having no metadata

Improves Fuzzing
Improves Runtime Security
No Improves Resilience to Spectre-V1

F AT The benefits of having allocation sizes as an
\ architectural feature can go well beyond memory

safety!




Backup Slides



