<A\

N

No
FAT

Architectural Support
for
Low Overhead Memory Safety Checks

Mohamed Tarek Ibn Ziad, Miguel Arroyo, Evgeny Manzhosov,

Ryan Piersma and Simha Sethumadhavan

&5 COLUMBIA | ENGINEERING

7 NV The Fu Foundation School of Engineering and Applied Science

06/16/2021



Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking

campaign

The tech giant gave arare statement that bristled at Google’'s analysis
of the novel hacking operation.



Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.

Exclusive: Saudi Dissidents
Hit With Stealth iPhone
Spyware Before Khashoggi's
Murder



Memory Safety is a serious problem!

Computing Sep 6

Apple says China’s Uighur Muslims were
targeted in the recent iPhone hacking
campaign

The tech giant gave arare statement that bristled at Google's analysis
of the novel hacking operation.

€he New YJork Eimes EDITOR'S PICK | 42742 views | Nov 21. 2018. 07-00am
, Exclusive: Saudi Dissidents
WhatsApp Rushes to Fix Hit With Stealth iPhone

Security Flaw Exposed in N
Hacking of Lawyer’s Phone Iﬁ/ll)lmzf_‘e Before Khashoggi's



Testing alone is NOT enough!

2



Testing alone is NOT enough!

Researchers: Beware of 10-Year-Old Linux
Vulnerability

Qualys Says Flaw in Sudo Utility Could Grant Attackers Root Access

Wasokan_akshaya



Testing alone is NOT enough!

Researchers: Beware of 10-Year-Old Linux
Vulnerability

Qualys Says Flaw in Sudo Utility Could Grant Attackers Root Access

Wasokan_akshaya

Microsoft patches critical 17-year-old DNS bug in
Windows Server



Testing alone is NOT enough!

Researchers: Beware of 10-Year-Old Linux
Vulnerability

Qualys Says Flaw in Sudo Utility Could Grant Attackers Root Access

Wasokan_akshaya

Microsoft patches critical 17-year-old DNS bug in
Windows Server

Chrome: 70% of all security bugs are memory
safety issues

Google software engineers are looking into ways of eliminating memory management-related bugs from Chrome.



It’s easy to make mistakes



It’s easy to make mistakes

SEGFAULT!



TeeN COM\X

T’

/

| WHAT ABOUT
MeMORY

ReanSol -

11



Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs
B Non-Memory Safety [l Memory Safety
100

75/\/\_/\

50

25

2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

12



Prevalence of Memory Safety Vulns

Memory safety vs. Non-memory safety CVEs 0SS-Fuzz Bug Types
B Non-Memory Safety [l Memory Safety
Other
100
75 /\/\_/\
Non-memory Safety
50
Memory Safety

25

2006 2008 2010 2012 2014 2016 2018

Microsoft Product CVEs Google OSS-Fuzz bugs from 2016-2018.

13
Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019 Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html



https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

ATTACKERS

MEMORY SAFETY



Attackers prefer Memory Safety Vuins

B Non Memory Safety [l Memory Safety

30
8 20
S
Q
>
)
e
o
g
%5 10
H
0
2014 2015 2016 2017 2018 2019 2020

Year

Zero-day “in the wild” exploits
from 2014-2020

Source: Google Project Zero, Oday "In the Wild" spreadsheet. Last updated: April 2020






Modern
software design
is useful for
security




Modern software design is useful for security

Increasing adoption of binning allocators
* Maintains memory locality.

* Implicit lookup of allocation information.



Modern software design is useful for security

Increasing adoption of binning allocators
* Maintains memory locality.

* Implicit lookup of allocation information.

@ mi-malloc G

Fre e BSD tcMalloc

19



The benefits of No-FAT

Fuzz-Testing

Runtime Security

Resilience
to Spectre-V1

10X speedup over ASan

8% overheads for spatial &
temporal memory safety

Bounds aware memory
accesses

20



Binning Memory Allocators



Binning Memory Allocators

40.
41.
42.
50.

int main() {
char* ptr = malloc(12);

Virtual Memory

22



Binning Memory Allocators

40. 1int main() {
» 41. char* ptr = malloc(12);

42.

o

Virtual Memory

23



Binning Memory Allocators

40. 1int main() {

41. char* ptr = malloc(12); KASTOInT is

» P ( ) ) requested by
42. the allocator.
50.  }

Virtual Memory

24



Binning Memory Allocators

40. 1int main() { Memory is
» 41. char* ptr = malloc(12); divided into

42. bins.

50.  }

Bins

C

Virtual Memory

25



Binning Memory Allocators

40.

