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Numerical analysis is the study of algorithms that use numerical approximation (as

opposed to general symbolic manipulations) for the problems of mathematical analysis

(as distinguished from discrete mathematics). Typical applications of numerical PDE

problems include but are not limited to simulation and modeling problems.

In typical numerical methods such as Finite Element Methods (FEM), PDEs are dis-

cretized in space to bring them into finite-dimensional subspace and solved by standard

linear algebra subroutines. Spatial discretization could easily result in millions, even bil-

lions, of discrete grid points, which correspond to large linear system equations with the

same number of unknowns. If the problem was time-dependent, in order to simulate the

transient behavior of the problem, we may need to solve the linear system equations for

hundreds to thousands of discrete time steps. So, implementation of numerical solutions

using software is very time consuming.

Field Programmable Gate Arrays (FPGAs) raises as a suitable solution for this prob-

lem. However, area constraints still represent a major obstacle that faces FPGA designs.

So, a commercial HW emulation platform was used instead to implement two different

hardware-based solvers. In addition, a qualitative comparison with pure software pro-

grams such as Matlab, the best industerial tool for matrix operations and ALGLIB, a

numerical analysis and data processing library are provided to highlight the merits of

implementation of such algorithms on Emulation as the size of FPGAs does not fit the

huge size of these algorithms.
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Chapter 1

Introduction

1.1 State of the art

Simulation of electromagnetic fields (in short: EM simulation) is growing in importance

as a planning tool for high frequency systems. All available optimization opportunities

can already be exploited in the design phase of, for example, an antenna or radar system,

allowing for the performance of the final product to be maximized. The precise modeling

of the relevant physical interactions in a simulation environment constitutes a large part

of this optimization process and ensures that the developed system is optimally adapted

to blend into its environment.

The increasing number of radar and communication systems in modern vehicles often

results, however, in mutual interference between the various systems. All of those sys-

tems’ parameters along with the immediate environment must also be considered in an

EM simulation to produce precise results.

The main objective of an EM Simulation Process is to find an approximate solution

to Maxwell’s equations that satisfies given boundary conditions and a set of initial

conditions.

The key steps are:

� Creation of the Physical Model:

Drawing/Importing Layout Geometry, Assigning Materials, etc...

1
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� EM Simulation Setup:

Defining Boundary Conditions, Ports, Simulation Settings, etc...

� Perform the EM Simulation:

1 - Discretizing the physical model into mesh cells and approximating the field-

/current using a local function (Expansion/Basis function)

2 - Adjusting the function coefficients until the boundary conditions are satisfied.

� Post-processing:

Calculating S-parameters, TDR Response, Antenna Far Field Patterns, etc...

The third step is the most important, as it depends on the type of solver used. There

is a variety of numerical techniques for solving Maxwell’s equations and Partial Differ-

ential Equations (PDEs),in general. For example, the finite difference method [1], finite

element method [2], finite volume method [3], boundary element method [4], meshfree

method [5], and the spectral method [6]. The finite element method and finite volume

method are widely used in engineering to model problems with complicated geometries;

the finite difference method is often regarded as the simplest method [7]; the meshfree

method is used to facilitate accurate and stable numerical solutions for PDEs without

using a mesh.

Most of the mentioned techniques result in a system of linear equations that needs to

be solved simultaneously. A great part of the simulation time is consumed in solving

these equations. As a result, Software-based electromagnetic solvers are often too slow.

Solving such problems may easily take traditional CPUs a couple of days, even months.

An alternative is to build specific computer systems using ASICs, but this approach

requires a long development period, and is inflexible and costly. GPUs, provide a new

approach and are based around a large number of simplified CPU-units. Unfortunately,

GPUs are not suitable for problems that are data-intensive due to the long latency of

memory. Based on the discussion above, HW facilities were used to accelerate these

solvers.

Efforts were exerted in previous work to implement efficient solutions for solving the

resultant system of linear equations on Field Programmable Gate Array (FPGA). The

first FPGA was invented by Ross Freeman in 1985. FPGAs are arrays of reconfigurable
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logic blocks connected by reconfigurable wiring. These form the underlying flexible fab-

ric that can be used to build any required function. In the past decade, the capabilities

of FPGAs have been greatly improved; modern FPGAs also contain highly optimized

dedicated functional blocks, e.g. hardware multipliers, memory blocks, and even em-

bedded microprocessors. From their origins as simple glue-logic to the modern day basis

of a huge range of reprogrammable systems, FPGAs have now reached sufficient speed

and logic density to implement highly complex systems. However, area constraints still

represent a major problem that faces FPGA designs. So, we aimed to use a commercial

HW emulation platform [8] instead. In general, HW emulation platforms when com-

pared with FPGAs allow large SoC designs to be modeled in hardware which can run

at several MHz speed with advanced debug visibility and run-time control. Efficiency

and use of this platform is described by a case study solving for Electric field (E) and

magnetic field (H) in metamaterials using Finite Element Method (FEM). Results were

compared to MATLAB, the best reference benchmark for matrix calculations.
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1.2 Contributions

I We motivate our solution by demonstrating the importance of the electromagnetic

simulation timing problem.

