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Abstract—Electromagnetic (EM) simulation is an important
tool for modeling and studying high frequency systems in modern
industry. However, the solver part in EM simulations represents
a serious bottleneck because its execution time rapidly increases
as number of equations-to-solve increases. Although several
existing research has proposed parallel hardware solvers, there
still exists a room to improve the speed and scalability of these
solvers. In this paper, we present a scalable architecture that can
efficiently accelerate the solver core of an EM simulator. The
architecture is implemented on a physical hardware emulation
platform and is compared to the state-of-the-art solvers.
Experimental results show that the proposed solver is capable
of 522x speed-up over the same pure software implementation
on Matlab, 184x speed-up over the best iterative software solver
from the ALGLIB C++ library, and 5x speed-up over another
emulation-based hardware implementation from the literature,
solving 2 million equations.

Keywords- electromagnetic simulations, finite element method,
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I. INTRODUCTION

Electromagnetic (EM) simulation is necessary for under-
standing high-speed digital electronics, optical computer net-
working, and achieving electromagnetic compatibility (EMC)
of products. It is known that any product has some EMC
requirements, whether for the product to function properly
in the immediate environment or to ensure compliance with
government standards [1]. Using EM simulators is generally
safer and more realistic than conducting experiments with
a prototype of the final product. However, EM simulations
often consume large amount of time on traditional CPUs,
as they use numerical techniques, such as the finite element
method (FEM) [2], to solve Maxwell’s equations. The most
time-consuming part in the simulation process is the solver
part, which is responsible for solving large sparse systems of
linear equations that arise from the discretization step of the
numerical methods [3].

The availability of hardware solvers based on Field Pro-
grammable Gate Arrays (FPGAs) has made it possible to
obtain accurate final solutions of these large systems within
a reasonable time. However, using emulation technology is
more appealing as it overcomes the FPGA memory and area
constraints. The largest contemporary FPGA, Virtex Ultra-
Scale, provides up to 4,433 K Logic Cells and up to 132
MB Block RAM, whereas the emulation platforms can offer
up to 2 Billion gates with 256 GB of memory. A hardware
emulation platform could be seen as a multi-FPGA system
that allows large SoC designs to be modeled in hardware.
Although the emulators are mainly optimized for debugging
and verification [4], we managed to extend their usage to be
efficient solutions for accelerating EM solvers by leveraging

their memory and logic resources, in spite of their low oper-
ating frequency.

In this paper, we extend the work in [5], [6], where a
hardware architecture based on Jacobi iterative method was
introduced to accelerate the FEM solver of an EM simulator.
The key contributions of this paper include: (1) proposing
an efficient architecture for solving the sparse linear systems
(SLS) arising in FEM formulations based on the Jacobi over-
relaxation (JOR) method, (2) optimizing the design by making
use of the properties of the FEM coefficients matrix, (3) show-
ing the logic utilization of implementing the proposed archi-
tecture on a commercial hardware emulation platform [4], and
(4) comparing the obtained timing results with two software
solvers and a hardware one for various test cases.

The remainder of this paper is organized as follows.
Section II provides an overview of FEM and JOR method.
Section III summarizes some of prior work related to the
acceleration of numerical methods for EM simulations and
SLS solving. Section IV describes the architecture of our
hardware solver. Used environment is described in Section V.
The obtained results and comparisons against software and
hardware solvers are introduced in Section VI. Finally, Sec-
tion VII concludes the work.

II. BACKGROUND

In this section, we provide a brief overview of the FEM.
Then, we describe the details of the JOR method that is used
to solve the SLS, resulting from using the FEM.

A. Finite Element Method (FEM)
The FEM is a numerical technique, which is widely used in

engineering to solve boundary-value problems, characterized
by a partial differential equation (PDE) and a set of bound-
ary conditions [2]. The basic procedures of using FEM are:
(1) discretizing the computational domain into finite elements,
(2) rewriting the PDE in a weak formulation, (3) choosing
proper finite element spaces and forming the finite element
scheme from the weak formulation, (4) calculating those
element matrices on each element and assembling the element
matrices to form a global linear system, (5) applying the
boundary conditions, solving the SLS, and finally, (6) post-
processing the numerical solution. In linear FEM analysis, the
cost of solving the SLS rapidly overwhelms other computa-
tional phases. Thus, it is the targeted part in this work.

B. Jacobi over-relaxation (JOR) Method
There exists many algorithms for solving SLS. Selecting

the best algorithm not only depends on the matrix structure but
also depends on different trade-offs, such as memory bottle-
necks, computational complexity, and convergence properties.
Among other iterative solvers, the JOR method, also called
the simultaneous over-relaxation method [7], is selected as it
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combines the parallel nature of Jacobi iterative method used
in [5] with higher convergence rate.

