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Abstract—Memory safety continues to be a significant software
reliability and security problem, and low overhead and low
complexity hardware solutions have eluded computer designers.
In this paper, we explore a pathway to deployable memory safety
defenses. Our technique builds on a recent trend in software: the
usage of binning memory allocators. We observe that if memory
allocation sizes (e.g., malloc sizes) are made an architectural
feature, then it is possible to overcome many of the thorny
issues with traditional approaches to memory safety such as com-
patibility with unsecured software and significant performance
degradation. We show that our architecture, No-FAT, incurs
an overhead of 8% on SPEC CPU2017 benchmarks, and our
VLSI measurements show low power and area overheads. Finally,
as No-FAT’s hardware is aware of the memory allocation sizes,
it effectively mitigates certain speculative attacks (e.g., Spectre-
V1) with no additional cost. When our solution is used for pre-
deployment fuzz testing it can improve fuzz testing bandwidth by
an order of magnitude compared to state-of-the-art approaches.

Index Terms—Bounds Checking, Fuzzing, Memory Safety,
Microarchitecture, Spectre-V1, Systems Security.

I. INTRODUCTION

Memory safety violations in programs have provided a sig-
nificant opportunity for exploitation by attackers. For instance,
Microsoft recently revealed that the root cause of around 70%
of all exploits targeting their products are software memory
safety violations [37]. Similarly, the Project Zero team at
Google reports that memory corruption issues are the root-
cause of 68% of listed CVEs for zero-day vulnerabilities
between 2014 and 2019 [22].

To address the threat of memory safety, software checking
tools (e.g., AddressSanitizer [52]) and fuzz testing are widely
deployed. In software fuzz testing, binaries are instrumented
with a tool like AddressSanitizer to detect memory safety
vulnerabilities and run with inputs mutated from a set of
exemplary inputs in the hopes of detecting bugs before de-
ployment. Google has reported that it has been fuzzing about
25,000 machines continuously since 2016, which has resulted
in the identification of many critical bugs in software such as
Google Chrome and several open source projects [7]. Assum-
ing 15 cents per CPU hour for large memory machines—a
requirement for reasonable performance on fuzz testing—the
investment in software fuzzing for detecting memory errors
could be close to a billion dollars at just one company.

Despite a Herculean effort by software vendors, memory
safety vulnerabilities continue to slip through, ending up in
deployed systems. Recognizing that pre-deployment fuzz tests
can never be complete, companies have also proposed post-
deployment crowdsourced fuzz testing [38], [59]. For instance,
Mozilla recently created a framework for fuzzing software
using a cluster of fuzzers made by users who are willing to
trade and contribute their CPU resources (e.g., using office
workstations after-hours for fuzz testing) [38]. Assuming that
many companies participate and these tests run for enough
time, on a global scale, the amount of energy invested in pro-
ducing reliable software may be even higher than the amount
of time running the software with crowdsourced testing. Thus,
increasing the efficiency of memory error detection can have
significant green benefits in addition to improving security and
reliability.

Researchers and commercial vendors have also stepped up
to the call to reduce inefficiencies in software testing and secu-
rity. There is a long history of academic proposals that have
continuously chipped away at these overheads for detecting
memory safety vulnerabilities over the past 25 years ([51], [3],
[47], [26], [14], [39], [61], [56], [50], [55], [27]). Commercial
vendors have also proposed or manufactured hardware with
support to mitigate these overheads (Intel’s MPX [43], ARM’s
MTE [2], and Oracle’s ADI [45]).

In this paper, we show that the overheads of providing
memory safety can be decreased even further with novel
hardware support. Traditional memory safety techniques incur
overheads from two sources: (1) storage of metadata to detect
memory safety violations, and (2) computational overheads of
memory safety checks based on the stored metadata. No-FAT1,
our system, eliminates all metadata attached to pointers, and
hides the computational overheads of the metadata checks by
performing them in parallel with regular lookups.

The technological change that facilitates these improve-
ments in No-FAT is the increasing adoption of binning al-
locators. Binning memory allocators use collections of pages
(called bins), where each bin is used to allocate objects of the
same size. Using bins enables the allocator to quickly serve

1The name is an allusion to No-Fat Milk, which has fewer calories. Also,
closely related work in this area refer to their schemes as Fat and Low Fat
pointers.
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Fig. 1: A high level overview of how No-FAT makes allocation size an architectural feature.

allocation requests and increases performance by maintaining
allocation locality [21], [20], [18], [34].

No-FAT, when used with a binning allocator, is able to
implicitly derive allocations bounds information (i.e., the base
address and size) from the pointer itself without relying on
explicit metadata. The hardware/software contract has to be
tweaked slightly to facilitate No-FAT and binning allocators
working together: the standard allocation sizes used by a
binning allocator need to be supplied to the hardware and
special load and store instructions are created to access the
allocation sizes. In other words, the memory allocation size
(e.g., malloc size) becomes an architectural feature.

We illustrate one type of protection offered by No-FAT
with an example shown in Figure 1. The program allocates
an array of four characters and writes 'A' to the second
element, ptr[1]. To make the allocation an architectural
feature, No-FAT modifies the compiler to propagate the al-
location base address (i.e., ptr) to memory instructions
(i.e., secure_store). Before accessing memory, No-FAT
computes the allocation base of the memory address (i.e.,
ptr[1]). No-FAT will then compare the computed base
address against the compiler propagated base address (i.e.,
ptr) and raise an exception in the case of a mismatch.
Moreover, No-FAT enforces temporal protection by generating
a random tag upon memory allocation and storing it in the cur-
rently unused upper bits of the pointer. Then, upon executing
memory instructions, No-FAT verifies that tags match.

No-FAT also provides resilience against a subset of specu-
lative execution attacks, namely Spectre-V1 [29]. Spectre-V1
attacks exploit speculative execution to access out-of-bounds
memory, effectively bypassing software-based bounds checks.
No-FAT’s memory instructions are aware of allocation bounds
information. Thus, allocation bounds information can be used
to verify if memory accesses are within valid bounds even for
speculatively executed instructions.

A challenge with prior memory safety proposals, or for that
matter any proposal that involves ISA changes, is practical
deployment considerations. Are the new instructions and in-
terfaces compatible with older software? Will there be per-
formance degradation when using older software? Does code
have to re-written or can it be simply recompiled? Luckily, the
key ideas described in this paper viz., the idea of standardizing

memory allocation structures, and using that information to
provide memory safety, have been very well tested with
software implementations [1], [16], [19]. Moreover, No-FAT
has three advantages over prior works. First, prior works suffer
from high performance overheads (100%) which this work
mitigates. Second, we show that a degree of temporal safety
and intra-object spatial safety can be offered by our implemen-
tation over prior software works with simple modifications.
Third, we improve over prior works by providing support
for arbitrary sized allocations (as opposed to power-of-two
allocation sizes).

All of No-FAT’s software transformations are performed
using the Clang/LLVM compiler framework [32]. Our ex-
perimental results with the SPEC CPU2017 benchmark suite
indicate that the overheads of No-FAT are on average 8% with
very conservative measurements. Our VLSI implementation
results with 45nm NangateOpenCell show that No-FAT can
be efficiently added to modern processors with negligible
performance, area, and power overheads.

In summary, this paper makes the case for standardizing
memory allocation sizes and explicitly making this informa-
tion available to the architecture. We observe at least three
distinct benefits:
• Improving fuzz-testing time. Currently companies

spend hundreds of millions of dollars testing software
programs for bugs. A majority of these bugs tend to be
intricate memory safety bugs. Exposing allocation sizes
to hardware simplifies the checks for memory safety and
improves the fuzz testing bandwidth by over 10x based
on state-of-the-art solutions (e.g., AddressSanitizer based
fuzzing).

• Improving run-time security. Despite the best effort of
software engineers to produce bug-free code, some of
these bugs do end up in production, and pose a risk to end
users. If users wish to protect against remaining residual
risk, our solution offers the lowest overhead protection
among all published memory safety solutions that thwart
data corruption attacks.