I A novel idea was introduced. It is the first time to use Emulation technology to ac-

celerate the solver of an Electromagnetic field simulator (EM simulator). As a proof

of concept, A time-domain problem of solving Maxwell’s equation in metamaterials

using Finite Element Method (FEM) is used. Preprocessing and postprocessing

FEM calculations are done on MATLAB and the solver part, that is reposible for

solving sparse system of linear equations, is accelerated using Emulator.

I Two different parallel hardware architectures were presented to solve the sparse

system of linear equations resultant from the FEM. The first architecture is based

on a direct method (Gaussian elimination) and the second architecture is based

on an iterative method (Jacobi).

I Compared to MATLAB special operator for solving equations on a 2.00GHz Core

i7-2630QM CPU, a speed-up of 7.86 was achieved for solving 60,900 equations using

a Gaussian design with 32-bit floating-point arithmetic on the Mentor Graphics

CairoTrioR emulator with 2 AVBs (Advanced Verification Boards), whereas, a

speed-up of 11.41 was achieved for solution of the same number of equations using

a Jacobi design with 32-bit floating-point arithmetic.

I Compared to ALGLIB, a numerical analysis and data processing library, using

C++ programming language under linux, a speed-up of 2 was achieved for solving

60,900 equations using a Gaussian design with 32-bit floating-point arithmetic on a

2.00GHz Core i7-2630QM CPU, whereas, a speed-up of 3 was achieved for solution

of the same number of equations using a Jacobi design with 32-bit floating-point

arithmetic.
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1.3 Thesis Organization

Chapter 2 presents a brief review of prior work in the domain of using FPGA to accelerate

methods used for solving systems of linear equations.

Chapter 3 introduces one basic approache that was implemented in order to solve our

problem. It is based on Cramer’s method. Constraints and limitations of these ap-

proaches are illustrated in detail.

Chapters 4 and 5 describes our 2 final proposed hardware designs that were implemented

and tested on the emulator. The first is based on a direct method for solving system of

linear equations (Gaussian elimination).The second is a more complex implementation

based on an iterative method (Jacobi). It uses 64-bit floating-point arithmetic in order

to get higher resolution and it is deeply pipelined.

Chapter 6 introduces a complete case study on coding the two-dimensional edge el-

ement for solving Maxwell’s equations for metamaterial using MATLAB. The whole

programming process is illustrated including mesh generation, calculation of the ele-

ment matrices, assembly process, postprocessing of numerical solutions and how we use

the proposed solutions to accelerate it. Further details about Metamaterials and their

applications could be found in A.

In Chapter 7, the hardware implementations are compared with software implementa-

tions in terms of speed-up and numerical precision. Furthermore, the performance of

several hardware implementations is compared based on logic requirements and clock

rates.

Chapter 8 discusses the conclusions of the study, and gives some recommendations for

possible future work.

Appendix A gives more details about the origins of metamaterials, their basic elec-

tromagnetic properties and potential applications. Also a brief overview of the related

mathematical problems is provided by introducing the governing equations used to model

the wave propagation in metamaterials.

Appendix B introduces the most widely used general solution technique of PDEs: the

finite element method (FEM).
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In appendix C, we give a detailed description of the system of linear equations and the

mathematical methods used to solve it.

Floating point standard and the characteristics of the used modules are discussed in

Appendix D.

Appendix E discusses the concept of SystemVerilog Direct Programming Interface (DPI),

which is used to interface SystemVerilog with foreign languages such as C and C++.

That is used in our project to update the memory contents and catch the output during

run time easily.



Chapter 2

Related work

This chapter surveys some prior work in solving systems of linear equations on FPGA

hardware and highlights some previous trials to deal with metamaterials.

For iterative solvers, the bottleneck is a matrix-vector multiplication as in each re-

finement of the guess vector it requires O(N2) operations. The work in [9] and [10]

implemented double precision sparse matrix-vector multiplication for FPGA. A sparse

matrix is a matrix that has many zero elements and a dense matrix is a matrix with few

zero elements.

In [9], the matrix and vector are broken up into blocks so that the matrix and vector

can be of any size and are not limited by on-chip memory. A block matrix-vector

multiplication method is performed until all the blocks have been multiplied. A matrix-

vector multiplication can be broken up into one large dot-product operation per row of

the matrix. Each such operation can be further broken into smaller dot products with

additional logic needed to accumulate the results. The design in [9] has one dot-product

operator with accumulation logic so that it can effectively perform a larger dot-product

operation for the entire row of the matrix block. Each row of the matrix is computed in

this manner until all the rows in the matrix have been used. Without the accumulation

logic, the dot-product operator has to have an input size equal to the matrix block size.

With the use of accumulation logic, the design can use a small input size dot-product

operator, which uses less resources at the cost of longer latency than a large dot-product.

Also, the block size of the matrix-vector multiplication can be independent of the input

size of the dot-product operator.