Algorithm 1 describes the JOR method, where A is the
coefficients matrix, x is the unknowns vector, b is the right-
hand-side (RHS) vector, t is the iteration number, and σ
is a summation variable to hold the result of multiplying
a coefficients matrix row by the vector x. The relaxation
parameter, ω, is a floating point (FP) number that accelerates
the convergence of the method. If ω = 1, we have the regular
Jacobi iterative method. For fast convergence, ω should be
between 0 and 1. We followed the guidelines, provided by
Young [7], to find the optimal value for ω by using parametric
sweep.

Algorithm 1 The Jacobi over-relaxation method.

1: procedure JOR(A, b, ω)
2: t = 1
3: while solution is not converged do
4: for i = 1 to i = n do
5: σ = 0
6: for j = 1 to j = n do
7: if j �= i then
8: σ = σ + ai,jxj

(t)

9: end if
10: end for
11: xj

(t+1) = (1− ω)xj
(t) +

ω

ai,i
(bi − σ)

12: end for
13: t = t+ 1
14: end while
15: return x
16: end procedure

Convergence check is done by comparing the different
between the solutions at any two successive iterations to a
pre-determined accuracy. Convergence is guaranteed if A is
banded, symmetric, and positive definite [8]. Banded matrices
are sparse matrices with all of the nonzero elements lie within a
specified bandwidth of the main diagonal, whereas symmetric
matrices are square matrices equal to their own transpose.
These conditions are satisfied in case of the FEM matrices [9].

III. RELATED WORK

In this section, we survey some of prior work related to
the acceleration of numerical methods for EM simulations,
hardware designs for solving SLS, and application-specific
multi-FPGAs systems.

There exist many work that aimed to accelerate the com-
putations included in the EM simulations. For instance, Tay-
lor et al. proposed a scheme, called SPAR, for performing
computations on sparse matrices that arose in large FEM
applications [3]. However, their architecture was not actually
built. They only constructed a register-transfer level simulator
and executed the sparse matrix computations on it. Durbano
and Ortiz presented hardware-based implementations of the
Finite Difference Time Domain method [10]. They utilized a
custom accelerator board that supports up to 16 GB of DDR
SDRAM, 36 MB of DDR SRAM with Xilinx Virtex-II FPGA.
Taking advantage of this high-speed memory hierarchy, their
solution achieves 3x speed-up over a 30-node PC cluster.

For large FEM problems, the most computationally in-
tensive step is the solution of SLS. Iterative methods are
more suitable for solving SLS because they maintain matrix
sparsity, unlike direct methods that can introduce substantial
fill-in, which limits their utility and increases storage require-
ments [3], [11]. Unfortunately, existing approaches generally
only have been capable of either solving large matrices with
limited improvement over software solvers or achieving high
performance for relatively small matrices. Morris and Abed
implemented a sparse matrix Jacobi iterative solver that tar-
geted a contemporary high-performance heterogeneous com-
puter (HPHC) [12]. Instead of utilizing hardware description
language (HDL) for their FPGA-based kernel designs, they
used a high-level language (HLL)-based design. Their solver
could handle matrices with sizes up to 8000 equations only.

Recently, there has been a global trend towards using multi-
FPGA systems to accommodate larger applications. For exam-
ple, the Berkeley Emulation Engine 3 was mainly designed for
computer architecture research [13]. It is composed of modules
with four tightly coupled Virtex-5 FPGAs connected by ring
interconnection. Also, there exists the Novo-G [14], which is
composed of 24 compute nodes, each of which is a Linux
server with an Intel quad-core Xeon processor and boards of
ALTERA Stratix IV FPGAs. It was mainly built for various
research projects on scalable reconfigurable computing. Ibn
Ziad et al. implemented a Jacobi iterative solver on a physical
hardware emulation platform to accelerate the finite element
solver of an EM simulator [5]. They demonstrated the effi-
ciency of their solution via implementing a 2D edge element
code for solving Maxwell’s equations for metamaterials using
FEM. Their design achieved 101x speed-up over the same pure
software implementation on MATLAB and 35x over the best
iterative software solver from ALGLIB C++ library [15] in
case of solving 2 million equations.

IV. HARDWARE IMPLEMENTATION

In this section, we introduce the details of our JOR hard-
ware design with all implemented optimizations to enhance
the design performance.