• Improving resilience to Spectre-V1 attacks. Exposing
allocation sizes to the hardware allows the hardware to
effectively perform bounds checking even for speculative
memory accesses.
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II. NO-FAT SYSTEM OVERVIEW

A. Preliminaries

Binning memory allocators have gained prominence in the
past decade and are now widely used [21], [20], [18], [34].
In a binning alloctor, the heap is divided into regions where
each region is used to allocate objects of a pre-determined
size. Thus, the memory size returned to a program is rounded
up to one of the standard sizes offered by the allocator. For
example, allocation requests that are less than 16 bytes come
from the first region, allocation requests for 16 to 32 bytes
come from the second region and so on. In contrast, non-
binning allocators can provide the exact amount of memory
requested by the program at the cost of an additional allocation
header to store its size [33]. Binning allocators trade off a little
memory fragmentation for faster allocation and deallocation
times, and practically speaking, the fragmentation overheads
tend to be negligible for most programs. In this paper, we
expose the pre-determined sizes offered by a binning memory
allocator to the hardware to provide memory safety.2

B. How does No-FAT provide Inter-allocation Spatial Memory
Safety?

The goal of inter-allocation spatial memory safety is to be
able to identify pointer-based accesses that access addresses
outside the region of memory allocated to that pointer. To
perform this check we need three pieces of information: (1)
the starting address of the allocation, (2) the size of the space
allocated to the pointer, and (3) the address of the pointer-
based access. The benefit of binning allocators is that (1)
and (2) can be computed from (3) using simple arithmetic
and concurrently with the data access.

Given a pointer address, we determine the region that the
pointer is from. Say each region is S GiB, and the heap starts
at address H. Then the region of the pointer is (ptr−H)>>
log2(S). Once the region is known, we can know the size
of the allocation because all allocations from the region are
of the same size. The base address of the allocation can be
computed by b(ptr/size)c ∗ size, whereas the combination of
integer division and multiplication has the effect of rounding
ptr down to the nearest size(ptr)-aligned boundary, which is
the base address.

For example, let us assume that the heap starting address
is H = 0x380000000000 and the memory allocator uses 64
bins (i.e., regions) each of size 32 GiB, where the third region
is used to store allocations of size 32B. When the program
executes char* A = malloc(32), the memory allocator
might return the following base address: 0x381000000040.
Now, given an arbitrary pointer ptr = 0x381000000045,
the hardware computes the region number by subtracting the
heap starting address (i.e., 0x001000000045) and ignor-
ing the 35 LSBs (i.e., 0x002, which is the third region).
Then, the hardware retrieves the allocation size from the

2A recent study [60] proposes passing semantic information from software
to hardware to achieve better resource utilization and enhance performance.
However, neither allocation size nor fine-grained security were included.

hardware table. Finally, the base address can be computed
as b(0x381000000045/32)c∗32 = 0x381000000040.

How does this information help protect against attacks?
Let us say an attacker has the ability to control the index
variable of a dynamically allocated array. With this ability,
the attacker can cause the pointer to go out-of-bounds and
subvert the memory instruction in order to read/write from a
different allocation. If we simply calculated the base address
from the attacker modified address we would not be able to
catch the attack since we do not have an expectation of what
the base address ought to have been. To avoid this case, No-
FAT extends memory access instructions with an extra operand
that carries a trusted base address. The trusted base address is
simply the base address returned by malloc. This way we
can verify the correctness of the access by computing the base
address of the input pointer and matching it against the trusted
base address, which is part of the instruction.

Computing the base address of a pointer for every memory
access instruction is a costly operation as it includes a 64-bit
division operation followed by a 64-bit multiplication. Divi-
sion is a relatively expensive operation even on modern CPUs.
To simplify the bounds checking operation, No-FAT uses the
following check isValid(ptr,base) = ptr− base < size(base).
The idea is simple. As the instruction holds the trusted base
address, we first compute its corresponding size by extracting
the region number as explained before. Then, we compare this
size to the difference between the input pointer and the trusted
(i.e., instruction-based) base address. If the pointer overflows
to an adjacent allocation, the difference will be larger than the
computed difference. If the pointer underflows to a previous
allocation, ptr− base will be a negative number that will be
interpreted as a large positive number that is ≥ size(base) as
we use unsigned arithmetic.

To make No-FAT compatible with unprotected code, mem-
ory instructions that need to perform the check are emitted
using special instructions. Specifically No-FAT uses Secure
Load (secure_load) and Secure Store (secure_store)
instructions (see Section III) that use the allocation base
address as a distinct operand. This operand is propagated
in the binary using a compiler pass (see Section V). This
way secure_load and secure_store can verify access
boundaries using the isValid check, as described above. On
machines which do not have hardware support for No-FAT,
secure_load can be interpreted as a regular load and the
third operand will be ignored.

C. How does No-FAT provide Intra-allocation Spatial Memory
Safety?

The goal of intra-allocation spatial memory safety is to
prevent overflows from one field to another within the same
allocation. The strategy used by No-FAT for intra-allocation
safety is to convert the intra-allocation memory safety problem
to an inter-allocation problem. No-FAT uses a source-to-source
transformation, Buf2Ptr, which has been previously used in
the area of data layout optimizations for enhancing perfor-
mance [25], [49], [66]. Buf2Ptr promotes buffer fields, which
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exist in C/C++ structs (or classes), into their own allocations.
To illustrate Buf2Ptr, consider the example in Listing 2. The
array field, buf[10], within the struct, Foo, is replaced
with a promoted pointer, p_buf, and a new variable for the
original array is defined (Foo_buf[10]). As a result of this
transformation, allocations, deallocations, and usages of the
original field must also be properly promoted. For example,
an allocation for a composite data type (e.g., Foo) becomes
separate allocations based on the number of fields promoted
(e.g., Foo_buf). As the standalone allocations have their own
base address, they can be protected with No-FAT, as described
above.

1

2 struct Foo {
3 char buf[10];
4 int value;
5 };
6

7

8 struct Foo *f = malloc(
9 sizeof(struct Foo));

10

11

12

13 f->buf[7] = 'A';
14

15 free(f);
16

(a) Original

// Promoted Type
char Foo_buf[10];
struct Foo {
char *p_buf;
int value;

};
// Promoted Allocations
struct Foo *f = malloc(
sizeof(struct Foo));

f->p_buf = malloc(
sizeof(Foo_buf));

// Promoted Usages
f->p_buf->buf[7] = 'A';
// Promoted Deallocations
free(f->p_buf);
free(f);

(b) Transformed

Listing 2: An example of Buf2Ptr transformation.

D. Temporal Memory Safety.

To enforce temporal memory safety, No-FAT tags the up-
per 16-bits of data pointers on 64-bit systems with a random
value upon malloc. This value is propagated in our new
instructions (i.e., secure_load and secure_store) as
part of the memory address and the allocation base address.
This way, comparing the tag of the memory address with
the tag of the allocation base address catches temporal safety
violation with a probability of 1−(1/216) = 99.9984%. When
a virtual memory region is reallocated to a different object it
receives a new random tag, implicitly nullifying all dangling
pointers which used to point to the old object, as they are
likely to have different tags.

E. Handling Procedure Calls and Nested Pointers

Consider the following: q = p + 16; x = Bar(q);.
Here, p is a pointer to a 32B allocation, and q is a derived
pointer to a field within the allocation. In this case, the use
of a pointer happens in a different function (aka context) than
the one where it was originally created. Thus, all functions
using the base pointer (i.e., p) or its derivatives (e.g., q) need
to be given access to the base address. One way to do this
would use a source-to-source transformation to add an extra
operand to all functions that use pointer arguments. This way
the address would be in the stack of the needed function. This
solution requires changing the function signature and breaks
compatibility with unprotected code.

Instead, we use a different, simpler abstraction. Whenever
a data pointer goes out of context (i.e., passed to another
function or spilled to memory), we first verify that it is an in-
bounds pointer using a Verify Bounds (verify_bounds)
instruction (see Section III). When a pointer is loaded
from memory, we first compute its base address using a
compute_base instruction and propagate this base address
to all the following memory instructions as a third operand.