7
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The work in [11] implemented a conjugate gradient (CG) and a Jacobi iterative solver

for sparse matrices on FPGA in double precision. This work used a SRC-6 Workstation

which has dual 2.8GHz Xeon processors with a 5120KB cache and 1GB of RAM and two

Xilinx Virtex II 6000 FPGAs. For the CG solver, only the matrix-vector multiplication

was implemented on the FPGA while the remainder of the algorithm was executed in

software from the SPARSKIT library [12], which has routines for sparse matrix com-

putation. For the Jacobi iterative solver, the whole algorithm was implemented on the

FPGA. Both designs need to perform a matrix-vector multiplication, which is the bot-

tleneck of the algorithm. To perform the multiplication, both designs use a dot-product

operator and additional logic to accumulate the results similar to the work in [9]. The

entire matrix is stored in on-chip memory on the FPGA and so there is a limit on the

matrix size. The matrix size is limited to 4,096 for the CG solver and 2,048 for the

Jacobi iterative solver. By having the whole matrix in on-chip memory, the memory

bandwidth requirement of the design is reduced as the data only has to be loaded once

when performing the entire algorithm and so performance is not memory bandwidth

limited. This work reported a speed up of 2.4 for the CG using the Virtex II over run-

ning the entire CG algorithm from SPARSKIT on the 2.8 GHz Xeon processor. The

Jacobi iterative solver achieved a speed-up of 2.2 using the Virtex II over software from

SPARSKIT running on the 2.8 GHz Xeon processor.

The work in [13] implemented a complete conjugate gradient (CG) for dense matrices on

the FPGA in single precision. To perform the matrix-vector multiplication, the design

implemented one dot-product operator, similar to the one in Figure 2.4, that operates

on a whole row of the matrix. The input size of the dot-product operator is the size of

the matrix, N. Each row of the matrix is sequentially operated in turn to complete the

matrix-vector multiplication. Thus, a large amount of resources is dedicated to creating

such a large dot-product operator and the input size of the dot-product operator limits

the matrix size. All the data necessary to perform the CG algorithm is stored in on-chip

memory. The design is fully pipelined and has a throughput of one iteration of the CG

algorithm per cycle. However, if there is only one matrix to solve, most of time the

components in the design are waiting for the next iteration. To maximize performance,

multiple problem matrices with the same matrix size have to be solved at the same time

to fully utilize the components in the design. On a Xilinx Virtex II 6000 with multiple

matrices, the performance achieved is 5 GFLOPS in single precision and the matrix is



Chapter 2. Related work 9

limited to a size of 16. For a Virtex 5 LX330, the performance achieved is 35 GFLOPS

in single precision and the matrix is limited to a size of 58.

In all these prior works for iterative solvers except for [9], a limit is imposed on the matrix

size based on the on-chip memory capacity of the FPGA. For [9], there is no reuse of

matrix data. For each iteration of the solver, the matrix has to be loaded from off-chip

memory onto the FPGA to perform one matrix-vector multiplication. Thus, the memory

bandwidth is O(N2) while the computation complexity is also O(N2); therefore, a large

memory bandwidth is needed in order to obtain high performance. The performance is

likely to be memory-bandwidth limited. For matrices of limited size, the entire matrix

can be stored on-chip and reused for each iteration of the solver. Since the matrix only

has to be loaded once, the memory bandwidth requirement can be amortized across all

the iterations of the algorithm. Thus, for the same amount of memory bandwidth, more

computations can be performed. Thus the performance is limited by the computations

and not by memory bandwidth. It seems that for iterative solvers, either the matrix size

is limited or the performance will be bandwidth limited.

For direct solvers, the computation complexity order, O(N3), is higher than iterative

solvers for the same matrix. Because the computation complexity is higher than the

memory bandwidth required to load the matrix, performance will be limited by com-

putation and not by memory bandwidth. Direct solvers are commonly used to solve

dense matrices. Iterative solvers either require less computation but do not guarantee

convergence or require the same order of computation as direct solvers to guarantee con-

vergence. Therefore, direct solvers are still very useful today in scientific applications.

The work in [14] implemented a direct solver using the same LU factorization method

employed in our work. It used a circular linear array of processing elements (PEs) in

double precision as shown in Figure 2.1. One of the PEs (PE0) has a divider while the

other PEs have a multiplier and adder. Matrix elements are passed from PE to PE start-

ing with PE0. PE0 performs the normalization of the column elements while the other

PEs perform the matrix multiplication and subtraction operations. The implemented

design stores all the matrix elements in on-chip memory and so it imposed a limit on

the matrix size. A blocking version to remove the matrix size limit was proposed, but

was not implemented, in [15]. This design achieved 4 GFLOPS in double precision on a

Virtex-II Pro XC2VP100. Compared to software from an AMD optimized library called
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ACML [16] running on a 2.2 GHz Opteron with a L2 cache of 1MB, this work reported

a speed-up of about 1.2 in double precision using a Virtex-II Pro over software.

Figure 2.1: LU Factorization Design Block Diagram.

The work presented in this thesis can solve systems of linear equations of any size up to

the capacity of the emulator memory, which is an important feature as it is the largest

matrices which most need accelerated solutions. many previous works are impractical

when dealing with larger matrices due to memory-bandwidth limits.

