Practical Byte-Granular Memory
Blacklisting using Califorms

4{ THE PROBLEM }7

e Memory safety vulnerabilities are
very easy for programmers to
Introduce unknowingly

e A need for a lower overhead and
finer-grained (i.e. intra-object) level
of memory safety

Memory Safety vs Non-Memory Safety CVEs

Non-Memory Safety [} Memory Safety

% of CVEs

2006 2008 2010 2012 2014 2016 2018

Patch Year
Microsoft Product CVEs

Source: Microsoft Security Response Center (MSRC) - BlueHat 2019

Hiroshi Sasaki, Miguel A. Arroyo, Mohamed Tarek Ibn Ziad,
Koustubha Bhat, Kanad Sinha, Simha Sethumadhavan

—{ BACKGROUND }—

"

Disjoint Metadata

Whitelisting
_> .
Metadata Overhead Begin

2 words (base+size) per pointer x | Buffer

Memory Overhead v End
OC # of pointers
Pointer
Performance Overhead Bsrgclln

OC # of pointer dereferences

,/’////’‘
)

Cojoined Metadata
Whitelisting

Metadata Overhead
256-bits per pointer

—> BUﬁer_B B Bg S

Memory Overhead

X r’ Buffer_A A
v
L

OC # of pointers & phys mem. Pointer |A

Performance Overhead

_
0

OC # of pointer operations

Inline Metadata

Blacklisting — T
Metadata Overhead x | Buffer
1-bit per byte (naive)
v TS
Memory Overhead
OC blacklisted memory Pointer

Performance Overhead

e

OC # of blacklist instructions

{ OUR CONTRIBUTIONS

-

Califorms

(Cache Line Formats)

L2

Blacklisted e

Location —+—

-
-
-
Prae
-~
-
-
o
-
P
......

Natural

~~~~~~
~~~~~
~~~~~~
~~~~~
~~~~~~
..................

Y/N? Califorms

3 B OE N

Header ||A|B|C|D|E

Natural

Natural

113|7|14|8]|6

715 Nil|l1(3|7|4(8|6|7]|5

e (aliforms offers memory safety by detecting accesses
to dead bytes in memory. Blacklisted locations are not

stored beyond the

L1 data cache and are identified

using a special header in the L2 cache (and beyond)
resulting in very low overhead.

e The conversion between these formats happens when

lines are filled or spilled between the L1 and L2 caches.
The absence of blacklisted locations results in the cache

lines stored in the same natural format across the

memory system.

Califorms Schemes

Add’l storage -1 Cache line (data) ;-
8B 64B
A A
r N - N
1Dbit 1B
— —
[0] | [1] |® @ @ |[63] [0] [1] e @ o [63]

.......

Security byte?

Califorms-bitvector

L1 Caliform implementation using a bit vector that indicates whether
each byte is a security byte. HW overhead of 8B per 64B cache line.

i Addl
i istorage |

...........................

Cache line (data) ----------------------- \

- N
4B

o

==

~—~
-~
S
.

’
.
-
-
e
/
h
]

[0] 1 [1] I [2] I [3]

Line califormed? ! i
R 6bit |
| # of security 2bit
A bytes P A, : :
e 00| Addr0 1 2 3
i 00: 1 y, 4 (1] [2] [3]

01: 2 5 /(0] _Addro J Addri 2] 3]
: 1?2 | 10| Addr0 Addri | Addr2 I\J\J [3]
: 4+ :
. S s 11] Addr0 Addri | Addr2 ]| Addr3 ] Sentinel }

Califorms-sentinel

L2+ Caliform implementation that stores a bit vector in security byte
locations. HW overhead of 1-bit per 64B cache line.

e Provides intra-object (i.e. field level)
memory safety at low overheads
(~1.02x-1.16x)

e (aliforms is agnostic of architecture
width and can be deployed over a
diverse device environment

Security Policies

struct struct A full { struct
A opportunistic { char tripw[2]; A intelligent {
char c; char c; char c;
char tripw[3]; char tripw[1]; int i;
int 1i; int i; char tripw[3];
char buf[64]; char tripw[3]; char buf[64];
void (*fp)(); char buf[64]; char tripw[2];
} char tripw[2]; void (*fp)();

void (*fp)(); char tripw[3];
char tripw[1]; }

(2) Full

[
L

RESULTS

|

(1) Opportunistic } (3) Intelligent
HARDWARE

L1=L2 Conversion Algorithm

1: Read the Califorms metadata for the evicted line and OR them
2: if result is 0 then

Bl Evict the line as is and set Califorms bit to zero
4: else
3 o Set Califorms bit to one
Bz if num security bytes (N) < 4 then
| Get locations of first N security bytes
8:_{: Store data of first N bytes in locations obtained in 7
g Fill the first N bytes based on Figure 7
10: else
iNE Get locations of first four security bytes
;gé Scan least 6-bit of every byte to determine sentinel
133 Store data of first four bytes in locations obtained in 11
14: Fill the first four bytes based on Figure 7
155 Use the sentinel to mark the remaining security bytes
T end
17: end

L2=L1 Conversion Algorithm

: Read the Califorms bit for the inserted line

: if result is @ then

Set the Califorms metadata bit vector to [0]

: else

Check the least significant 2-bit of byte 0

- -[:Set the metadata of byte[Addr[0-3]] to one based on 5

Set the metadata of byte[Addr[byte==sentinel]] to one
Set the data of byte[0-3] to byte[Addr[0-3]]
Set the new locations of byte[Addr[0-3]] to zero

: end

SJWOW 0 N OJO1T & W IN —

1

Time :

> fo0()

SOFTWARE

On allocation, a special

- »malloc() | . ) .
instruction de-blacklists bytes.

> BLOC

To maintain compatibility,
we (de)serialize data
passed externally.

—>extCall(ptr)

- »free()

— BLOC
_»return
[ |

On deallocation, we revert
bytes as blacklisted.

)

50.0%

40.0%

30.0%

20.0% =

Slowdown

10.0%

-10.0%

m Opportunistic (BLOC)

0.0% —=N. mal e ————

Full (BLOC)

80

Blacklisting Overheads

m Intelligent (BLOC)

3% | 85.2%

= L I{J L — L=
o ¢ > o 1 0 e
*SS§ <§J d§> & N 458\ .Q$@9 N & y55>
Q g g S S R ) C
> X Q - Q Q
2 N
N +

{ IMPACT

e Scalable
o Architecture width agnostic
o Low overheads

’

Okt
INTEIiNETof’ =

NGS

/
NS
1 ~
~r@ g &

D = 0

H
v
4

®)

\

e (aliforms have applications other
than memory safety
o Information Flow Tracking