With this approach, can the attacker abuse pointers that
escape to another function? This is not possible because (1) we
verify the bounds of the pointer before spilling it to memory
and (2) we protect the memory with No-FAT so we are assured
that the pointer stored in memory cannot be overwritten. This
abstraction also permits No-FAT to use only intra-procedural
analysis, which simplifies the implementation. Going back to
our example, we first verify the bounds of q before calling
Bar(q). This is done with one verify_bounds instruction
that takes the base address of q as an operand and matches it
against the computed base address of p + 16. Inside Bar,
we first call compute_base with q as an operand to retrieve
its base address and propagate this base address to all memory
instructions that uses q as an address.

III. ARCHITECTURE SUPPORT

No-FAT adds the following instructions to the ISA:

• secure_store/secure_load <R1>, <R2>, <R3>:
These instructions use three register operands. The values
in registers R1 and R2 point to the store/load address and
source/destination register as usual. The value in register R3
is reserved for the allocation base address and is propagated
by the compiler. Upon executing this instruction, the hardware
computes the allocation size of R3 and compares it to the
difference between the address stored in R1 and R3. An ex-
ception is thrown in case of R1−R3≥ size(R3). Additionally,
the hardware matches the upper 16 bits of R1 and R3 to detect
temporal memory safety violations.

• verify_bounds <R1>, <R2>: This instruction is used
to check the bounds of pointers before storing them to
memory (or passing them to a different function). It uses
two register operands. The value in register R1 is a pointer
whereas the value in register R2 is reserved for the allocation
base address and is propagated by the compiler. Similar to
secure_store and secure_load, upon executing this
instruction, the hardware computes the allocation size of
R2 and compares it to the difference between the address
stored in R1 and R2. An exception is thrown in case of
R1−R2≥ size(R2) to indicate that an out-of-bounds pointer
is being stored to memory.

• compute_base <R1>, <R2>: This instruction takes a
memory address (i.e., pointer) as input in R1 and returns the
allocation base address of this pointer in R2. This instruction
is used to retrieve the correct base address of pointers that are
passed to different contexts (e.g., through function calls).
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IV. MICROARCHITECTURE DESIGN

In this section, we describe the four hardware components
that are needed to enable No-FAT.
MAST. The Memory Allocation Size Table is a
hardware structure, which is initialized at program startup with
a process’s allocation size configuration. The table is designed
to work with binning allocators. The MAST enables No-FAT to
support generic (i.e., non-powers-of-two) allocation sizes for
each bin.3

In this work, we use a simple binning allocator that divides
the heap into N equally sized bins. Based on our experiments,
using 64 distinct bins is sufficient to balance performance and
memory utilization. Thus, we use a 64-entry MAST with an
entry size of 16B resulting in a total size of 1KB. Each entry
holds an 8B size field and an 8B inverse size field. The size
field of the nth entry is used to hold the allocation size used for
the nth allocator bin. The inverse size field is an optimization
that is discussed later. As a program’s heap is contiguous, we
use a single hardware register to store the starting address
of the program heap and use it to derive the starting address
of all bins. Some binning allocators (e.g., TCmalloc [21] and
Jemalloc [20]) may change the allocation size used by one
bin at runtime if all objects in the bin are freed. In this case,
the allocator can simply update the MAST entry with the new
size. We leave the investigation of other memory allocators to
future work.
Bounds Checking Module. The bounds checking module
takes two 64-bit operands, Ptr and BasePtr. It subtracts the
two operands and compares the result with the allocation size
of BasePtr. To compute the size of a given base pointer, the
bounds checking module first maps the pointer to an allocation
bin using simple subtract and shift operations followed by
an access to the MAST to retrieve the allocation size. Next,
the bounds checking module uses a subtraction operation
(Ptr−BasePtr) followed by a 64-bit unsigned comparison with
the recently retrieved size (i.e., size(BasePtr)). The last step is
the temporal check, which is done with a 16-bit comparison
operation between the upper 16 bits of Ptr and BasePtr.

The bounds checking module is invoked during the
secure_load and secure_store instructions to pre-
vent out-of-bounds pointer dereference and during the
verify_bounds instruction to prevent out-of-bounds point-
ers from escaping to memory. As shown in Figure 2, the check
operation can be totally hidden within the access latency for
the L1 data cache.
Base Computing Module. As discussed in Section II-E,
pointers can be passed from one context to another. As No-FAT
relies on simple intra-procedural compiler analysis, it needs to
recompute the base address every time a pointer is loaded from
memory (e.g., double pointers) or used as a function argument.
This feature is currently implemented with compute_base
instruction that invokes the Base Computing Module.

3Using power-of-two sized objects can eliminate the need for MAST at the
cost of additional memory overhead. This is a common optimization that was
used in other systems such as Baggy bounds [1].
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Fig. 2: Pipeline diagram for the L1 cache hit operation. The
bounds checking operations (top) are pipelined to avoid adding
any access latency to L1 data.

This module takes a 64-bit ptr operand and computes its
base address using bptr/size(ptr)c∗size(ptr). While size(ptr)
requires one MAST lookup, the division operation is costly. No-
FAT uses a common optimization that replaces the expensive
division (ptr/size(ptr)) with a cheaper multiplication (ptr ∗
(1/size(ptr))) by using fixed-point arithmetic. This approach
is feasible since the set of allocation sizes is constant, and thus
the set of allocation size reciprocals can be pre-calculated and
stored in the MAST along side with allocation size.
Dedicated Register File. As our secure_load and
secure_store instructions use a third register operand,
they may introduce register pressure. Thus, No-FAT adds a
set of architectural registers that the compiler can exclusively
use for holding and propagating allocation base addresses.
The new registers are saved in a separate register file that
is accessed in parallel to the regular register file.

V. SOFTWARE DESIGN

In this section, we describe the memory allocator, compiler
and operating system changes to support No-FAT.

A. Dynamic Memory Management

One of No-FAT’s key contributions is making the allocation
size an architectural feature (i.e., sharing the allocation size
information between software and hardware). To enable this
feature, No-FAT requires binning memory allocators, in which
a memory page is used to allocate objects of the same
size. No-FAT does not add any constraints on how the allocator
manages its internal metadata (e.g., free lists). No-FAT only
intercepts calls to common memory management operations.
For example, No-FAT intercepts all calls to malloc/new
and tags the returned pointer with a random 16-bit value for
ensuring temporal memory safety. Upon deallocation, No-FAT
intercepts the calls to free/delete and removes the tag bits
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before calling the allocator’s own free/delete API. When
pointers are passed to uninstrumented code, tags are ignored
by the hardware to maintain compatibility.

B. Compiler Support

Heap Instrumentation. To guarantee spatial protection, we
implement an instrumentation pass at the LLVM IR level that
replaces program loads and stores with our new instructions,
secure_load and secure_store. To prepare the allo-
cation base address register operand, we use simple function-
level analysis to propagate the pointers returned by malloc
or new intra-procedurally. To handle out-of-context pointers
(e.g., those that are loaded from memory or passed as func-
tion arguments), our compiler pass inserts compute_base
instructions in the corresponding locations to resolve the
allocation base address. Our pass inserts verify_bounds
instructions in places where a pointer is stored to memory.
This can happen due to (a) casting pointer (ptr) to an integer
(i.e., i = (int)ptr), (b) storing ptr to memory (i.e.,
*r = ptr), (c) passing ptr to a function (f(ptr)), and
(d) returning ptr from a function (i.e., return ptr).

Source-to-Source Transformation. In order to achieve intra-
allocation memory safety, we use a source-to-source trans-
formation (Buf2Ptr), as described in Section II-C. Buf2Ptr
is implemented using Clang’s rewriter interface. First, we
perform an AST traversal over each translation unit to collect a
whole program view of composite data types (e.g., structs) and
their usages. Then, we perform a second traversal to perform
the actual rewriting.