The architecture shown in Fig. 1 represents the main four
components used in our JOR design; the memory unit, the
main ALU, the convergence check unit, and the control unit.
In order to obtain maximum performance, the characteristics
of the coefficients matrix, A, which results from the FEM
formulation are investigated. It was found that all diagonal
elements have non-zero values and the maximum number of
non-zero elements in one row is three [16]. So, A is divided
into independent clusters of rows. Each cluster contains a
number of A rows that are independent of themselves and
each cluster is independent of other clusters. Thus, they can
be processed simultaneously without affecting each other.

The memory unit consists of four separate memories; the
diagonal memory that contains the A’s diagonal elements
ai,i, the non-diagonal memory that contains the rest of A’s
elements, the RHS memory that holds the values of vector
b, and the result memory that is a read/write memory used
to save the solution vector and is initially loaded with zeros.
Each memory row contains a whole cluster of data, not the
elements of a single A row. Thus memory depth in all the
previous memories equals c, where c represents the number
of clusters in matrix A. During each iteration, data is loaded
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Fig. 1. Block diagram of main components for our proposed JOR design.

from these memories to the main ALU to be operated on.
The ALU output is written back to the result memory at the
end of iteration. Since the FEM matrices are guaranteed to be
symmetric [3], only one half of the elements is stored in the
non-diagonal memory.

The main ALU contains a number of independent ALUs,
equaling the number of clusters, c. Each ALU is responsible
for all arithmetic operations performed on data. ALUs utilize
single-precision FP components generated using FloPoCo [17]
that uses operator properties as an input and outputs syn-
thesizable VHDL code. Based on the JOR steps, shown in
Algorithm 1, each ALU starts operating on memories data
using multiplication and addition FP modules to generate σ.
Then, the subtraction module is used to calculate bi − σ. It
is worth mentioning that no division module is used in our
architecture due to its high latency, which badly affects the
design critical path. We perform a multiplication operation
by the inverse of the diagonal element instead of a division
operation by the diagonal elements themselves. Finally, the
results are multiplied by the relaxation parameter, ω, and added
to the multiplication of the previous iteration results with 1−ω.
These steps are repeated until the results converge.

Convergence here is performed by the result convergence
check unit, which decides when the flow should terminate. The
termination criterion is determined based on a pre-defined FP
value, ε, representing the accepted error tolerance. Whenever
the current error, between any two consecutive iterations, is
less than ε, the convergence check unit generates a halt signal
indicating end of operations.

The control unit is responsible for synchronizing all mem-
ories with each ALU, controlling the convergence check unit,
and deciding when each iteration has been finished. It contains
counters to indicate which row to read from the different
memories and which row to write into the result memory at
the end of iteration. It also has a counter that represents the
current iteration.

Our JOR design is pipelined. Registers are inserted between
ALU operations to allow for fetching new data from memories
at every clock cycle. Furthermore, it is a parameterized design
that could be reconfigured easily by just flipping a few param-
eters, such as the FP precision, the number of equations, n,
the number of clusters, c, and the error tolerance, ε. These
parameters give the design a high flexibility to solve any
number of equations and to make full use of the massive
capacity of emulator logic resources and memory.

V. EXPERIMENTAL SETUP

Our architecture was modeled using Verilog. Then, it was
compiled and run on a physical hardware emulation platform.
The used platform consists of 16 advanced verification boards
(AVBs). Each AVB has 16 Crystal chips with 4 GB of
memory, where each Crystal chip has a 207 K Configurable
Programmable Block and can emulate up to 1 M gates. So,
this platform provides a total capacity of 256 M of logic
gates with 64 GB of system memory and 512 MB of on-
chip memory [4]. That clearly solves the area and memory
constraints of individual FPGAs.

The main steps in the emulation design process are analyz-
ing Verilog input files and performing syntax checking. Then,
generating the structural Verilog netlist of emulator primitives
using register transfer level compilation (RTLC). After that, the
synthesizer performs partitioning and ASIC netlists for each
Crystal chip. Then, placement and routing are done using the
chip compiler. Finally, performing final timing analysis and
generating timing information for resources access, memories
and IO access, emulator events, and clocks are done by the
global scheduler [4].

VI. EXPERIMENTAL RESULTS

This section evaluates the performance of our JOR design
in terms of resource utilization and timing performance against
the state-of-the-art software and hardware solvers. All the used
test cases are generated from the pre-processing part of an EM
simulator introduced by Li and Huang in [16]. The selected
simulator targets solving Maxwell’s equations in metamaterials
using Time-Domain FEM. It takes the element dimensions
and number of meshes as an input and outputs the numerical
electric and magnetic field graphs. Profiling shows that the
most time-consuming part in the simulation process is the
SLS solver, especially when the number of equations-to-solve
increases as the number of meshes increases.