Now, let us have a look on EM simulation and metamaterials. In 1968, Veselago[17]

theoretically stated that the double negative (DNG) mediums, whose permittivity and

permeability are both of negative values, would have distinct electromagnetic charac-

teristics. These mediums have attracted much research interest recently. Among nu-

merical methods, the Finite-Difference Time-Domain method (FDTD), as a popular

algorithm, has been successfully used in modeling the interactions of electromagnetic

waves with double negative (DNG) materials [18, 19]. In the time-domain algorithm,

frequency-dependent problems can be solved using the piecewise linear recursive convo-

lution (PLRC) method [20], the auxiliary differential equation (ADE) method [20], and
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the z-transform method. In [4], the z-transform was adapted and used for simulating

the transient evolution of wave propagation in structures with DNG materials.

Although the FDTD method has proved to be very successful, extremely large computer

memory space and a long computational time for large data sets are usually a burden

even with a supercomputer[21]. For above reasons, authors in [4] examined how to

improve FDTD method by using the massively parallel architecture of GPGPU cards.



Chapter 3

First approach: Cramer Method

In this chapter, we will discuss our 1st hardware approach, which is based on Cramer’s

method for solving systems of linear equations. We will give a brief overview about

Cramer’s rule. After that, we will illustrate our hardware implementation. Finally,

advantages and disadvantages of this approach will be mentioned.

3.1 Overview

In linear algebra, Cramer’s rule is an explicit formula for the solution of systems of linear

equations with as many equations as unknowns, valid whenever the system has a unique

solution. It expresses the solution in terms of the determinants of the (square) coefficient

matrix and of matrices obtained from it by replacing one column by the vector of right

hand sides of the equations.

Cramer’s Rule is an efficient way of solving a system of linear equations via hardware.

Let’s consider the following example.

A1x+B1y + C1z = D1

A2x+B2y + C2z = D2

A3x+B3y + C3z = D3

12
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The determinant T is

T =

∣∣∣∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣∣∣∣ , T 6= 0

The unique solution will be

x =

∣∣∣∣∣∣∣∣∣
D1 B1 C1

D2 B2 C2

D3 B3 C3

∣∣∣∣∣∣∣∣∣
T

y =

∣∣∣∣∣∣∣∣∣
A1 D1 C1

A2 D2 C2

A3 D3 C3

∣∣∣∣∣∣∣∣∣
T

z =

∣∣∣∣∣∣∣∣∣
A1 B1 D1

A2 B2 D2

A3 B3 D3

∣∣∣∣∣∣∣∣∣
T

In this way, we need to calculate the relative determinants of the system of linear equa-

tions then all the variables will be computed easily. We must mention that the value of

T should be checked because if T = 0, the equations wouldn’t have a unique solution.

3.2 Design modules

As an example, we will explain the design that solves 3 equations simultaneously. Designs

dealing with higher numbers of equations would be based on the same hierarchy. Figure

3.1 shows the design hierarchy for the first approach in case of 3 equations.

3.2.1 Top Module

This module basically encapsulates the design. It contains one instance of eme 3*3 opt.
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Figure 3.1: Design hierarchy for the first approach in case of solving 3 equations.

3.2.2 eme 3*3 opt

This module contains four instances of modules det 3*3 opt and seven instances of mod-

ule det 2*2. They represent the number of unrepeated units in the method tree. The

module inputs are the matrix’s values and its output is the value of the determinants

before and after substitution with the b’s values. It calculates the value of the matrix

(the main matrices 3*3 and the small matrices 2*2 )

3.2.3 det 3*3 opt

This module calculates the value of the determinant 3*3. Its inputs are elements values

and the sub matrices value. Module output is the value of that determinant.

Mainly, it consists of FP mul modules to multiply the floating-point values and fp add

to add or subtract the floating-point values following the cramer’s rule.

3.2.4 det 2*2

this module calculates the value of the det 2*2,and its inputs are elements values and

the sub matrices value . and its output is the value of that determinant. It consists of
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FP mul modules to multiply the floating-point values and fpadd to add or subtract the

floating-point values following the cramer’s rule.

3.2.5 FP mul

This module multiplies two 32 bit floating-point numbers and outputs another 32 bit

floating-point value. For more information on the floating-point modules used, please

refer to appendix D.

3.2.6 fp add

This module performs floating point addition/subtraction. It uses the following sub-

blocks:

� fpalign - aligns the mantissae of the inputs according to their exponents and

prepends leading 1.

� special - generates signals for special inputs (infinity, NaN, signaling NaN).

� mantadd - adds (subtracts) the aligned mantissae, determines presticky bit (or of

discarded mantissa).

� normlize - finds the leading one and shifts it to the front producing a normalized

sum. Determines if result is denormal and does proper denorm shifting. Also

calulates round, and sticky bits as well as whether the sum is 0 or inexact.

� rounder - rounds normalized mantissa according to selected rounding mode and

calculates the final exponent.

� final - this assembles all the pieces and uses special case information to determine

correct final result. Also determines all exception flags.

3.3 Pros and Cons

The main advantage of this design is that it is very fast compared to other methods.

It needs fewer number of clock cycles to calculate the result. However, the first ap-

proach has one major disadvantage. It consumes a lot of logic resources; the number
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of consumed LUTs increases dramatically as the number of equations increases. This is

discussed in detail in section 7.2.1.1. As a result, it is not scalable.