Stack & Global Instrumentation. In order to achieve full
memory safety on all memory segments, we extend No-FAT
to protect objects that are allocated on the stack and global
memory. At compile time, No-FAT instruments all stack and
global allocations (e.g., alloca) to use the same bins, which
are used to satisfy heap allocations. This way No-FAT uses
a unified method to enforce memory safety on all program
memory segments. To avoid overheads related to allocating
stack objects on the heap, we adopt the same pointer mirroring
and memory aliasing techniques used in prior work [19].

C. Operating System Support

MAST Initialization. During program initialization, the mem-
ory allocator needs to pass the allocation size information to
the hardware. This is a one time task that can be done with
a special system call or by writing to a hardware-mapped
memory region. The size of the table is fixed, as described
in Section IV.

Context Switching. Upon a context switch, No-FAT requires
the operating system (OS) to store the MAST (and the dedicated
register file contents) of the interrupted process and update
the MAST and register file of the new process. Both the MAST
and the register file contents are of fixed size and can be stored
as part of the process control block. This step is likely to

add minimal overhead (a few load and store instructions
takes ≤ 0.1µS) to the OS context switch (typically 3−5µS).
Privileged Exceptions. When No-FAT’s hardware detects an
access violation, it throws a privileged exception once the
instruction becomes non-speculative. The operating system
needs to properly handle this exception as with other privileged
exceptions (e.g., page faults). We also assume the faulting
address is passed in an existing register so that it can be used
for reporting/investigation purposes.

Finally, as No-FAT uses regular data pointers and does not
change an object’s memory layout, it naturally supports key
OS functionalities such as inter-process data sharing, copy-on-
write, and memory-mapped files. As No-FAT uses no per-word
metadata, it does not require any changes to the page swapping
subsystem.

VI. SECURITY ANALYSIS

A. Threat Model

Adversarial Capabilities. We assume a threat model compa-
rable to that used in contemporary related work on memory
safety defenses [61], [56], [62], [55], [27]. We assume the
victim program to have one or more vulnerabilities that an
attacker can exploit to gain arbitrary read and write capabilities
in the memory; our goal is to mitigate both spatial and
temporal memory violations. Furthermore, we assume that the
adversary is aware of No-FAT and has access to the source
code, or binary image, of the target program. Finally, we
assume that the attacker cannot tamper with the per-process
size configurations as they are stored in the MAST and are kept
as read-only in kernel memory upon context switch.
Hardening Assumptions. We assume that all hardware com-
ponents including the ones proposed in this work are trusted
and tamper-resistant, and therefore consider attacks that ex-
ploit hardware vulnerabilities, such as rowhammer [28] and
side-channel attacks [65], to be out of scope. For speculative
execution attacks [29], we include Spectre-V1 (aka bounds
checking bypass) in our threat model as it violates memory
safety (speculatively). We do not include Spectre variants that
manipulate branch predictor buffers as No-FAT does not affect
program branch behavior.

B. Security Discussion

Buffer Under-/Over-flows. No-FAT defends against the ex-
ploitation of buffer overflows (and underflows) by detecting
out-of-bounds pointers. No-FAT takes advantage of making the
allocation size (per memory page) an architectural feature to
enforce spatial memory safety. No-FAT not only protects heap-
based allocations, but also stack and global memory regions.
To do so, No-FAT reserves alias regions for stack and global
objects such that both can use the same allocation size (per
memory page) feature. No-FAT’s protection applies to both
inter- and intra-allocation safety (as Buf2Ptr reduces the intra-
allocation problem to inter-allocation).
Use-after-frees. As described in Section II-D, No-FAT pro-
vides temporal memory safety by tagging data pointers and
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validating the tags as part of the spatial bounds checking
process. The same allocated virtual/physical memory region
can have up to 216 different tags, increasing the chances of
catching dangling pointers (as dangling pointers use the old
tags of the same allocated region). Appendix XI discusses No-
FAT’s temporal memory safety in detail.

Control-Flow Hijacking Attacks. In many attack scenarios,
corrupting code pointers becomes a preferred attack vector. For
instance, control-flow hijacking attacks, such as ROP [54] and
its variants [10], [6], corrupt the return address of a function
(or a function pointer) to hijack the control flow of a program.
As all of the aforementioned attacks typically start with a
spatial/temporal memory safety violation, No-FAT effectively
stops control-flow hijacking attacks by eliminating their root
cause.

Data-Oriented Attacks. Given a memory safety vulnerability,
attackers can launch a data-only attack [11], [24], [46], [12]
without abusing any code pointer. No-FAT mitigates those
attacks by ensuring that all loads/stores happen between their
legitimate bounds. If attackers move a pointer out of bounds
to write to a (non-)adjacent allocation, No-FAT throws an
exception as the computed base address of the malicious
pointer does not match the base address operand of the
secure_load/secure_store instructions.

Uninitialized Reads. No-FAT does not explicitly mitigate
uninitialized read attacks, in which attackers can leak in-
formation from stack/heap locations by loading from these
locations before doing a store operation. To mitigate this
attack vector, No-FAT requires that deallocated objects (heap
or stack) be zeroed out. Prior work showed that this process
can be done efficiently in software [36].

Third-party Library Attacks. While No-FAT maintains full
compatibility with third party libraries that are not instru-
mented with our compiler pass, we offer no security guarantees
about vulnerabilities that exist in such uninstrumented code. To
increase the security coverage, we create software wrappers for
commonly used memory functions that appear in third-party
libraries (e.g., memcpy, memset, and memove) to ensure
that they cannot be used by an attacker to undermine No-
FAT. For example, Listing 3 shows the pseudocode for our
memcpy wrapper that first computes the base address of the
source/destination pointer and ensures it matches the base
address of the source/destination plus size before calling the
original memcpy function.

1 void *memcpy_wrap(void *dst, void *src, size_t n){
2 compute_base src, src_base
3 compute_base src+n, src_end_base
4 Assert(src_base == src_end_base)
5 compute_base dst, dst_base
6 compute_base dst+n, dst_end_base
7 Assert(dst_base == dst_end_base)
8 return memcpy(dst, src, n);
9 }

Listing 3: Example memcpy wrapper.

C. Spectre-V1 Resiliency

A key advantage of No-FAT over prior memory safety de-
fenses is its natural resiliency to certain classes of speculative
side-channel attacks, namely Spectre-V1 (bounds checking
bypass) [29]. We first summarize how Spectre-V1 works.
Then, we show how it can undermine prior memory safety
techniques. Finally, we describe how No-FAT mitigates it with
no extra cost.

1 if (i < a->length) { // mispredicted branch
2 secret = a->data[i];
3 val = b[64 * secret]; // secret is leaked
4 }

Listing 4: Example speculative execution attack.

Attack Summary. To better understand how Spectre-V1
works, let us consider the example shown in Listing 4, in
which the attacker controls the index, i. The attacker first
trains the branch predictor by supplying multiple valid values
for i (i.e., less than a->length). Then, the attacker provides
an out-of-bounds index i > a->length. While this index
violates the software bounds check in Line 1, the hardware
will mispredict the condition (i.e., branch is taken) and spec-
ulatively executes Lines 2 and 3. As a result, a speculative
buffer overread occurs at Line 2 and the read value (secret)
is used as an index at Line 3. The attacker finally leaks the
secret value via a covert channel as speculative execution
leaves traces in processor structures (e.g, data caches). For
example, the address in Line 3 depends on the secret, thus
flushing and reloading the L1 data cache will allow the attacker
to find out which cache line was used and reveals the secret.
Prior Work. Spectre-V1 is a main concern for prior memory
safety techniques as it can be used to undermine their security
guarantees. For example, attackers can infer the memory
tag value of memory without triggering a memory tagging
violation and use that to bypass memory tagging solutions
(i.e., SPARC ADI [45] and ARM MTE [2]) [5]. To mitigate
Spectre-V1, prior work suggested inserting serialization in-
structions (aka fences) at certain program points to prevent
the processor from speculatively bypassing bounds checks [8].
This approach can result in up to 10x runtime overheads [44].
Another line of work proposed isolating speculatively accessed
data to prevent leakage via covert-channels [67], [4]. While
these defenses reduce the performance overheads, they add
substantial complexities to the hardware design.
No-FAT vs. Spectre-V1. No-FAT’s secure_load and
secure_store instructions are resilient against Spectre-V1
by construction. Even if the processor mispredicted the branch
instruction in Line 1 of Listing 4, the secure_load that
is used in Line 2 holds the legitimate base and bounds of
a->data as a third operand. Thus, it immediately recognizes
the speculative access as an out-of-bounds access and does not
allow a->data[i] to access the cache (to avoid modifying
the cache state). Hence, No-FAT is resilient against the recent
Spectre attack, namely the µop Disclosure Primitive, which
exploits the micro-op cache as a timing channel to transmit
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TABLE I: Area, delay and power overheads of No-FAT (GE
represents gate equivalent).