A. Resource Utilization
Table I shows the operating frequency, resource utilization,

and memory capacity of our JOR design with single-precision
FP accuracy for different test cases. Here, number of ALUs is
the number of equations per cluster in the design. The number
of iterations needed until reaching the termination condition
is also given. As illustrated before, termination happens based
on a pre-defined tolerance ε, which is set to 10−6.

The lower frequency can be explained as emulators are
mainly designed for debugging, not for application processing.
However, the selected algorithm, along with our optimizations,
eliminate the need for high operating frequency and make full
use of the emulator massive capacity.

TABLE I. RESOURCE UTILIZATION AND MAXIMUM FREQUENCY FOR

OUR JOR DESIGN USING VARIOUS TEST CASES.

Proposed JOR design test cases

Number of equations 420 11,100 44,700 2,002,000
Number of ALUs 14 74 149 1,000
Frequency (MHz) 2.00 2.00 2.00 1.75
Number of iterations 5 5 5 5

Number of LUTs 164,449 770,432 1,527,869 10,122,146
Number of flip-flops 40,833 167,751 326,382 2,126,259
Memory usage (KB) 152.2 512 1,630 40,128
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B. Timing performance
The timing performance of our JOR design is evaluated

by comparing the needed time to solve a given number of
equations using our proposed design against two software
solvers; MatJOR and ALGLIB on a 2.00 GHz Core i7-2630QM
CPU. The MatJOR is a MATLAB implementation of the JOR
design. MATLAB is selected as it is the tool used in the
targeted EM simulator in [16]. ALGLIB is an open-source
numerical analysis library that includes several direct and
iterative solvers. The best iterative solver is selected to be our
second benchmark.

Table II gives the results obtained from comparing our em-
ulator implementation against the two benchmarks. Speed-up
columns were calculated by dividing the benchmark execution
time by our design execution time. In order to get the near
accurate processing time, the software benchmarks were run
for many iterations so that most of the data resides in the local
cache and thus reduces any disk access overhead. Results show
that the gained speed-up over the software solvers increases as
the number of equations-to-solve increases.

TABLE II. TIMING COMPARISONS BETWEEN OUR PROPOSED JOR
DESIGN AND TWO SOFTWARE BENCHMARKS.

Number of Proposed JOR design MatJOR ALGLIB
equations Time Time Speed-up Time Speed-up

(msec) (msec) (msec)

420 0.104 0.345 3.32 0.350 3.37
11,100 0.464 9.292 20.03 3.001 6.47
44,700 0.914 39.581 43.31 12.00 13.13

2,002,000 4.580 2393.085 522.51 847.049 184.95

C. Comparison
For the sake of completeness, we investigate the superiority

of our design by making an experimental comparison with the
Jacobi design in [5]. To give a fair comparison, both designs
were run on the same hardware emulation platform with the
configuration described in Section V. Table III compares the
two designs in terms of the execution time and the resources.
Speed-up is calculated as before. Area overhead is calculated
based on the summation of LUTs and FFs using (1).

Area Overhead(%) =
JOR− Jacobi

Jacobi
× 100. (1)

Comparisons show that there is an almost fixed area
overhead of 50%, as our basic ALU contains three more
FP modules compared to the one in [5]. Speed-ups up to
5.25x were gained due to the higher convergence rate of the
JOR method. It is worth mentioning that direct comparisons
with other hardware solvers, mentioned in Section III, are not
applicable here as the generated test cases used there are small,

TABLE III. TIMING AND RESOURCES COMPARISON BETWEEN OUR

PROPOSED JOR DESIGN AND THE JACOBI DESIGN IN [5].

Number of Proposed JOR design Jacobi design in [5] Area
equations Time LUTs/FFs Time LUTs/FFs Speed-up overhead

(msec) (×1000) (msec) (×1000) (%)

420 0.104 164/40 0.319 106/18 3.07 65%
11,100 0.464 770/167 1.721 535/85 3.71 51%
44,700 0.914 1,527/326 3.793 1,071/168 4.15 49%

2,002,000 4.580 10,122/2,126 24.040 7,158/1,115 5.25 48%

limited, and do not fit within the same specifications of our
SLS generated from the FEM simulation process.

VII. CONCLUSION

Over an EM problem of solving Maxwell’s equations
in a 2D metamaterial edge element using FEM, our JOR
hardware solver demonstrated a remarkable improvement in
the execution time of solving SLS over various software and
hardware solvers. The execution of our JOR design on a
physical hardware emulation platform achieved a speed-up of
522x over the same implementation on MATLAB and a speed-
up of 5x over a Jacobi hardware implemented on the same
platform for solving 2 million equations. No previous work
has achieved as high number of equations, within a reasonable
execution time, as ours. Future work include evaluating the
efficiency of our hardware solver against GPU solvers.
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