» a1,

42.
50.

int main() {
char* ptr = malloc(12);

Each bin is
associated with
a size.

Bins

A

C

Virtual Memory

Sizes

16B

32B

64B

26



Binning Memory Allocators

Bins Sizes

a0. 1int mai

N
B o <o P TN A

42.

50, }

B 32B

C 64B

Virtual Memory

27



Binning Memory Allocators

40. 1int main() A ‘

41, char* ptr = malloc(12); N

50.  }
B 328

C 64B

Virtual Memory

28



Binning Memory Allocators

Bins Sizes
a0. 1int main() { )
» a1. char* ptr = malloc(12); A, 168
42. = —p>
50.  }
B 32B
Given any pointer, we can derive its C .
allocation size and base address.

Virtual Memory



From Bins to Security



Spatial Memory Safety (Inter-Object)

The Problem

Bin A Object 1 Object 2

Virtual Memory

31



Spatial Memory Safety (Inter-Object)

The Problem Adjacent objects can overflow into each
other.

Bin A Object 1 Object 2

Virtual Memory

32



Spatial Memory Safety (Inter-Object)

a0. int main() {

41, char* ptr = malloc(12);
42, ptr[l] = ‘A’;

43.

-



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43.
50.

int main() {

char* ptr = malloc(12);

ptr[l] = ‘A’;

—

store ptr[1l], ‘A’

34



Spatial Memory Safety (Inter-Object)

40. int main() {

41, char* ptr = malloc(12);
42. ptr‘[l] = ‘A,J ‘ s_stor‘e ptr‘[l]) ‘A,, ptr‘tr‘usted_base
43. ..
s0. )} We add one extra operand for loads/stores.

35



Spatial Memory Safety (Inter-Object)

40. int main() {

41.  char* ptr‘ = malloc(lZ),ﬂ
42, ptr[l] = 7

43,

-



Spatial Memory Safety (Inter-Object)

40. int main() {
41.  char* ptr = malloc(12);
42, ptr‘[l] = ‘A,3 S_Store Ptr‘[l]:‘A’ ptr\tr‘usted_base
43.

-

The compiler propagates the allocation base address.

37



Spatial Memory Safety (Inter-Object)

40. int main() {
41. char* ptr = malloc(12);

42. ptr‘[l] = ‘A’; s_stor‘e ptr'[l]:‘A,:ptr‘trusted_base

43,

50.  }

38



Spatial Memory Safety (Inter-Object)

s_stor'e ptr‘ [ 1] ) ‘A’ ) pt r“cr'us‘ced_base



Spatial Memory Safety (Inter-Object)



Spatial Memory Safety (Inter-Object)

= [EIE) — CEN



Spatial Memory Safety (Inter-Object)

= [N — G
= getSize( ptr‘tr‘usted_base )

42



Spatial Memory Safety (Inter-Object)

= [ — I
m = getSize( ptr‘tr'usted_base )

Bounds Check

offset size

44



Spatial Memory Safety (Inter-Object)

The allocation size information is made available to

the hardware to verify memory accesses.

= getSize( ptr‘tr‘usted_base )

T < EE ?

45



Spatial Memory Safety (Inter-Object)

a0. int main() {

41, char* ptr = malloc(12);
42, ptr[l] = ‘A’;

43.

-



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43,
49.
50.

int main() {

char* ptr = malloc(12);
ptr‘[l] = ‘A,.; s_stor'e ptr[l]:rA,:ptr'tr-usted_base

gl =
' foo(ptr);!
}l _______ )

Let’s pass the pointer to another context (e.g., T00).

47



Spatial Memory Safety (Inter-Object)

a0. int main() {

41, char* ptr = malloc(12);
42, ptr[l] = ‘A’;

43.

49, foo(ptr);

50.  }

s1. void Foo (char*)xptr){

52.

53. xptr[7] = ‘B’;

54.

. ..



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43.
49,
50.
51.
52.
53.
54.
60.

int main() {
char* ptr = malloc(12);
ptr[1l] = “A’;

;oo(ptr);
}

void Foo (char* xptr){

Xptl‘[7] = IB , 5 s_stor‘e Xptr\[7] ) ‘A’ :Xptr‘tr'usted_base

49



Spatial Memory Safety (Inter-Object)

40. int main() {

41. char* ptr = malloc(12);
42. ptr[1l] = ‘A’; s_store ptr[l]:‘A,:ptr‘tr‘usted_base

43,

49, foo(ptr);
50.

s1. void Foo (char* xptr){

52. cee

53. xptr[7] = ‘B’; s store Xptr[7Z]; ‘A% Xptriysted base
54. cee
60. } How do we get this?

