
On Hardware Solution of Dense Linear Systems via
Gauss-Jordan Elimination

M. Tarek Ibn Ziad∗, Yousra Alkabani∗, and M. Watheq El-Kharashi†
∗Computer and Systems Engineering Department, Ain Shams University, Cairo, Egypt

†Department of Electrical and Computer Engineering, University of Victoria, Victoria, Canada
Email: {mohamed.tarek, yousra.alkabani}@eng.asu.edu.eg, watheq@engr.uvic.ca

Abstract—Gauss-Jordan Elimination (GJE) is a popular
method for solving systems of linear equations. Much work has
been done to design high throughput, low cost, FPGA-based
architectures for GJE. However, as the interest in energy
efficient designs increases, power consumption becomes a
prevalent metric that must be considered in any FPGA-based
implementation. In this paper, we present a scalable architecture
that can efficiently solve any generic system of linear equations
using GJE with a single-precision floating-point accuracy and
reasonable power and area overheads. Comparisons with two
previous implementations show the efficiency of our design.

Keywords- dense linear systems, energy efficiency, floating-point,
FPGA, Gauss-Jordan Elimination (GJE)

I. INTRODUCTION

Solving systems of linear equations has attracted scientists
and researchers for a long time, as it represents the core
operation in a wide variety of applications in fundamental
sciences. For example, linear systems of equations arise in
different physical problems, such as electromagnetic field
calculations [1], [2].

There exist many different methods for solving systems of
linear equations. Methods are divided into two main categories;
direct methods and iterative ones. Direct methods operate
on the matrix and solution vector until the solution can be
computed. Iterative methods begin with an initial guess for the
solution vector and refine it until convergence with sufficiently-
small final errors [3]. Direct methods are typically used for
dense matrices, which consist mainly of nonzero coefficients,
as they would require large number of iterations and thus more
memory accesses, if iterative methods are used. On the other
hand, iterative methods are preferred for sparse matrices, which
are matrices that have a lot of zero coefficients, to make use
of this special structure in reducing the number of iterations.

One of the oldest, but still most widely used, direct methods
for solving dense linear systems (DLS) is the Gauss-Jordan
Elimination (GJE) method. It solves the system in a fixed
number of steps and can handle coefficient matrices of any
type, i.e., it is not limited to sparse, banded, or symmetric
matrices. Moreover, GJE is used to compute matrix inversion
when the given matrix is dense and unstructured [4]. Further-
more, other direct techniques like LU factorization can be
seen as a specific case of GJE [5]. Although there already
exist many implementations for the GJE on FPGAs [4], [6],
[7], all of them only care about area and throughput. To the
best of our knowledge, there are no energy-aware hardware
implementations for solving DLS using the GJE algorithm.

Nowadays, managing the system power consumption is not
less important than meeting the performance specifications. It
impacts cost and reliability of the entire system by reducing
the supply requirements and cooling costs [8].

In this paper, we offer a generic hardware-based solution
for any DLS, based on the GJE algorithm, designed with
energy efficiency in mind. The key contributions of this paper
include:

1) A pipelined architecture for solving DLS using the
GJE algorithm with single-precision floating-point
(FP) accuracy.

2) A portable and scalable design that can be down-
loaded on any FPGA from different vendors.

3) A detailed experimental analysis of the design logic
utilization, time performance, and power consump-
tion with a complete discussion about the design
energy efficiency.

4) A performance comparison and evaluation of our
proposed technique against similar hardware imple-
mentations with respect to time and area.

The remainder of this paper is organized as follows. Section
II summarizes some of prior work. Section III provides an
overview of the selected algorithm. Section IV details the
hardware-based version of our GJE solver with all the op-
timization techniques. Experimental results and performance
evaluation are described in Section V. Section VI concludes
the work.

II. RELATED WORK

In this section, we survey some of prior work that targeted
solving DLS on FPGAs using direct methods. We focus on the
work that utilized the Gaussian Elimination (GE) algorithm
and its extension, GJE algorithm. Then, we give a brief
overview about other work related to energy efficient hardware
implementations for matrix computations, as it is intensively
used in DLS solvers.