That is the main reason which guided us to search for the two other approaches described

later on the coming chapters.



Chapter 4

Second approach: Gaussian

Elimination Method

4.1 Introduction

The main idea behind this approach is using Gauss Elimination as a method of solving

linear systems of equations. The most time-consuming operations were implemented on

hardware, while the rest of the operations were implemented on software to maximize

the utilization of the available hardware resources.

4.2 Gauss elimination hardware algorithm

The hardware algorithm described here is slightly different from the basic one men-

tioned in appendix C. Minor modifications were made to improve performance, while

maintaining the same results gained from the basic algorithm.

In gauss elimination, we use the matrix notation of linear equations


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n




b1

b2
...

bn

 (4.1)

17
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First, forward elimination is used to eliminate all the elements in the lower triangle of

the matrix.


a′1,1 a′1,2 · · · a′1,n

0 a′2,2 · · · a′2,n
...

...
. . .

...

0 0 · · · a′n,n




b′1

b′2
...

b′n

 (4.2)

Next, backward elimination is used to eliminate all the elements in the upper triangle

of the matrix, leaving only the main diagonal.


a”1,1 0 · · · 0

0 a”2,2 · · · 0
...

...
. . .

...

0 0 · · · a”n,n




b”1

b”2

...

b”n

 (4.3)

All the previous operations are implemented on hardware while the last operation involv-

ing division of all elements in the right-hand-side vector by the corresponding elements

in the main diagonal is implemented on software.



b”1

a”1,1

b”2

a”2,2
...

b”n

a”n,n


(4.4)

4.3 Basic design

4.3.1 Overview

This is the basic design which implements gauss elimination without any optimization.

It contains three main modules memory, ALU and control unit. The memory is used

for storing all the matrix elements as well as the right hand vector in little endian
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architecture. The ALU is based on vector operations which are performed on the data

received from the memory. Finally, the control unit used for synchronizing the ALU

and the memory together, and controlling memory addresses and memory reading and

writing operations.

Figure 4.1: The architecture for Basic design of second approach.

4.3.2 Design modules

4.3.2.1 Memory

The memory contains the matrix and right hand side vector stored in the IEEE 754

floating point representation with single precision. Each memory entry represents one

row from the matrix concatenated with the corresponding element from the right hand

side vector, so the word size of the memory equals 32*(number of matrix columns + 1).

The memory has two addresses for reading, and one for writing. Consequently, it’s

possible to read two memory rows and write one memory row during the same clock

cycle.
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4.3.2.2 ALU

The ALU is designed to support vector floating point of single precision, which means

that the operations are done vector by vector and not element by element which is the

main advantage of using hardware-solutions as they allow higher degrees of parallelism

than software-based solutions.

The ALU input is two rows from the memory and address from the control unit and

output is one row to be saved in the memory. The ALU operates on the two rows and

uses the address from the control unit to know which element to be eliminated according

to gauss elimination operations.

The ALU consists of:

1. Division module which divides one element from the input row by an element from

the other row.

2. Two multiplexers are used to choose the elements from the two input rows to enter

the division module according to the address from the control unit.

3. Vector multiplication module which consists of number of multiplication modules

equal to the number of the elements of a row, each one multiplies one element of

the first input row by the output of the division operation.

4. Vector subtraction module which consists of a number of subtraction modules

equal to the number of the elements of a row, each one subtract one output of the

multiplication modules from the corresponding element in the second input row.

4.3.2.3 Control unit

The main purpose of the control unit is synchronizing the ALU and the memory, and it

consists of a number of signals used to fulfill its mission:

1. Memory addresses, the control unit controls the two memory addresses for both

reading and writing.

2. Read and write signal which control when data is read from or writting into the

memory.
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3. Halt signal this signal is used to indicate that the equations have been solved.

The control unit consists mainly of three counters:

1. The first counter is a simple up counter used to control the read and write signals

as it counts from 0 to 7, as long as the counter holds a value between 0 and 6 the

signal represents a read operation, when the counter’s value becomes 7 the signal

is write.

2. The second counter is an up-down counter and can be loaded with an initial

value to start counting from, it is used to control one of the memory addresses as

the counter value is the value of the address corresponding to the row for which

elimination takes place. The counter inputs:

(a) Enable signal: used to allow the counter to count. It is controlled by the first

counter.

(b) Forward-backward signal: this signal indicates whether the system is working

in forward or backward elimination, and it is controlled by the third counter.

The second counter is counting up or down according to forward-backward

signal.

(c) Load value: used to initialize the counter to begin counting from this value. It

is equal to third counter’s value + 1 in forward elimination and third counter’s

value -1 in backward elimination.

(d) Set signal: used to initialize the counter with the load value. This signal

is controlled according to the value of the first counter and the value of the

second counter itself.

3. The third counter is also an up-down counter but unlike the second counter it does

not have a load value for initialization. The third counter is mainly used to control

the second address of the memory as its counter value is the value of the address.

It also controls the halt signal as the halt signal is high when the counter value is

zero during backward elimination. The third counter has an enable signal like the

second which works like the set signal of the second counter.
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4.3.3 Design disadvantages

1. Slow design as the time complexity is O(n2) and a lot of time is wasted in elimi-

nating elements which already equal zero.