Hardware Structure Area (GE) Delay (ns) Power (mW )

Baseline L1 data cache 503,914 1.99 29.7

Bounds checking module 32,130 0.81 1.16

Base computing module 27,346 1.50 1.17

out-of-bounds secrets [48]. Additionally, No-FAT prevents the
dependent load instruction from executing by unmarking the
ready bit on the register that has the load value (then raising an
exception when the out-of-bounds access is non-speculative).
We delay raising the exception until the commit stage to avoid
false alarms (i.e., if the out-of-bounds memory access happens
due to a benign branch misprediction).
Other Spectre Variants. As stated in Section VI-A, No-
FAT does not protect against Spectre-variants other than V1
(bounds checking bypass) as the main focus in this work is
memory safety. Examples of other Spectre variants include
Spectre-V2 (aka branch target injection), which can be used
by an attacker to pollute the branch target buffer and force the
victim program to speculatively jump to an arbitrary sequence
of instructions (called a Spectre gadget). If the Spectre gadget
has memory access instructions (e.g., secure_loads), they
will be speculatively executed based on the current contents of
register R1 (memory address) and register R3 (allocation base
address) even if those register contents belong to an incorrect
execution context. The same argument applies if the Spectre
gadget includes compute_base instructions. Other Spectre-
V2 mitigations can be used to address this attack vector [30].

VII. EVALUATION

We evaluate No-FAT across multiple dimensions. First, we
measure the hardware overheads of No-FAT. Second, we com-
pare the performance of No-FAT against state-of-the-art pre-
and post-deployment memory safety solutions using SPEC
CPU2017. Third, we analyze No-FAT’s memory overheads.
Fourth, we evaluate Buf2Ptr by estimating its memory and
performance for all benchmarks.

A. Hardware Overheads

No-FAT requires minimal hardware changes. Qualita-
tively, No-FAT requires a 1KB MAST and extra logic to
compute the allocation base address (namely, one subtract, one
shift, two 64-bit multipliers) and the bounds checking module
(namely, one subtract, one shift, one 64-bit comparator, and
one 16-bit comparator). As the bounds checking operations
happen in parallel to the L1 data and tag accesses, processor
clock frequency should not be impacted. We quantified these
overheads by adding No-FAT to a typical energy optimized
32KB direct mapped L1 cache. We implement our modules
using Verilog and synthesize them with the Synopsys design
compiler and the 45nm NangateOpenCell library. We generate
the SRAM arrays (for MAST and the tag/data arrays) with
OpenRAM [23].

Table I summarizes our VLSI implementation results. The
timing delay of the bounds checking module is minimal
(0.81ns) as it uses a pipelined design that first fetches the al-
location size from MAST and then does a subtraction followed
by comparison operations. This latency can be overlapped with
the access latency of L1 cache. The bounds checking module
adds 6% additional area compared to the L1 data cache.
This area is dominated by the SRAMs of MAST and the two
comparators. On the other hand, the base computing module
(which is invoked by the compute_base instruction) area
is dominated by the 64-bit multiplier. The module latency can
be further optimized with a more customized multiplier.

B. Software Performance Overheads

Our VLSI measurements show that No-FAT hardware
modifications add no performance overhead. Here, we eval-
uate the software-based overheads. No-FAT instructions
secure_load and secure_store are similar to regular
loads and stores. Thus, they do not increase code size. While
our instructions use one more register operand compared
to regular memory instructions, the extra register pressure
is compensated for by adding a No-FAT-specific register
file (i.e., similar to Intel MPX). The additional functionality
performed by our instructions can be totally hidden within
the processor pipeline as shown in Section VII-A. However,
No-FAT requires a binning memory allocator and invokes
additional instructions (verify_bounds to verify pointer
bounds before storing them to memory and compute_base
to compute the allocation base address of arbitrary pointers
when they are loaded from memory).

Without loss of generality, we implement No-FAT on top of
a simple binning allocator (Binning-Malloc [18]) that divides
the virtual memory into 64 regions, each of size 32GB.
Each region is used to satisfy heap-allocation requests of a
unique size. Stack and global memory allocations are satisfied
using special carved out sections of the same 32GB regions.
To estimate the compute_base instruction overheads, we
implement an IR pass using the LLVM/Clang compiler [32] to
instrument the code and insert two mul instructions followed
by a store instead of compute_base instructions in the
corresponding locations. Similarly, we insert dummy store
instructions in place of verify_bounds instructions. We
use a store to make sure the instruction is not omitted by
compiler optimizations.
Evaluation Setup. We run our experiments on a bare-metal
Intel Skylake-based Xeon Gold 6126 processor running at
2.6GHz with RHEL Linux 7.5 (kernel 3.10). We imple-
ment No-FAT using Clang 4.0.0 and compare it against
AddressSanitizer (ASan) and Intel MPX, as representatives
of pre- and post-deployment memory safety solutions, re-
spectively. Each tool is run using its best recommended set-
tings [43]. We run each tool such that it suppresses its warnings
or errors so that benchmarks run to completion. Additionally,
we disable any reporting to minimize the performance impact
this functionality may have. Given the difference in compiler
versions and optimization levels that each tool supports, we
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Fig. 3: Performance overheads of the SPEC CPU2017 benchmarks for different tools normalized to their corresponding baseline.

normalize each against their respective baselines for proper
comparison.4 To get better insight on No-FAT overheads, we
also run a software-only version of No-FAT that explicitly
checks pointer bounds in software with no hardware support
(Software-EBB) and a malloc-only version that only uses the
binning memory allocator with no bounds checking (Binning-
Malloc). We use the SPEC CPU2017 benchmark suite with
ref inputs and run to completion. To minimize variability,
each benchmark is executed 5 times and the average of the
execution times is reported.
Performance Results. Figure 3 summarizes the performance
overheads of SPEC CPU2017 for different tools normalized
to their corresponding baseline. The geometric mean of each
tool is as follows: ASan (2.07x), MPX (2.06x)5, Software-
EBB (2.0x), Binning-Malloc (1.04x) and No-FAT (1.08x). The
main reason for No-FAT overheads comes from the underlying
memory allocator, which introduces 1.04x overheads. For
example, gcc allocates many small objects that are padded
to the nearest Binning-Malloc size. As a result it introduces
62% extra runtime with No-FAT, whereas its Binning-Malloc
version has a 55% slowdown. Configuring the allocation sizes
at program initialization should reduce the padding and the
overheads.

C. Software Memory Overheads
To accurately measure the memory usage of No-FAT, we

use a Linux-based utility, Syrupy, that regularly takes snap-
shots of the memory of a running process [57]. We measure the
peak resident set size (RSS) to get the actually used memory
rather than virtual address space which is reserved. Table II
shows that the No-FAT’s binning allocator only adds 6.66%
memory overheads on average compared to the stdlib
allocator with gcc, parest, povray as outliers. We inspect
those allocation intensive benchmarks by running them with
six different memory allocators (including No-FAT). Figure 4
shows that No-FAT memory overheads are comparable to other
binning (i.e., Jemalloc [20], TCmalloc [21], and Scudo [35]6)
and non-binning allocators (i.e., Dlmalloc [33]).

4We use Clang 7.0 for ASan and GCC 7.3.1 for Intel MPX.
5gcc, perlbench, namd, and blender failed to run with MPX due to

unrecoverable errors. Thus, we exclude them from MPX averages.
6Scudo is a hybrid allocator that allocates similar-sized objects using bins

and uses a per-object header for storing metadata as well.