There exist many work that offered hardware solutions for
systems of linear equations. For example, Alonso and Lucio
presented a parallel architecture for the solution of linear
equations based on the Division Free Gaussian Elimination
method with single and double FP representations [9]. Garcia
et al. introduced a low cost single-precision architecture for
the solution of linear equations based on the GE method [10].
Their implementation takes advantage of both the DSP blocks
and the internal memory available in the Virtex-5 FPGA. Also,
Garcia et al. in [11] introduced a hardware simulation flow
for solving DLS with the GE method using Xilinx System978-1-4673-7788-1/15/$31.00 ©2015 IEEE

364

Mohamed Tarek
Author’s Preprint: For Educational Use Only�

Generator Tool (XSG). They limited the usage of the FP
division unit to execute only the reciprocal operation of a
number, which enhances the overall performance. However,
their architecture can handle limited number of equations with
relatively high resource utilization.

On the other hand, many work implemented the GJE
method, which could be seen as an extension for the GE
method. Duarte et al. proposed an architecture for double-
precision FP matrix inversion computations with partial piv-
oting [6]. They utilized their own implementation designs for
the arithmetic units that process the FP values. Although their
design is pipelined and can support several parallel units,
their presented timing results are for system sizes up to 5000
equations, which cannot be synthesized on the used Virtex-5
device that is capable of handling up to 350 equations based
on the shown resource consumption. In [4], Moussa et al.
implemented a scalable design for computing matrix inversion
using GJE with different FP precisions. They performed an
experimental analysis for the error propagation using Matlab
results as statistical estimators. However, no information are
given about the required number of cycles or total execution
time for a given matrix size. There are also many work that
utilizes other direct methods for solving systems of equations,
such as Cholesky [12] and LU factorization method [13], [14].
However, those implementations are out of the scope of this
paper.

Unlike this paper, all the previous work mentioned above,
did not offer any information about the overall power consump-
tion of proposed designs. Benner et al. presented an evaluation
of the impact of different software optimization techniques on
the performance and energy efficiency of matrix inversion via
GJE [15]. However, their investigation was limited to software
implementations on general-purpose multicore processors only,
which, unfortunately, consumes a large amount of power
compared to FPGAs [15]. Recently, there exists few work,
in the domain of FPGA-based computations, that take this
criteria in mind. In [16], Matam et al. evaluated the energy
efficiency of FP matrix multiplication (MM), which represents
the core operation in many solvers. They estimated the peak
energy efficiency of any MM implementation and compared
their design against it. Energy-efficient FPGA implementations
were also introduced for other kernels, such as signal process-
ing [17], Fast Fourier Transform (FFT) [18], and Histogram
Equalization [19]. To the best of authors knowledge, this work
is the first to consider energy efficiency during designing a
scalable hardware architecture for solving DLS.

III. THE GAUSS-JORDAN ELIMINATION ALGORITHM

In this section, we provide an overview on the GJE
algorithm used in this paper.

In general, the GJE method is an extension of the GE
method in that, at each step the pivot element is forced to 1
and all elements above and below the pivot are set to 0. That is
not like performing forward elimination, for the whole rows,
followed by back substitution to obtain the solution vector in
the GE method [20].

Algorithm 1 The Gauss-Jordan Elimination Algorithm.
1: procedure GJE(A, b)
2: M = [A|b] /*Augmented matrix*/
3: Pivot row = 1
4: for i = 1 to n do
5: for j = i to n do /*Pivot location*/
6: if |M(j, i)| > |M(i, i)| then
7: Pivot row = j
8: end if
9: end for

10: for j = i to n+ 1 do /*Row exchange*/
11: temp = M(i, j)
12: M(i, j) = M(Pivot row, j)
13: M(Pivot row, j) = temp
14: end for
15: Reciprocal = 1/M(i, i)
16: for j = i to n+1 do /*Current row normalization*/
17: M(i, j) = Reciprocal ×M(i, j)
18: end for
19: for j = 1 to n do /*Row elimination*/
20: if j 6= i then
21: Pivot = M(j, i)
22: for k = i to n+ 1 do
23: M(j, k) = M(j, k)− Pivot×M(i, k)
24: end for
25: end if
26: end for
27: end for
28: end procedure

As shown in Algorithm 1, the GJE method starts by
defining the augmented matrix, M = [A|b], which is a matrix
of size n× (n+ 1) that consists of coefficients matrix, A, on
the left, and of the right hand side (RHS) vector, b, on the
right. Then, M is transformed by a sequence of elementary
row operations, until the left side becomes the identity matrix,
I , and the right side becomes the solution vector, x.