2. A lot of hardware resources are needed as the ALU size increases linearly with the

number of equations due to the use of vector modules.

3. Large memory is used.

4.4 Gaussain with skip

4.4.1 Overview

In this design we aim to solve one of the disadvantages of the basic design which is the

time wasted on eliminating elements which are already equal to zero. After studying the

output of the finite element method thoroughly, we found out that most of the matrix

elements are zeros which means that a lot of time is wasted on eliminating zero elements.

In this design we proposed a solution of checking elements before sending them to the

ALU, skipping any element whose value is equal to zero and advancing to the next row.

In the previous design eliminating one element consumes 8 clock cycles, one cycle for

reading the row of data, 6 cycles for ALU operations until the result is available, and

one cycle for writing the data into the memory. Now if the element is zero it consumes

two cycles before it is skipped, one cycle for reading the data from memory and one

cycle for checking its value. However, if the element’s value is not zero, it consumes the

usual 8 clock cycles.

4.4.2 Design modules

4.4.2.1 Memory

The same as the previous design.
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Figure 4.2: The architecture for Gaussian with skip.

4.4.2.2 ALU

The same as the previous design.

4.4.2.3 Control unit

Most of the control unit design is the same as the previous design except for some minor

changes, a new input named skip signal which results from the skip checking module

that makes the control unit skip the current row of data and go for the next one, and a

new output named check signal used by the checking module as an enable signal.

As discussed in the previous design the control unit mainly depends on three counters

having the same design and hierarchy used here, but for the first counter there is a new

input, the skip signal, that forces the counter to reset. Also the second counter’s enable

signal depends on the skip signal besides the value of the first counter.

4.4.2.4 Skip checking module

The main purpose of this module is to check if the element to be eliminated is already

zero or not and sends a skip signal to the control unit to skip the current row of data
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and advance to the next row if the element to be eliminated has a value of zero. Skip

checking module has three inputs:

1. Input data which is one of the rows entering the ALU which has the element to

be eliminated.

2. Address, this address is needed to know which element in the row is to be elimi-

nated in order to perform the skip check on that element, this can be done as the

module contains a multiplexer that chooses which element in the current row is to

be checked according to this address.

3. Check signal this signal acts as enable to the module to specify the time at which

checking occurs, and this signal is controlled by the control unit.

The only output of the module is the skip signal which lets the control unit skip this

row of data and advance to the next one, this signal is simply controlled by an NOR

gate that operates on the element’s bits. If all of them are zeroes, skip signal is high

otherwise skip signal is low.

4.4.3 Design disadvantages

1. This design is much faster than the previous design but still not fast enough because

the skipped elements still waste a reasonable amount of time.

2. A lot of hardware resources are needed as the ALU size increases linearly with

number of equations due to the use of vector modules.

3. Large memory is used.

4.5 Gaussian with full skipping

4.5.1 Overview

In this design we try to improve the performance of the previous design by reducing the

time wasted in skipping. To achieve this goal, full skipping is used instead of regular

skipping, which means that the zero checking is done on a column by column basis
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instead of element by element. After checking, the addresses of the rows for which

elimination is performed are obtained. Sounds simple but it is a fact the main challenge

is how to design the memory, so that we could read a column of the matrix for zero

checking and read a row of the matrix to enter the ALU and all read operations should

take only one cycle.

To design a memory with those characteristics we chose the distributed memory model,

so we use a number of memory segments instead of one big memory, each memory

segment stores two rows of the matrix and has two reading ports so in only one clock

cycle we could read all the memory contents. After reading all memory contents we use

multiplexers to get the desired columns for zero checking and the desired rows to enter

the ALU.

Figure 4.3: The architecture for Gaussian with full skipping.

4.5.2 Design modules

4.5.2.1 Memory

As discussed before the memory follows the distributed memory model, the memory

doesn’t have read addresses as all the memory contents are read all the time. Memory

has three main inputs, write address as we write in one row only at a time, write enable

signal to enable writing on the write address and input data which is the data to be
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written. Memory has only one output, the data output, which carries all the data

contents of the memory. Memory consists of:

1. Memory segments: the memory contains many memory segments equal to the

number of the matrix rows divided by two as each memory segment stores two

rows of the matrix. Memory segments have the same inputs and outputs of the

memory, all the data outputs of the segments are concatenated to form the memory

data output.

2. Decoder: the main purpose of the decoder is to indicate which memory segment

will be enabled for writing according to the writing address and also indicates the

address of the segment (0 or 1) on which the writing occurs. Decoder input is the

write address and the output is a vector of which segment will be enabled and the

address inside the segment.

4.5.2.2 ALU

The same as the previous design.

4.5.2.3 Control unit

This control unit is different from the previous designs as it has the first and the third

counters only, the second counter is not suitable for this design as it does not read

from memory row by row as before, instead it decides the row to be read from memory

according to the full skipper module and the control unit has an encoder to fulfill this

task and it will be discussed in details. Control unit has a new input from the full

skipper module which is the skip vector instead of the skip signal in the previous design;

the length of the skip vector is equal to the length of the matrix column and each bit

of this vector represents which rows will be skipped and which rows will enter the ALU.