TABLE II: Memory usage for SPEC CPU2017.

Bench. Memory usage (MB) # of Heap allocations
No-FAT Buf2Ptr

perlbench [+3.27%] 160.80 [+48.7E0] 54.2E6
gcc [+20.96%] 1,555.57 [+199.3E3] 2.7E6
mcf [+0.07%] 610.64 [0.0E0] 495.4E3
namd [-3.71%] 156.53 [0.0E0] 20.2E3
parest [+26.05%] 527.07 [+107.4E6] 265.1E6
povray [+35.04%] 8.75 [+10E0] 63.4E3
lbm [+0.04%] 411.66 [0.0E0] 2.0E0
omnetpp [+3.79%] 251.36 [+1.7E6] 454E6
xalancbmk [+6.95%] 512.83 [0.0E0] 138.4E6
x264 [+1.50%] 159.40 [+1.5E0] 2.2E3
blender [+12.42%] 710.61 [+3.4E6] 9.1E6
deepsjeng [+0.25%] 702.54 [+15.0E6] 15.0E6
imagick [-0.91%] 285.05 [+1.0E0] 9.3E6
leela [-7.01%] 23.56 [+1.2E3] 53.8E6
nab [+7.74%] 159.03 [+38.1E3] 374.5E3
xz [+0.04%] 727.30 [+0.0E0] 41.0E0
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Fig. 4: Memory usage for the three allocation-intensive bench-
marks with different memory allocators.

D. Buf2Ptr Analysis

Memory. The memory overheads of Buf2Ptr are reported
separately. As Buf2Ptr promotes intra-allocation buffers to
standalone allocations, it adds additional heap allocations as
reported between brackets in the last column of Table II. The
majority of benchmarks add few extra allocations with the ex-
ception of parest, blender, and deepsjeng. The latter
is interesting as it performs a single malloc call to 15 million
structs, each with one intra-buffer. So, even though the extra
allocations look large, the actual source code transformation
is minimal as it only affects one struct.
Performance. The performance overheads of promoting
intra-allocation fields to standalone allocations are amor-
tized over program execution. For example, a buffer field
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of size 64B typically requires eight 8B loads in regular
execution. With Buf2Ptr, one can argue that 16 8B loads will
be needed as every load now passes through one level of
indirection. However, as we implement Buf2Ptr as a source
level transformation, we take advantage of the compiler to
optimize the access to only 9 8B loads (i.e., one load to get the
new base address followed by the original 8 loads with their
address adjusted to the new base). We verify this hypothesis
by measuring the overhead of implementing Buf2Ptr for the
C programs in SPEC CPU2017 benchmarks. The overheads
are less than 1% compared to a baseline that uses the same
memory allocator (without Buf2Ptr).

VIII. DEPLOYMENT CONSIDERATIONS

In this section, we discuss the system requirements,
strengths, and weaknesses of No-FAT.
System Requirements. No-FAT requires the usage of binning
memory allocators. While the internal details of the memory
allocator are irrelevant to No-FAT design, the minimum re-
quirement is to have allocations of the same sizes per any
memory page. Some allocators (aka non-binning or header-
based allocators) violate the above requirement by allocating
objects of different sizes in the same page. The non-binning
allocators rely on an allocation header to keep track of each
allocation size. These allocators are not protected by No-FAT
as the cost of deriving allocation base addresses will be much
higher (requiring a memory access to the allocation header
every time any memory instruction is executed).

Additionally, while porting No-FAT’s spatial memory pro-
tection to non-64-bit systems is possible, the temporal memory
aspect strictly requires 64-bit systems in order to store the
temporal tags in the upper bits of the data pointers. On non-
64-bit systems, temporal memory safety can be achieved with
less efficient approaches such as free list randomization and
memory quarantining.
Handling Gnarly, Gory C Idioms. Some C programmers
have the propensity to exploit undefined behaviors. By un-
defined behaviors we mean behaviors that are not explicitly
disallowed in the standard. These issues are documented in an
excellent exposition by the authors of the CHERI system [13].
One of the most common of these idioms is the case of
intentionally creating out-of-bounds pointers. Although it is
unclear why programmers follow this idiom, it exists, and we
strive to identify such cases.

Consider the following: q = p + 100; x = Bar(q);.
Here, p is a pointer to a 32B allocation. After the arithmetic
operation, q is an out-of-bounds pointer that will be
passed to function Bar. Inside Bar, the program may
do z = q - 100 before using z to access memory.
Since No-FAT only uses intra-procedural analysis, Bar will
recompute the base address for q at function entry using
compute_base. However, as q is already an out-of-bounds
pointer, the resultant base address will be wrong (i.e., it will
not point to the original object pointed to by p). We refer to
this case as a data pointer escape operation. If the compiler
performs only intra-procedural analysis to determine and

TABLE III: Categorization of prior work on spatial memory
safety based on how they handle the security metadata.

Base & Bounds
Tripwires

Per-Allocation Per-Pointer

Disjoint
Metadata

Baggy Bounds [1]

Hardbound [14]

ASan [52]

Softbound [41]
Watchdog [39]
Intel MPX [43]
AOS [27]
CHEx86 [55]

Inlined
Metadata

EffectiveSan [17] CHERI [61], [62] REST [56]
In-Fat [64] Compact-Ptrs [31] Califorms [50]

Co-joined
Metadata

ARM MTE [2]
SPARC ADI [45]

Implicit
Metadata

Native-Ptrs [16], [19] No-FAT

encode pointers into checking loads and stores, it will result
in an insufficient check. To handle this case, No-FAT uses
verify_bounds to catch out-of-bounds pointers before
they escape to memory (or a different function), as described
in Section II-E. This functionality should help programmers
catch undefined behavior and fix it.

Strengths. Compared to many other systems, No-FAT pro-
vides deterministic memory safety guarantees at the finest
granularity. No-FAT provides protection against a wide va-
riety of spatial/temporal memory safety violations including
control flow hijacking attacks, data oriented attacks, and pure
data corruption. No-FAT’s protection comes with minimal
performance overheads and minor hardware changes. Fur-
thermore, No-FAT naturally mitigates a common speculative
execution threat (Spectre-V1) at no additional cost.

Weaknesses. Buf2Ptr requires the precise type information
of an allocated object. While this is guaranteed for C++
objects, it is not always possible in C-style programs where
void* allocations may be used. In these cases, the compiler
may not be able to infer the correct type, in which case
intra-allocation support may be skipped. This is a common
limitation for techniques that rely on source-level transforma-
tions for intra-allocation protection [50]. Our evaluation results
in Section VII-D show that the number of intra-allocation
buffers is minimal compared to total allocations. Cases with
ambiguous types are not common and can be properly handled
with program annotations, if needed. We leave this part to
future work.

IX. COMPARISON WITH PRIOR WORK

In this section, we summarize prior work related to memory
safety mitigations and show how No-FAT is different. We first
categorize prior work based on how they handle the metadata
(e.g., base and bounds information), as shown in Table III. The
metadata can be maintained in one of the following forms:
disjoint, inlined, co-joined, or implicit. We then compare No-
FAT with prior techniques in terms of security, hardware
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TABLE IV: Comparison with prior works.