IV. HARDWARE IMPLEMENTATION

In this section, we introduce the details of our proposed
hardware design. First, we start describing the FP modules,
which represent the building blocks of the architecture. Then,
we describe the main modules in our design; memory, control
unit, and ALU.

A. Floating-point (FP) Modules

In our design, we utilize single-precision FP components,
generated using FloPoCo, an open source generator of oper-
ators written in C++ [21]. This library takes operator speci-
fications as an input and outputs synthesizable VHDL code,
which can be easily downloaded to any FPGA board.

The FP format used in FloPoCo is identical to the one
used in the IEEE-754 standard with the following difference.
Zeroes, infinities, and Not a Number (NaN) are encoded
as separate bits in FloPoCo, instead of being encoded as
special exponent values in the IEEE-754 standard. Although,

365

this format helps saving a lot of decoding/encoding logic, it
consumes two more bits when results have to be stored in
memory. Thus, our data operand width would be 34 bits instead
of 32 bits.

The used arithmetic cores are deeply pipelined in order
to obtain the maximum performance. The total number of
pipeline stages, needed for each module of our three FP
modules, is given as follows. The subtraction module (SUB) is
divided into 4 stages while the multiplication module (MUL)
and the division module (DIV) are divided into 2 and 16
stages, respectively. These values are selected after various
experiments to provide almost equal latencies for each pipeline
stages, including memory access stages without the extra
stages that would affect the overall performance.

B. Main Design Modules

The architecture shown in Fig. 1 shows the three main
components used in our design. The design is parameterized
to cope with any size of the desired DLS. The two main
parameters are the number of equations in the system, n, and
the FP width, which equals 34 bits.

Here, we describe each module in detail along with all the
implemented optimizations to get the highest performance of
Algorithm 1.

Our memory unit is a three-port memory. It has two reading
addresses associated with two output ports and one writing
address associated with one input port. All ports are directly
connected to the ALU to provide the rows of the augmented
matrix, M , to operate on and store the result. Initially, the
memory is loaded with M ’s rows. So, each row of the memory
contains the FP coefficients of the A matrix concatenated with
the corresponding RHS elements from b. Memory depth is
equal to the dimension of M , which is n equations. It is worth
mentioning that the memory is provided with write/read enable
signals. These control signals are only high while dealing with
memory. Otherwise, the memory is disabled in order to reduce
power consumption. It was proved that the power requirements
of a block RAM is directly proportional to the amount of time
it is enabled during [22]. Furthermore, our memory unit is built
out of logic resources and does not depend on any specific
RAM modules on FPGAs. That allows for higher portability
of the design.

Fig. 1. Block diagram of main components for our GJE design.

ALU is the main processing component. It consists of
only one single-precision FP divider and n + 1 processing
elements (PEs). For n equations, we need n PEs to deal
with every coefficient and one additional PE for the RHS
element. The architecture of each PE is shown in Fig. 2. It
has only two FP modules, subtraction module (SUB), and
multiplication module (MUL). All PEs are identical and are
mainly used to perform the row elimination step in parallel.
Although the normalization step mentioned in the main GJE
algorithm requires the usage of n + 1 dividers to normalize
the whole row in one time, we use only one divider followed
by n + 1 multipliers. The divider is responsible only for
computing the reciprocal of the pivot element. Then, the
reciprocal is multiplied by all elements in the row that need
to be eliminated. This modification is done to improve area
and power efficiency as the FP divider modules require more
area and consume more power than FP multipliers. The cost of
doing so is adding two more cycles, for the FP multiplication
operation, to the overall number of cycles.