50



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43.
49,
50.
51.
52.
53.
54.
60.

int main() {
char* ptr = malloc(12);
ptr[1l] = “A’;

;oo(ptr);
}

void Foo (char* xptr)
Xptr\tr‘usted base < compBase(xptr‘[7])

xptr[7] = ‘B’;

51



Spatial Memory Safety (Inter-Object)

Xptr\tr'usted base é compBase(xptr‘[7])



Spatial Memory Safety (Inter-Object)

m = > > PILeIs 65) 1 where S is the size of the bins.

53



Spatial Memory Safety (Inter-Object)

where S is the size of the bins.
— getSize( Bin )

54



Spatial Memory Safety (Inter-Object)

where S is the size of the bins.

NN = B =« (1/ B ) » EED

55



Spatial Memory Safety (Inter-Object)

Xptr‘tr‘usted base é compBase(xptr‘[7])

where S is the size of the bins.

r ________ \

I\ Xpt r"cr'us’ced_base JI Xptr

Base pointer is implicitly derived!

56



Spatial Memory Safety (Inter-Object)

a0. int main() {

41, char* ptr = malloc(12);
42, ptr[l] = ‘A’;

43.

29. foo(ptr);

50.  }



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43,
44,
49.
50.

int main() {

char* ptr - ma110c<12>;
s_store ptr[l]:‘A’:ptPUuﬂ£¢pmm

Pointer arithmetic can push the pointer out-of-bounds before
calling foo!

58



Spatial Memory Safety (Inter-Object)

40.
41.
42.
43,
44,
45,
49.
50.

int main() {

char* ptr = malloc(12);
f

ptr[1] =

’ 3 S_Store ptr[l] ) ‘A’ ) pt r\tr=usted_base

,PEf.: EFP + 100;

| verifyBounds ptr, Py siad] s '

¥

foo(ptr),

Verify the bounds of all pointers that escape to

memory (or another function).

59



Spatial Memory Safety (Intra-Object)

The Problem



Spatial Memory Safety (Intra-Object)

The Problem
4 N
typedef struct {
char a;
doub'le b;

Adjacent fields can be overflowed into.

void (xfp)();
AL

N /




Spatial Memory Safety (Intra-Object)

4 N 4 B

typedef struct { typedef struct {
char aj; char aj;
double,b° double b: typedef struct {

[ char c[3]; | At c xc_ptr; |
void (*fp)(); id (xfp) (); }A_t_c;

ALY ;

N Y N y

The Buf2Ptr transformation promotes intra-

allocation buffers to standalone allocations.




Temporal Memory Safety



Temporal Memory Safety

The Problem

malloc

—_— 0x00004000
#1
A

Time



Temporal Memory Safety

The Problem

malloc

—_— 0x00004000
#1
A

free

Time

65



Temporal Memory Safety

The Problem

malloc

—_ 0x00004000
#1
A

free

malloc
#2

Time

0Xx00004000

66



Temporal Memory Safety

The Problem

malloc

—_— 0x00004000
#1
A

free

malloc
#2

Different allocations

reuse old memory!

i

Time

0Xx00004000

67



Temporal Memory Safety

No-FAT adds a 16-bit random
r tag is added to every pointer. l
malloc @xbee 1000 malloc O%caf 1000
H1 = R cccceeet #2 | veessear

free

Time

68



9\

No
FAT

N
ISA Extensions




ISA Extensions

G s store Addr, Dest, BaseAddr

e s load Addr, Src, BaseAddr

70



ISA Extensions

G s store Addr, Dest, BaseAddr

e s load Addr, Src, BaseAddr

e verifyBounds Addr, BaseAddr

71



’-----_

ISA Extensions

“ s store Addr, Dest, BaseAddr'

e s load Addr, Src, BaseAddr

e verifyBounds Addr, BaseAddr

\
1
|
|
1
|
|
|
|
|
|
1
I

Exceptions are thrown in the
case the target memory address
does not match BaseAddr.

72



’-----_

ISA Extensions

------------------------------------

a s store Addr, Dest, BaseAddr

e s load Addr, Src, BaseAddr

e verifyBounds Addr, BaseAddr

e compBase Addr, Dest

\
1
i
i
i
i
i
i
i
i
i
1
I

Exceptions are thrown in the
case the target memory address
does not match BaseAddr.

