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i Introduction

Electromagnetic (EM) simulations are the cornerstone
in the design process of several real applications.

Numerical methods (ex: FEM) require solving millions
of simultaneous equations.

The solver part in EM simulations represents a
serious bottleneck on traditional CPUs.

FPGAs are limited by memory and area constraints.

Emulation technology provides a solution to the
memory and area constraints encountered by FPGAs.



i Contributions

= Proposing an efficient architecture for solving the
sparse linear systems arising in FEM formulations
based on the Jacobi over-relaxation (JOR) method.

= Optimizing the design by making use of the
properties of the FEM coefficients matrix.
= Showing the logic utilization and timing results of

implementing the proposed architecture on a
commercial hardware emulation platform.
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‘L Finite Element Method (FEM)

= Basic procedures of using FEM:

v'Discretizing the domain into finite
elements.

v Calculating elemental matrices.

v" Assembling the elemental matrices to
form a global linear system.

v Solving the sparse linear system.
v" Post-processing the results.
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= Jacobi Over-Relaxation (JOR)



The Jacobi Over-Relaxation
(JOR) Algorithm

= Simple SLS: = Matrix form:
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= Solution:
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t is the current iteration number
w is the relaxation parameter [0, 1]
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The Jacobi Over-Relaxation
i (JOR) Algorithm (2)

= Simple SLS: = Matrix form:

( S5x;+x,=6 5 1 0 0]][0]
<x1+5x2+2x3=8 |:> 1 5 2 0 0:
2x, + 5x3 + x4, =8 0 2 5 1{|0
\ 2x3+5x,=7 0 0 2 5110

= First iteration: (w = 0.5)

(x; = (1 — a))*0+%(6—0)=0.6
x, = (1 — a))*0+%(8—0)=0.8
<x3=(1 - w)*0+%(8—0)=0.8
x, = (1 — a))*0+g(7—0)=0.7
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The Jacobi Over-Relaxation
(JOR) Algorithm (3)

= Simple SLS: = Matrix form:
( S5x;+x,=6 5 1 0 0]][0]
<.')C]_‘|‘5.')C2‘|‘2.')C3:8 |:> 1 5 2 0 0:
2x, + 5x3 + x4, =8 0 2 5 1{|0
N\ 2x3+5x,=7 0 0 2 5110
= After t iterations:
(X1 | 0.6 0.82 (0912 (1.0
x2| _[08] _ |0.98[ _ |1.014| |10
X3 0.8 0.97 1.000 1.0
| X4 | 10.7. 10.89 10.951. 11.0_

t=1 t =2 t=3
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i Hardware Implementation
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Our architecture includes four main components; the memory unit, the
main ALU, the convergence check unit, and the control unit.



Hardware Implementation -

i Memory

) 4 Main ALU N
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= The memory unit consists of four separate memories; the diagonal

u memory, the non-diagonal memory, the RHS memory, and the result
memory.

= Each memory row contains a whole cluster of data, not the elements
of a single A row.




Hardware Implementation -
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= The main ALU contains a number of independent ALUs, equaling the

" humber of clusters, c.
All ALUs are identical and are responsible for all arithmetic operations

performed on data.




Hardware Implementation —
‘L Convergence Check Unit
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= Convergence check unit decides when the flow should terminate.

O
= The termination criterion is determined based on a pre-defined FP
value, 10~°, representing the accepted error tolerance.
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Hardware Implementation —
i Control Unit

Convergence
check unit
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= The control unit is responsible for synchronizing all memories with each
ALU and controlling the convergence check unit.
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Experimental Setup

RTL Design

module JOR(clk, reset, ALU out, halt);

input wire clk, reset;

output wire [447: 0] ALU_out;
output halt;

always @ (posedge clk)
begin
//Code

end

endmodule
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Results and Analysis —

i EM Simulator
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General steps included in the selected EM simulator.
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Numerical Electric Field

Numerical Magnetic Field
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Results and Analysis —
Resource Utilization

Proposed JOR design test cases

Number of equations 420 11,100 447700 2,002,000
Number of ALUs 14 74 149 1,000
Frequency (MHz) 2.00 2.00 2.00 1.75
Number of iterations 5 5 5 5
Number of LUTSs 164,449 | 770,432 | 1,527,869 | 10,122,146
Number of flip-flops | 40,833 | 167,751 | 326,382 | 2,126,259
Memory usage (KB) 152.2 512 1.630 40,128

= The operating frequency, resource utilization, and memory
capacity of our JOR design with single-precision FP accuracy

for different test cases.
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Results and Analysis —
i Timing Performance

Number of | Proposed JOR design MatJOR ALGLIB
equations Time Time | Speed-up | Time | Speed-up
(msec) (msec) (msec)

420 0.104 0.345 3.32 0.350 3.37
11,100 0.464 9.292 20.03 3.001 6.47
44,700 0.914 39.581 43.31 12.00 13.13

2,002,000 4.580 2393.085 | 522.51 |847.049 | 184.95

= The timing performance of our JOR design is evaluated by
comparing the needed time to solve a given number of
equations using our JOR design against two software solvers;
MatJOR and ALGLIB on a 2.00 GHz Core i7-2630QM CPU.
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Results and Analysis —
i Comparison Vs. Previous Work

Number of || Proposed JOR design | Jacobi design in [5] Area
equations || Time | LUTs/FFs | Time | LUTs/FFs | Speed-up | overhead

(msec) [ (x1000) | (msec)| (x1000) (%)

420 0.104 164/40 0.319 106/18 3.07 65%

11,100 0.464 770/167 1.721 535/85 3.71 51%

44,700 0914 | 1,527/326 | 3.793 | 1,071/168 4.15 49%

2,002,000 |{ 4.580 | 10,122/2,126 | 24.040 | 7,158/1,115 5.25 48%

= Area and Time comparisons against the Jacobi design in [5] on
the same hardware emulation platform.

= Area overhead due to the three more FP modules in the JOR
design compared to the one in [5].

= Speed-ups up to 5.25x due to the higher convergence rate of
the JOR method. >4
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i Conclusion and Future Work

We presented a FP architecture for solving SLS
generated from FEM using the JOR method.

We implemented our JOR hardware solver on a
physical hardware emulation platform.

Future work includes evaluating the efficiency of
our hardware solver against the latest GPU solvers.

We aim to investigate more complicated methods in
order to build the first electromagnetic field
emulator in the world.
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