Fig. 2. Construction of one processing element (PE).

The control unit consists mainly of two submodules; the
control logic, which is responsible for controlling the signals
connected to memory and ALU, and the skip module. The
control logic uses counters to determine the current addresses
to be fetched from or written to the memory. It also gen-
erates control signals to handle the flow of data inside the
ALU during each step of the four main steps, highlighted in
Algorithm 1. As the elimination step could be done for each
row without affecting other rows, there is no need to eliminate
rows one after another. A read signal is issued at the start of
the normalization step. When it finishes, and the normalized
row is written to memory, a new row is mounted to the ALU in
every clock cycle to make use of its pipelined structure. Hence,
the total number of cycles needed for the row elimination step
decreased from k × (n− 1) to (k − 1) + (n− 1), where n is
the number of rows and k is the number of cycles used for
memory accesses and PE operations.

The skip module is added to the control unit in order to
enhance the performance of the main algorithm. At the begin-
ning of the current row normalization step, it checks the pivot
element after being read from memory. If the pivot element
is already 1, the skip module generates a Skip div signal to
skip the division operation and go directly to the multiplication
operations. This helps saving 14 cycles, the difference between

366

the 16 cycles utilized in the division operation and the 2 cycles
needed for the check. In regular cases, this check is performed
while the pivot element is being operated on by the division
module, so no waste in clock cycles occurs.

Furthermore, the skip module is used to check for zeros in
the first element of the eliminated row in the row elimination
step. If this element is already 0, we do not need to complete
this step with the n + 1 multiplications, followed by n + 1
subtractions. Finally, the control unit generates the halt signal
when the calculations have been finished. This signal indicates
that output data is written into memory and then stops all other
modules to save power.

V. EXPERIMENTS AND ANALYSIS

This section describes the experimental environment for
our design illustrated in Section IV. Then, it evaluates the
design performance in terms of resource utilization, timing
results, and power consumption. Finally, comparisons between
our proposed design and other solutions mentioned in Section
II are introduced to show the efficiency of our hardware-based
solution.

A. Experimental Setup

Our architecture modules were modeled using Verilog. The
HDL software used here was the Xilinx Integrated Software
Environment (ISE) 14.6 and the selected FPGA device was a
Virtex-5 XC5VLX330T with a speed grade of −2. The data
for our test cases were randomly generated using Matlab and
converted to the FP notation before written in memory files. All
test cases were successfully placed and routed on the selected
FPGA.

B. Resource Utilization

Table I shows the logic utilization and the maximum
frequency of our proposed design using single-precision FP for
different test cases. Logic utilization results are obtained from
the place-and-route report, whereas the maximum frequency is
obtained from the synthesis report. Each test case is defined
using the number of equations that need to be solved. This
number indicates the usage of n + 1 PEs. The used FPGA
provides a total number of 207,360 slice registers and the
same number of slice LUTs. Moreover, 192 DSP48Es are
available. The shown results indicate that the used board can
support systems of equations of larger sizes due to the minimal
amount of logic that were used for the architecture. It is worth
mentioning that we did not optimize the code for a certain
FPGA, while FPGA-specific optimizations might yield better
area usage.

TABLE I. HARDWARE RESOURCE UTILIZATION FOR OUR
SINGLE-PRECISION FP DESIGN USING DIFFERENT TEST CASES.

No. of equations 5 10 15 20 25

No. of slice registers 3,979 6,313 9,197 11,737 14,262
No. of slice LUTs 6,480 11,022 17,312 23,494 32,773
No. of DSP48Es 24 44 64 84 104
Maximum frequency 198.230 179.880 149.897 141.606 140.183

As mentioned before in Section IV, our FP components
are generated using FloPoCo. Although they operate on 34-
bit operands, there would be no problem if the application,
which is accelerated using our proposed solution, use only the
IEEE-754 FP format. FloPoCo provides conversion operators
from and to the IEEE-754 standard formats. These operators
can be easily connected to the memory input and output ports
with a low overhead. Table II shows the number of slice
registers and LUTs used while implementing the FloPoCo
conversion operators. The Input converter module is used
to convert a single-precision FP number from the IEEE-
754 format (32 bits) to FloPoCo format (34 bits), whereas
the Output converter performs the reverse operation. The
maximum combinational path delay is also given.