73



\EA

No
FAT

N\
Microarchitectural Overview




Microarchitectural Overview

CPU L1D L2 PRAM




Microarchitectural Overview

Dedicated Register File

CPU LI-D L2

DRAM

76



Microarchitectural Overview

1-KiB Memory Allocation
Sizes Table (MAST)

CPU LI-D L2

DRAM

77



Microarchitectural Overview

NO changes to the memory subsystems!

78



\EA

No
FAT

N\
Resilience to Common Exploits




Resilience to Common Exploits

Buffer
Over-/Under-flows

o

Cannot corrupt
memory.

Buffer A Buffer B

80



Resilience to Common Exploits

Buffer
Over-/Under-flows

Cannot corrupt
memory.

o

Buffer A Buffer B

Original:
Buffer A Buffer B

O N

81



Resilience to Common Exploits

Buffer
Over-/Under-flows

Cannot corrupt
memory.

o

Buffer A Buffer B

Original:
Buffer A Buffer B

I S A Buffer B

No-FAT: —
éh

82



Resilience to Common Exploits

®

Buffer
Over-/Under-flows

Cannot corrupt
memory.

Use-after-free

Each allocation
instance is tagged
randomly.

. .

Tag Virtual Address

Tag is propagated with the allocation base address.

83



Resilience to Common Exploits

6 Spectre-V1

Buffer

Over-/Under-flows Use-after-free
Each allocation
instance is tagged

randomly.
L) S ——

Cannot corrupt
memory.

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];
// secret is leaked

val = b[64 * secret];
}

84



Resilience to Common Exploits

Buffer

Over-/Under-flows Use-after-free
Each allocation
instance is tagged

randomly.
— —

Spectre-V1

Speculative loads are
aware of the legitimate
allocation-bounds.

Cannot corrupt
memory.

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];

// secret is leaked
val = b[64 * secret];

85



Resilience to Common Exploits

Buffer
Over-/Under-flows Use-after-free Spectre-V1
Cannot corrupt Each allqcation Speculative loads are
memory. instance is tagged aware of the legitimate
y
randomly. allocation-bounds.
— —
D
// mispredicted branch .
if (i < sizeof(a)) { * Speculative out-of-
bounds loads are not
secret = a[il; allowed to change the
cache state or forward
// secret is leaked values to dependent

val = b[64 * secret]; instructions.

86



Resilience to Common Exploits

Buffer
Over-/Under-flows Use-after-free Spectre-V1
Cannot corrupt Each allo.cation Speculative loads are
memory. instance is tagged aware of the legitimate
randomly. allocation-bounds.
— —
D
// mispredicted branch .
if (i < sizeof(a)) { * Speculative out-of-
bounds loads are not
secret = a[il; allowed to change the
cache state or forward
// secret is leaked values to dependent

val = b[64 * secret]; instructions.

87



\EA

No
FAT

\d
Performance




Performance Overheads

Hardware Modifications

Our measurements show minimal latency/area/power overheads.



Performance Overheads

Hardware Modifications

Our measurements show minimal latency/area/power overheads.

Software Modifications

* Our special load/stores do not change the binary size.



Performance Overheads

Hardware Modifications

Our measurements show minimal latency/area/power overheads.

Software Modifications

* Our special load/stores do not change the binary size.

*  We verify pointer bounds before storing them to memory.



Performance Overheads

Hardware Modifications

Our measurements show minimal latency/area/power overheads.

Software Modifications

* Our special load/stores do not change the binary size.
*  We verify pointer bounds before storing them to memory.
*  We compute the allocation base address of arbitrary pointers

when they are loaded from memory.



Performance Results (x86 64)

- W—
—()—
- V-

Experimental Setup

We use emulate NO-FAT on x86_64 by modifying LLVM to
emit new instructions.

* CompBase is emulated using two multiplications
followed by a store.

* VerifyBounds is emulated using dummy stores.

93



Performance Results (x86 64)

‘-------------------\

S
\

\

2.50
2.00
1.50 8%
1.00
0.50

0.00

------_

oMean /

~------------------_’

No-FAT

4

O

)

P
1

3

o
Z 0

Q} g,} Kj b} x> 4\> J 7 \{_i’ b;j </
\0600 q,?é/ . &0 Q%\,Q q;@% 04,@- 0)@'& QQ'S’QQ ao& —O’(o £ 2
S & & N X 8 & S e & &
o¥ © o > > v N
X a <,;\:) oyl



Performance Results (x86 64)