Proposal Spatial Protection * Temp. Binary MT Hardware Metadata Memory Performance
Inter Intra Prot. § Comp. † Support ¶ Modifications Overhead Overhead Overhead

Hardbound [14] ‡ µop injection, L1$ & TLB for tags 0-2 words per ptr ∝ # of ptrs ∝ # of ptr derefs
& 4 bits per word

Softbound [41] ‡ N/A 2 words per ptr ∝ # of ptrs ∝ # of ptr derefs
Baggy Bounds [1] N/A N/A. ∝ padding objects ∝ # of ptr ops

to the nearest size
Compact-Ptrs [31] One extra pipeline stage N/A ∝ padding objects ∝ # of ptr ops

for bounds check & update to the nearest size
Watchdog [39] ‡ Renaming logic, µop injection logic 4 words per ptr ∝ # of ptrs and allocs ∝ # of ptr derefs

and Lock location$
WatchdogLite [40] ‡ N/A 4 words per ptr ∝ # of ptrs and allocs ∝ # of ptr ops

Native-Ptrs [16], [19] N/A N/A. ∝ padding objects ∝ # of ptr ops
to the nearest size

In-Fat [64] 32 96-bits bounds registers, a new 16B per object ∝ # of objects ∝ # of ptr ops and
execution unit, and 10 instructions # of ptr derefs

Intel MPX [43] ‡ Unknown (closed platform) 2 words per ptr ∝ # of ptrs ∝ # of ptr derefs
BOGO [68] ‡ Unknown (closed platform) 2 words per ptr ∝ # of ptrs ∝ # of ptr derefs

CHERI [61], [62] ‡ Capability coprocessor, Tag$ Ptr size is 2-4X ∝ # of ptrs ∝ # of ptr ops
and Capability Unit

CHERIvoke [63] Capability coprocessor, Tag$ Ptr size is 2-4X ∝ # of ptrs ∝ # of ptr ops
Tag controller, and Capability Unit

PUMP [15] Extend all data units by tag width, 8B per cache line ∝ prog. mem. footprint ∝ # of ptr ops
new miss handler and Rule$

ARM MTE [2] Unknown (closed platform) 4 bits per 16B objects ∝ prog. mem. footprint ∝ # of tag (un)set ops
REST [56] 1-8B per L1D line, 1 comparator 8–64B token ∝ blacklisted memory ∝ # of (dis)arm insns.

Califorms [50] 8B per L1D line, 1 bit per L2/L3 line 1-7B per critical field ∝ blacklisted memory ∝ # of BLOC insns.
AOS [27] ARM PAC instructions, memory check 8B bounds per ptr ∝ # of ptrs ∝ # of ptr derefs

queue, bounds$, and bounds way buffer
CHEx86 [55] µop injection logic, Alias$, Capability$, 2 words per ptr ∝ # of allocs & ptrs ∝ # of ptr derefs

and Speculative Pointer Tracker

No-FAT bounds checking & base computing 1KB per process Table ∝ padding objects ∝ # of ptr derefs
modules and base address register file to the nearest size

* - Complete (Linear and non-linear overflows); - Linear only; - No protection.
§ - Complete; - Partial protection; - No protection.
† - Fully compatible; - Execution compatible, but protection dropped when external modules modify pointer; - No support.
¶ - Supported (stateless); - Supported (requires synchronization on global metadata); - No support.
‡ Achieved with bounds narrowing.

complexity, memory requirements, and performance overheads
in Table IV.
Explicit Base & Bounds. This class of memory safety de-
fenses attaches bounds metadata to every pointer or allocation.
The metadata can be stored in a shadow (aka disjoint) memory
region (e.g., Hardbound [14], Softbound [41], Intel MPX [43],
CHEx86 [55], and AOS [27]) or be marshaled with the pointer
by extending its size (e.g., CHERI [61]). Temporal memory
safety can be added to the above techniques by either storing
an additional “identifier” along with the pointer metadata
and verifying that no stale identifiers are ever retrieved (e.g.,
CETS [42], Watchdog [39], and WatchdogLite [40]) or inval-
idating all pointers to freed regions in the lookup tables (e.g.,
BOGO [68]).

While explicit base and bounds systems offer similar se-
curity guarantees to No-FAT, our solution has the advantage
of requiring simpler hardware modifications and being faster
than prior systems [43], [62], [55], [27]. The above savings
mainly stem from the fact that No-FAT uses no metadata
for spatial/temporal memory safety. Disjointly storing the
metadata in a shadow memory [14], [43], [27], [55] requires
extra memory accesses to fetch and update the metadata and
introduces atomicity problems for multithreading applications.

Other base and bounds techniques, such as Softbound [41],
can take advantage of hardware support (similar to No-
FAT) by (1) encoding the pointer base and bounds in extra
load/store register operands, (2) propagating them within
function scope, and (3) performing the memory safety checks

in hardware. Such hardware support can reduce the runtime
overheads of Softbound by eliminating the need for performing
the bounds checking in software and reducing the number
of memory lookups to fetch the metadata from the disjoint
memory structures. However, even with hardware support the
aforementioned solution needs to perform two extra memory
operations (to access the base and bounds) every time a pointer
is loaded from memory (i.e., not within the same function
scope in which the pointer was created). In contrast, No-FAT
has high performance due to how it derives the base and
bounds information from the pointer itself when it is loaded
from memory. Specifically, No-FAT replaces the costly meta-
data memory accesses with simple arithmetic computations by
using the compute_base instruction.

On the other hand, increasing the pointer width to include
the metadata [61], [62] changes object layouts and breaks
compatibility with the rest of the system (e.g., unprotected
libraries). On the contrary, No-FAT performs simple arithmetic
computations to derive the allocation bounds and uses a fixed
area cost for MAST. Furthermore, the metadata-less aspect of
our scheme allows us to support multi-threading applications
with no false positives/negatives, which occur in disjoint meta-
data schemes (e.g., Intel MPX [43]). Additionally, our Buf2Ptr
transformation implictly resolves the intra-allocation memory
safety problem, which is overlooked by recent memory safety
techniques [55], [27].

Software-based Implicit Base & Bounds. The idea of deriv-
ing allocation bounds from the pointer itself is not new. For
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example, guarded pointers divided memory into powers-of-
two segments and encoded the segment size into the pointer’s
upper bits [9]. Similarly, baggy bounds [1] restricts allocation
sizes to powers-of-two and encodes the binary logarithm of the
allocation size in the pointer’s upper bits. Unlike No-FAT, this
design choice significantly increases the program’s memory
footprint due to padding allocations to the nearest powers-of-
two size. Moreover, neither guarded pointers nor baggy bounds
offers temporal protection.

Compact-pointers [31] tried to avoid the powers-of-two
restriction by using a floating-point representation to encode
allocation bounds in the pointer itself. CHERI-concentrate [62]
adopts a similar approach to compress metadata to 128 bits
(instead of 256 bits) by changing a pointer’s layout and
introducing instructions to manipulate them. Due to the pointer
layout manipulation, both techniques neither support temporal
memory safety nor maintain binary compatibility.

Similar to No-FAT’s binning allocator, Native-Pointers [16],
[18], [19] divides the program’s virtual address space into
several regions of equal size and uses each region to allocate
objects of similar non powers-of-two sizes. As a software-only
solution, Native-Pointers suffers from high performance over-
heads. Additionally, Native-Pointers does not naturally provide
temporal protection. A follow-up work (EffectiveSan [17])
adds temporal protection (and intra-allocation memory safety)
to Native-Pointers but with expensive per-allocation metadata.
Concurrent to our work, Xu et al. add hardware support for
EffectiveSan, dubbed In-Fat [64]. The key idea is to maintain a
per-allocation metadata table and use the pointer’s upper bits
to index into this table for intra-allocation bounds retrieval.
In-Fat uses different metadata schemes for different program
objects (e.g., stack, heap, and globals) to reduce the lookup
overhead. Unlike No-FAT, In-Fat does not provide temporal
protection as it utilizes the pointer’s upper bits for indexing
into the metadata tables. A key advantage of No-FAT over
EffectiveSan and In-Fat is that it does not require any per
pointer/allocation metadata. Thus, it runs with almost native
performance, making it best suited to be an always-on memory
safety mitigation.

Memory Tagging. This class of techniques associates a
“color” with newly allocated memory, and stores the same
color in the upper bits of the data pointer that is used
to access the allocated memory. At runtime, the hardware
enforces spatial memory safety by comparing the colors of the
pointer and accessed memory. For example, SPARC ADI [45]
assigns 4-bit colors to every 64B of memory (i.e., limiting the
minimum allocation size to 64B), while ARM MTE [2] uses 8-
bit colors per every 16B of memory [53]. Since metadata
bits are acquired along with the corresponding data, no extra
memory operations are needed.