TABLE II. RESOURCE UTILIZATION OF FP FLOPOCO CONVERTERS.

Input Output
converter converter

No. of slice registers 0 0
No. of slice LUTS 31 35
No. of DSP48Es 0 0
Maximum frequency 173 180

C. Timing Results

Here, we first discuss the formula used to calculate the
total number of cycles needed to complete the operations of
Algorithm 1 on a DLS of any size. Then, timing results of our
proposed design can be easily obtained through multiplying
the calculated number of cycles by the maximum operating
frequency.

In order to reach the final result represented by an identity
matrix concatenated with the solution vector, we go through
two time consuming steps from Algorithm 1. The first step is
the current row normalization process that uses a division op-
eration followed by n+1 multiplications. For normalizing one
row, we need two clock cycles for memory access (read/write),
16 clock cycles for the DIV operation, and two clock cycles
for the MUL operation, as stated in Subsection IV-A. Two
more clock cycles are needed, as two pipelined stages are
inserted between memory and FP modules and between FP
DIV and MUL as FloPoCo pipelined operators do not
directly buffer neither their inputs nor their outputs. Thus,
it is the designer’s responsibility to insert one more level
of registers between two FloPoCo operators [21]. Complete
normalization consumes 22× n clock cycles.

The second main step is the row elimination process. Elimi-
nating one row consumes two cycles for memory accesses, two
for MUL, four for SUB, and two for the inserted pipeline
registers. As a result, we need 10 × (n − 1) clock cycles
to complete the row elimination process for one row and
that needs to be repeated n times to cover the whole matrix.
However, our pipeline fashion enables us of completing the
row elimination process for one row in (10−1)+(n−1) cycles
only. So, the current implementation consumes n × (n + 8)
clock cycles for row elimination. Finally, the overall needed
cycles are given by (1).

Number of needed cycles = n2 + 30n (1)

367

Fig. 3 shows the timing results of our proposed design
based on the total number of cycles provided in (1) and the
maximum operating frequency. It should be noted that, results
are obtained from the worst case scenarios when the skip
module is not activated in order to show the efficiency of the
design itself regardless of the input data.

Fig. 3. Timing results of our GJE implementation using various test cases.

D. Power Consumption and Energy Efficiency

The post implementation tool used in this work is the
Xilinx XPower Analyzer. It provides the designers with an
accurate view of the power consumption based on the exact re-
source utilization information extracted from the FPGA design
implementation reports. Fig. 4 shows the power consumption
of our design for different test cases. The VCD file (value
change dump file) is used as input to the XPower Analyzer to
produce accurate power dissipation estimation. The operating
frequency of all the evaluated designs were set to 140 MHz.
The total power is the sum of dynamic power and leakage
power. Dynamic power includes the power dissipated in clocks,
logic, signals, DSPs, and IOs. It can be seen from Fig. 4 that
the power consumption is linearly proportional to the number
of equations and processing elements. Also, the dynamic
power is small compared to the leakage one.

To validate the energy efficiency of our implementation,
we followed the same approach introduced in [16] by defining

Fig. 4. Power consumption of our GJE implementation using various test
cases.

energy efficiency as the number of operations per unit energy
consumed. Energy consumed by the design equals time taken
by the design multiplied by the power dissipation. The unit
used is the number of floating-point operations per second
per watt, which is equivalent to number of floating-point
operations per Joule (FLOPs/Joule). In our case, timing and
power results are obtained from Fig. 3 and Fig. 4, respectively.
Number of operations are given by (2).

Number of operations = [1 DIV + 2(n+ 1) MUL

+(n+ 1) SUB]× n= 3n2 + 4n (2)

Fig. 5 shows the energy efficiency of our single-precision
GJE design for various configurations. The performance sta-
bilizes as the number of equations, and thus number of PEs,
increase since the total time and power increase linearly with
the quadratic increase in number of operations in (2).