’-------------------\

N
\

\

2.50
2.00
1.50 4%
1.00
0.50

0.00

’—------\
B ————

oMean /

~------------------_,

B Binning-Malloc No-FAT

4

U
Q
>
o1
=
(@)
z 0
x»} g> ‘&,} & 4\/ \1_ »;/ <,/ \g %/ “0 «\)/
<~ % & @ & & &0@ q;@»Q & N & . eﬁ‘ & & e a¥
~F N &S & @ 3 o) & & ¥ & AN S D W &
& g > Ny SN R < & » & & & = o 9
oS 9 o o A os¥ v N P
%Q “ {/)r» <,;’)

95



Performance Results (x86 64)

’-------------------\

\

/ s
I 2.50 \
1 100% :
I 200 I
' |
I 150 I
' |
I 100 I
' |
: 0.50 I
|
: 0.00 II
\
Software-EBB m Binning-Malloc No-FAT
5
y 4
%
i
o« 2
£ I
S i il I AN fmn CHEN GEN CER GEN CER CN
S S 5 0 S 5 < < 5 < 3 < < < 5
*oé\&/ Q’\»‘?é/c %'&Q ! o%& ’ %@‘}/ 04{?\/ Oﬁ.o@/ &QQ/ 60@&/ ‘.’r%‘o%/ e?bé/ éé\%/ @%&/ x\.@%/ b?%o ’ 3
QQ}\ %) %Q %ch %\QQ %‘\\Q <')\’ Qo@ %%,'Q 092% %& &PQ 03°o§ <,)b<y O)b(’ b
S & & “ I 4



Performance Results (x86 64)

’-------------------\

\

’ N
I
1 7 107% :
I 200 I
- !
I 150 I
- !
I 100 I
- !
: 0.50 :
: 0.00 I
\ M !
W Address Sanitizer Software-EBB  m Binning-Malloc No-FAT
5
d 4
23
&8
. 2
3 I It B | [ [P 1T T T LT TR T
EN I Ll lin b B B B B Bl B e i 1
< <
o % > ¥ Q7 ¥ 0% 7 »’ v
<~ % .@ & @ & %0 X § ol & 'Q'Q & @q’ & o
@8& %Q% <’>Q<° %QOOQ% %\QQ% \,\Qo <’>\’O) Q&QQ %"0060 99/6)‘% 69\60 b@Q’Q%\ Oo\é& %b}\ %b&% é’)
%QQQ ° o osﬁﬁv & & <

97



Performance Results (x86 64)

’-------------------\

\\
250 106%

2.00
1.50
1.00
0.50 I
0.00

oMean /

~------------------_,

m Intel MPX m Address Sanitizer m Software-EBB m Binning-Malloc m No-FAT

’—------\
\

------_

4

Norm. Exec.
95 [

| |I ||| | ||| Il |I| || ||| ||| || ||| ||| W e I
“0

/ < / / ‘}/ «\)/
@ & S @&Q Qﬁ& il ¥ : eﬁ‘qo/ 43& > W 4%
¢ & > o °

98



Performance Results (x86 64)

We reduce the average runtime overheads of full

memory safety from 100% to 8%!

’—------
------

99



\EA

No
FAT

N\
Related Work




Related Work

101



Related Work

Explicit Base & Bounds N-bits per pointer or Complete
allocation

102



Related Work

Explicit Base & Bounds N-bits per pointer or Complete
allocation
Memory Tagging N-bits per pointer & Limited by tag width

allocation

103



Related Work

Explicit Base & Bounds N-bits per pointer or Complete
allocation

Memory Tagging N-bits per pointer & Limited by tag width
allocation

Tripwires N-bits per allocation Susceptible to non-

adjacent overflows

104



Related Work

Explicit Base & Bounds N-bits per pointer or Complete
allocation

Memory Tagging N-bits per pointer & Limited by tag width
allocation

Tripwires N-bits per allocation Susceptible to non-

adjacent overflows

No-FAT Fixed (1K) bits per process

105



Takeaways

W\ Having no metadata

Improves Fuzzing
Improves Runtime Security
No Improves Resilience to Spectre-V1

FAT

N




Takeaways

1
ey

Havi tadat Checkout for end-
9 aving no metadata user deployment!
. https://isca2l.arroyo.me
Improves Fuzzing

Improves Runtime Security
No Improves Resilience to Spectre-V1

FAT

N



https://isca21.arroyo.me/

Takeaways

W\ Having no metadata

Improves Fuzzing
Improves Runtime Security
No Improves Resilience to Spectre-V1

F AT The benefits of having allocation sizes as an
\ architectural feature can go well beyond memory

safety!




Backup Slides