Temporal safety is enforced by assigning a different color
when memory regions are reused. Unlike No-FAT, which uses
a 16-bit tag for temporal protection, the number of tag bits in
memory tagging defenses is limited as the tags are used for
pointers and memory locations. As a result, prior techniques

offer less entropy for temporal protection. For example, in
ARM MTE colors will be repeated every 255 allocations,
while in SPARC ADI colors are repeated every 15 allocations,
raising the attacker’s chances of bypassing the defense.

Tripwires. This class of memory safety defenses aims to
detect overflows by marking the memory regions on either side
of an allocation, and flagging accesses to them. For example,
REST [56] stores a predetermined 8–64B random number,
dubbed a token, in the memory to be invalidated. Spatial
memory safety violations are detected by comparing cache
lines with the token when they are fetched. Due to its large
token size, REST does not support intra-allocation memory
safety. Califorms [50] solves this problem by inserting 1–7B
hardware canaries between object fields and introducing cache
line formats to inline metadata within the program data itself.

While state-of-the-art tripwires systems (i.e., REST [56] and
Califorms [50]) come with comparable performance overheads
to No-FAT, our solution offers better security guarantees as it
cannot be bypassed by non-adjacent buffer overflows, which
represent 27% of Microsoft’s memory safety CVEs [5].

Additionally, REST and Califorms demand a quarantine
pool to provide temporal safety. Using memory quarantining
typically increases performance overheads as it prevents the
program from reusing recently freed memory to satisfy new
allocation requests. No-FAT instead does not rely on memory
quarantining to achieve temporal memory safety, effectively
reducing the overheads for allocation intensive applications.
Finally, attackers can bypass Califorms’ intra-allocation pro-
tection if the binary is leaked as the locations of the hardware
canaries are encoded in the binary itself, whereas No-FAT does
not keep the binary secret as allocation information is derived
and propagated at runtime.

X. CONCLUSION

In this paper we proposed No-FAT, a secure architecture
for implicitly deriving allocation bounds. No-FAT enforces
spatial memory safety and a degree of temporal safety with-
out increasing program memory footprint, while maintaining
full compatibility with unprotected code. Overall, No-FAT
incurs 8% performance degradation compared to a 100%
slowdown for its software version, while providing extra
security guarantees. This has the benefits of reducing fuzz-
testing overheads to improve pre-deployment software testing.
Furthermore, if end users are willing to pay 8% performance
degradation for memory safety protection, then No-FAT is an
excellent solution. On the other hand, if users are willing
to trade off some security features (e.g., non-pointer data
corruption) for no performance degradation, lightweight ex-
ploit mitigation techniques, such as ZeRØ [58], can be used.
The benefits of No-FAT go well beyond memory safety:
for instance, having the allocation size as an architectural
feature can help accelerate garbage collectors for memory safe
languages; it also provides an opportunity for enhancing the
predictability of memory prefetchers and DRAM controllers.
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XI. TEMPORAL MEMORY SAFETY

In this appendix, we further explain how No-FAT mitigates
temporal memory safety violations.7.
Construction. As mentioned in Section II-D, No-FAT pro-
vides temporal memory safety by tagging the upper 16-bits of
data pointers on 64-bit systems. The workflow is as follows:
(1) upon calling malloc or new, a 16-bit random tag is gen-
erated and inserted in both, the pointer upper bits and the mem-
ory object at memory [trusted base + size - 2].
(2) every secure_load or secure_store instruction
within a function scope compare the tag of the memory
address versus the tag of the trusted base address (i.e., the
malloc output) for temporal correctness. (3) if a pointer is
used in a different function scope, its tag will be retrieved
from memory [trusted base + size - 2] as part
of executing the compute_base instruction directly after
computing the trusted base address. (4) when the object is
deallocated, we set the 16-bit tag in the memory object to a
unique pattern, 0xFFFF, to prevent any dangling pointer from
accessing the deleted object.
Example. Listing 5 shows a typical temporal memory safety
violation example, in which the program first allocates an
object (Line 4), stores the pointer to this object into a global
variable (Line 8), and deallocates the object without freeing the
reference in the global variable (Line 10). Later on, another
function, Bar, accidentally accesses the global variable, q,
which is still pointing to the deallocated object causing a
use-after-free violation. With No-FAT, the aforementioned
memory access (Line 15) will fail due to a mismatch between
the tag of the global pointer (i.e., 0xCAFE) and the tag of
the memory object (i.e., 0xFFFF), which is retrieved from
memory as part of executing the compute_base instruction
in the beginning of function Bar. This way No-FAT provides
temporal protection even if the temporal violation occurs in
different function scope. If the use-after-free is delayed until
the memory region is allocated to another object, No-FAT
can still catch the temporal safety violation with a probability
of 1− (1/216) = 99.9984% as the new object will likely get a
different tag other than 0xCAFE. Finally, as No-FAT enforces
spatial memory safety, an attacker cannot manipulate the tags
while being stored in memory.
Evaluation. Storing a 16-bit tag as part of an object does not
cause additional memory overheads as the binning allocator
already rounds allocation-sizes up to the nearest bin size.
Using bin sizes from Table V, we collected heap allocations
statistics for the SPEC CPU2017 benchmarks at runtime with
the reference input set.

Table VI shows the total number of heap allocations and
the fraction of allocations that have fewer than two padding
bytes after being rounded up to the nearest bin size. For the
majority of benchmarks, allocations already have more than
two extra bytes that can be used for temporal tag storage. The
only exceptions are omnetpp and imagick, which allocate

7This appendix was added after ISCA-48 in response to questions and post-
conference discussions, Thus it has not been peer-reviewed.

objects of irregular sizes. For example, 50% of the allocations
made by imagick are of size 79, which will have only one
byte after being rounded up to the nearest allocation size, 80.
In this case, No-FAT satisfies the allocation request by using
the adjacent bin to guarantee that the last two bytes of the
object are unused. With this approach, for imagick, we
noticed no additional runtime overheads over a bin size of 80.
Alternately as the bin sizes are configurable for each process,
we can adjust them to take the extra two bytes into account.

1 int *q; // global pointer
2 void Bar();
3 int main() {
4 int *p = (int*) malloc(12); /* generate a random
5 tag, 0xCAFE, store it in the upper bits of p
6 and to memory location[base + size - 2] */
7 ...
8 q = p; // propagate the tag from p to q
9 ...

10 free(p); // set memory[base + size - 2] to 0xFFFF.
11 ...
12 Bar();
13 }
14 void Bar() {
15 *q = 0xABC; // use-after-free violation
16 /* With No-FAT, the compute_base instruction
17 computes the base address of q and retrieves
18 its tag from memory[base + size - 2]. As the
19 pointed-to object was previously deleted, its
20 tag is set to 0xFFFF, which causes the above
21 store instruction to fail */
22 }

Listing 5: A use-after-free example.

TABLE V: Configuration sizes per each bin in our binning
memory allocator.

Sizes

16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 192, 224, 256,
272, 320, 384, 448, 512, 528, 640, 768, 896, 1024, 1040,
1280, 1536, 1792, 2048, 2064, 2560, 3072, 3584, 4096,

4112, 5120, 6144, 7168, 8192, 8208, 10240, 12288, 16KB,
32KB, 64KB, 128KB, 256KB, 512KB, 1MB, 2MB, 4MB,

8MB, 16MB, 32MB, 64MB, 128MB, 256MB, 512MB,
1GB, 2GB, 4GB, 8GB, 16GB, 32GB

TABLE VI: Number of heap allocations that require extra
padding bytes in SPEC CPU2017 benchmarks.

Bench.
Total number Allocations that have less

of heap than two padding bytes
allocations (#) (%)

mcf 495,305 0 0%
namd 20,227 4 0.02%
parest 157,697,392 24 ≈ 0%
povray 62,002 169 0.27%
lbm 2 0 0%
omnetpp 452,336,434 84,193 0.02%
xalancbmk 138,365,251 4 ≈ 0%
x264 3,431 5 0.15%
deepsjeng 1 0 0%
imagick 37,234,132 18,616,657 50.0%
leela 53,759,984 0 0%
nab 336,412.00 0 0%
xz 41 0 0%
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