Fig. 5. Energy efficiency of our GJE implementation using various test cases.

E. Performance Evaluation

Our results are compared with previous work. Table III
shows the time used by the FPGA to solve systems of linear
equations using a 100 MHz clock for our proposed design
and the GE implementation introduced in [10]. We have
estimated some of the performance numbers for the work
in [10] from provided graphs as exact numbers are not given.
Our design achieves a speed-up of 13.89x in case of 30
equations. Regarding the logic utilization, the authors in [10]
gave the total resources used by the whole architecture for a
linear system of 10 equations only. In this case, logic utilization
is almost the same, while a speed-up of 20x is obtained.

TABLE III. TIMING COMPARISON WITH THE DESIGN IN [10].

Number of Execution time (µs) Speed-up
equations Our design GE’s [10]

5 1.75 40 22.86
10 4.00 80 20.00
20 10.00 160 16.00
30 18.00 250 13.89

368

TABLE IV. RESOURCES AND TIMING COMPARISONS AGAINST THE
DESIGN IN [4] USING VIRTEX-5 LX50T FPGA.

Our design GJE design [4]
Matrix size 4 8 4 8

No. of slice registers 3823 5369 3048 4321
No. of slice LUTs 5820 9184 4476 7396
No. of DSP48Es 20 36 10 10

Number of cycles 136 304 608 1204
Maximum frequency (MHz) 196.142 179.277 263.116 263.116
Execution time (µs) 0.693 1.696 2.311 4.576

Since the reported results in [4] use another version of
the Virtex architecture, we have also synthesized our design
on the same architecture, Xilinx Virtex-5 LX50T. Table IV
shows the resource utilization and timing comparisons between
the GJE design in [4] and ours. Although, the maximum
frequency, reported in [4], is better than ours, the number
of needed cycles in [4] scales exponentially, so the overall
timing results are better in case of our design. It is worth
mentioning that the work in [4] computes matrix inversion, not
the solution of DLS like ours. However, we both use the same
procedure of GJE. The only difference would be in the size
of block RAMs used. Also, the architecture proposed in [4]
uses complex multipliers and dividers, which increase the
amount of resources used. Finally, direct comparisons against
other energy-efficient implementations in Section II are not
applicable as they neither implement the same algorithm nor
target the solution of DLS. Other work, that actually does so,
does not offer power analysis of presented implementations.

VI. CONCLUSION

In this paper, we presented a single-precision FP archi-
tecture for solving generic DLS of equations using the GJE
algorithm. Our architecture is designed with energy efficiency
in mind. Using an open source library for generating FP
modules gives our design a higher degree of portability. We
implemented our design on a Virtex-5 FPGA and detailed
experimental results were discussed to show time, area, and
power costs. We also presented a quantitative comparison be-
tween the performance of our hardware prototype and some of
the previous hardware solutions. The experimental results show
that our design is more time-efficient with a reasonable area
and power consumption. Directions for future work include
investigating the trade-off between obtaining higher solution
accuracy by using double and quadruple FP precision and
maintaining area and energy efficiency.

REFERENCES

[1] J. R. Poirier, P. Borderies, E. Gimonet, R. Mittra, and V. Varadara-
jan. Efficient solution of dense linear system of equations arising in
the investigation of electromagnetic scattering by truncated periodic
structures. In IEEE Antennas and Propagation Society International
Symposium Digest, volume 1, pages 52–55, July 1997.

[2] M. Tarek Ibn Ziad, M. Hossam, M. A. Masoud, M. Nagy, H. A. Adel,
Y. Alkabani, M. W. El-Kharashi, K. Salah, and M. AbdelSalam. Finite
element emulation-based solver for electromagnetic computations. In
IEEE International Symposium on Circuits and Systems (ISCAS), pages
1434–1437, Lisbon, Portugal, May 2015.

[3] W. Hager. Applied Numerical Linear Algebra. Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1988.

[4] S. Moussa, A. M. A. Razik, A. O. Dahmane, and H. Hamam. FPGA
implementation of floating-point complex matrix inversion based on
GAUSS-JORDAN elimination. In 26th Annual IEEE Canadian Con-
ference on Electrical and Computer Engineering (CCECE), Regina,
Canada, May 2013.