Control unit outputs:

1. Write enable signal: this signal is used to enable writing on the memory and is

controlled by the first counter like before.

2. Halt signal: used to indicate that the equations have been solved according to the

value of the third counter.
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3. Forward - backward signal: used to indicate on which mode the system currently

runs; forward elimination mode or backward elimination mode and this signal is

used by the full skipper module.

4. Memory addresses: there are two memory addresses, the writing address which is

controlled using the skip vector and the encoder, the other address is not for the

memory as the memory has one address only. The other is used by the multiplexers

to choose a row of data from the memory output data, and this address is controlled

by the third counter.

Control unit consists of:

1. First counter: has the same design and role as the previous design.

2. Third counter: has the same design and role as the previous design except for its

enable signal which is controlled by the encoder.

3. Encoder: the main role of the encoder is to encode the skip vector and output the

memory writing address, it is done as the skip vector has several bits that are equal

to one. The encoder outputs the address corresponding to the least significant bit

then after the ALU operates on the row corresponding to this address and writes

in the memory with the eliminated element the full skipper will find it and change

the value of the skip vector by clearing the bit corresponding to the previous row

so the encoder outputs the next address and so on. After clearing all the bits of

the skip vector the encoder sets the enable signal of the third counter.

The challenge in designing the encoder is that it needs to be a parameterized

module to have its size proportional to the length of the skip vector, to achieve

this goal we designed the modules using multiplexers of fixed size and having a

number equal to the length of the skip vector, and connected as shown in Figure

.4.4.

4.5.2.4 Full skipper

The main purpose of this module is to drive the skip vector which is used by the control

unit, and perform the zero checking on each element in the matrix column. Full skipper

inputs:



Chapter 4. 2nd approach 28

Figure 4.4: Internal design of the encoder based on 2x1 Muxs.

1. Data input: data input it is the whole data that comes from the memory which

is, in fact, the whole memory’s contents

2. Address: it is the address coming from the control unit and it is used to decide on

the column of the matrix that will be subject to the zero checking process

3. Forward-backward signal: this signal is received from the control unit and used

to determine the mode of elimination (forward or backward), this signal and the

address are used in the full skipper to form a mask that will control zero checking

process.

The full skipper contains a number of multiplexers equal to the number of the rows in

the matrix, each multiplexer chooses an element according to the input address from

its corresponding row, then all the choses elements subject to zero checking which is a

simple OR gate operateing on the element bits, outputting zero for zero value and one

otherwise. A mask is formed according to the input address and the forward-backward

signal to mask the rows with lower addresses than the input address from the zero

checking in the forward mode, while in the backward mode mask the rows of addresses

greater than the input address.

4.5.2.5 Multiplexers

The design contains two multiplexers. Their purpose is to choose which rows of the

output data of the memory will enter the ALU, and these rows are chosen according to

the addresses generated by the control unit.
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4.5.3 Design disadvantages

1. A lot of hardware resources are needed as the ALU size increases linearly with

number of equations due to the use of vector modules.

2. Large memory is used.

4.6 Gaussian using sparse model

4.6.1 Overview

In this design we tried to solve most of the problems of the previous design related to

performance and resource utilization. This design uses a new concept in storing the

matrix in the memory known as the sparse model, the sparse model is usually used

for matrices whose elements’ values are mostly zeroes, so it stores only the non-zero

elements and their locations (indices) in the matrix, this model has a huge impact on

the memory size which is far smaller than the other designs.

After studying the output of the finite element method, we found that it has the following

properties:

1. All elements in the main diagonal of the matrix are non-zero elements.

2. Output matrix is symmetric.

3. Maximum number of non-zero elements in one row is three.

We tried to exploit those properties in this design to improve performance and hardware

utilization. The design contains ALU, control unit and two types of memories. The

concept of zero skipping is not used in this design since that problem has been solved

by using a sparse memory model.
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Figure 4.5: The architecture for Gaussian using sparse model.

4.6.2 Design modules

4.6.2.1 Diagonal memory

This memory is used to store the diagonal elements in the matrix concatenated with the

elements of the right hand side elements. The word size of this memory is 64 bits; 32

bits for the diagonal elements and 32 bits for the right hand side matrix, the memory

length equals the number of equations of the system. Memory inputs are:

1. Memory addresses: it has two addresses, one for reading only, and one for both

reading and writing. These addresses are controlled by the control unit.

2. Read-write signal: used to control the read and write from the memory, when the

signal is cleared the memory goes for writing otherwise goes for reading.

3. Halt signal: this signal is set after the equations are solved. When this signal is

high, no further memory writing operations are performed.

4. Input data: the data that will be written into the memory at one of the memory

addresses when both the read-write and halt signals are low.

4.6.2.2 Elements memory

This memory is used to store the non-zero non-diagonal elements, which is a read only

memory, there no need to write on those elements. The memory word size is 32 bits
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which is the size of the element, the length of the memory equals the number of non-zero

non-diagonal elements.

The memory simply has one address for reading controlled by the control unit and one

output for the data output.