[5] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, MD, USA, third edition, 1996.

[6] R. Duarte, H. Neto, and M. Vestias. Double-precision Gauss-Jordan
algorithm with partial pivoting on FPGAs. In 12th Euromicro Con-
ference on Digital System Design, Architectures, Methods and Tools
(DSD), pages 273–280, Patras, Greece, August 2009.

[7] B. Zhang, G. GU, L. SUN, and Y. Wu. Floating-point FPGA Gaussian
elimination in reconfigurable computing systems. Chinese Journal of
Electronics, 20(1), 2011.

[8] Xilinx Inc. Power consumption in 65 nm FPGAs. A White Paper
WP246 (v1.2), Available from: http://www.xilinx.com/support/docum
entation/white papers/wp246.pdf. (accessed July 2015), Feb 2007.

[9] R. M. Alonso and D. T. Lucio. Parallel architecture for the solution
of linear equation systems implemented in FPGA. In Electronics,
Robotics and Automotive Mechanics Conference (CERMA), pages 275–
280, Cuernavaca, Mexico, September 2009.

[10] J. A. Garcia, C. H. Llanos, M. A. Rincon, and R. P. Jacobi. A fast and
low cost architecture developed in FPGAs for solving systems of linear
equations. In 2012 IEEE Third Latin American Symposium on Circuits
and Systems (LASCAS), Playa del Carmen, Mexico, February 2012.

[11] J. A. Garcia, A. Braga, C. H. Llanos, M. A. Rincon, R. P. Jacobi,
and A. Foltran. FPGA HIL simulation of a linear system block for
strongly coupled system applications. In IEEE International Conference
on Industrial Technology (ICIT), pages 1017–1022, Cape Town, South
Africa, February 2013.

[12] S. G. Haridas and S. G. Ziavras. FPGA implementation of a cholesky
algorithm for a shared-memory multiprocessor architecture. Parallel
Algorithms Applications, 19(4):211–226, 2004.

[13] W. Zhang, V. Betz, and J. Rose. Portable and scalable FPGA-based
acceleration of a direct linear system solver. ACM Transactions on
Reconfigurable Technology and Systems, 5(1), March 2012.

[14] G. Wu, Y. Dou, J. Sun, and G. D. Peterson. A high performance and
memory efficient LU decomposer on FPGAs. IEEE Transactions on
Computers, 61(3):366–378, March 2012.

[15] P. Benner, P. Ezzatti, E. Quintana-Ortı́, and A. Remón. On the impact of
optimization on the Time-Power-Energy balance of dense linear algebra
factorizations. In 13th International Conference on Algorithms and
Architectures for Parallel Processing, pages 3–10, New York, NY, USA,
2013.

[16] K. K. Matam, H. Le, and V. K. Prasanna. Evaluating energy efficiency
of floating point matrix multiplication on FPGAs. In IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
USA, September 2013.

[17] R. Chen and V. K. Prasanna. Energy-efficient architecture for stride
permutation on streaming data. In International Conference on Re-
configurable Computing and FPGAs (ReConFig), Cancun, Mexico,
December 2013.

[18] R. Chen, H. Le, and V. K. Prasanna. Energy efficient parameterized FFT
architecture. In 23rd International Conference on Field Programmable
Logic and Applications (FPL), Porto, Portugal, September 2013.

[19] A. Sanny, Y. E. Yang, and V. K. Prasanna. Energy-efficient histogram
on FPGA. In International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Cancun, Mexico, December 2014.

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recepies in Fortran. The Art of Scientific Computing, 1992.

[21] F. D. Dinechin and B. Pasca. Designing custom arithmetic data paths
with flopoco. IEEE Design & Test of Computers, 28(4):18–27, July
2011.

[22] Xilinx Inc. Virtex-5 FPGA system power design considerations. A
White Paper WP285 (v1.0), Available from: http://www.xilinx.com/
support/documentation/white papers/wp285.pdf. (accessed July 2015),
Feb 2008.

369