4.6.2.3 ALU

This ALU is different from the other designs as it has a fixed size as we take advantage

of the third property of the matrix which states that the maximum number of non-zero

elements in a row is three. The inputs of the ALU:

1. Two rows from the diagonal memory.

2. One element from the elements memory.

3. Forward-backward signal.

The new ALU consists of:

1. One division module: divides the non-diagonal element by the diagonal elements

from the second input row.

2. Two multiplication modules:

(a) First module multiplies the division result by the right hand side element of

the second row.

(b) Second module has two cases:

i. In forward elimination, it multiplies the result of division by the same

element from the elements memory due to symmetry of the matrix

ii. In backward elimination, it multiplies the result of division by zero

3. Two subtraction modules:

(a) First module subtracts the result of the first multiplication module from the

right hand side element of the first row.

(b) Second module subtracts the result of the second multiplication module from

the diagonal element of the first row.
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The result of those multiplication modules are written into the diagonal memory, and

overwritten at the location of the first input row in the diagonal memory.

4.6.2.4 Control unit

This control unit is different from the previous as it has a register file that stores the

indices of each element in the elements memory, the size of this register file equals the

length of elements memory and each entry consists of the element row index concatenated

with the element column index. Control unit output:

1. Read-write signal: signal used by the diagonal memory to control its read and

write operations.

2. Halt signal: used to indicate that the equations have been solved. Also used by

the diagonal memory to control write operations

3. Forward-backward signal: indicates the mode of the system, forward or backward

elimination, this signal is used to control ALU operations

4. Diagonal memory addresses: the read addresses of the diagonal memory. The first

address is used for writing as well.

5. Elements memory address: the read address of the elements memory.

The control unit consists of two counters and register file:

1. First counter is used to control the read-write signal and drive the enable signal

of the second counter

2. Second counter is used to control the address of the elements memory and drive

the halt and forward-backward signals

3. The register file stores the indices of the elements of elements memory, those indices

are used as diagonal memory addresses, the indices are fetched from the register

file according to the second counter’s value.
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4.6.3 Design disadvantages

This design achieves its main goals which are improving performance, memory size, and

hardware size. However, there are some disadvantages regarding the hardware resources

utilization as the hardware size is fixed regardless of number of equations solved due to

the fixed size of the ALU, which is a waste of the available resources.

4.7 Gaussian using sparse and clusters model

Figure 4.6: The architecture for Gaussian using sparse and clusters model.

4.7.1 Overview

In this design we try to solve the disadvantage of the previous design, which is the bad

utilization of the available hardware resources, by improving the hardware utilization to

achieve better performance levels.

The goal of this design mainly depends on the use of the clusters concept, which is

discussed in details in section 6.2.2 to minimize the dependencies between equations and

allow more higher levels of paralellism by using multiple ALUs in parallel.

The main advantages gained from clusters:

1. Separate equations into clusters.



Chapter 4. 2nd approach 34

2. Each cluster has fixed shape as shown in Figure 4.7, so location of the non-zero

elements in each row is predictable.

Figure 4.7: The fixed shape of clusters(three diagonals).

4.7.2 Design modules

4.7.2.1 Diagonal memory

Has the same features as the previous design. The only difference between them is the

length and the word size. Each entry of the memory stores the diagonal element and the

right hand side element concatenated with those of the other clusters, so the memory

word size is 64 bit * number of clusters. The length of the diagonal memory equals the

number of equations per cluster.

4.7.2.2 Elements memory

No changes occurred to the Elements memory either except for the length and word

size like the diagonal memory. The memory word size is 32 * number of clusters and its

length is equal to the number of non-zero non-diagonal elements per cluster.
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4.7.2.3 ALU

The same ALU design as before but the system contains more than one ALU. Their

numbers are equal to the number of clusters. Each ALU operates on a separate cluster

and each input of data is its corresponding data portion from the memories’ outputs.

4.7.2.4 Control unit

It has the same design as the previous design except that the register file has been

removed due to the usage of clusters. The elements’ indices are predictable and function

of the value of the second counter, so the diagonal memory addresses are controlled by

the second memory.
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4.8 Summary

The second approach passes through many designs from the basic design which imple-

ments the Gaussian elimination techniques on hardware to achieve higher performance

levels than software, By using vector floating point ALU to operate on row by row. Basic

design wastes a lot of time on zero elements and the design with skip comes to solve this

problem by adding skipping module which performs zero checking on each row before

entering the ALU and skiping it if the element to be eliminated is already equal to zero.

The design with full skipping comes to add more improvement in performance by ex-

tending the concept of skipping, such that the full skipping module performs the zero

checking on the whole column of the matrix and according to the result the control unit

decides which rows will enter the ALU. To achieve these goals, the memory had to be

redesigned according to the distributed memory model.

Further improvements were added when introducing the concept of sparse matrix in

the design using sparse, which led to smaller hardware and memory sizes and reason-

able performance, but also led to bad hardware resources utilization. The design using

sparse and cluster solves the bad utilization problem by using clusters to allow further

parallelism and add more ALUs that work in parallel, leading to the best timing and

hardware utilization among the other designs.
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Third approach: Jacobi Method

In this chapter, we will give a complete explanation about our third hardware approach

which is based on Jacobi method. Jacobi as an iterative method for solving system of

linear equations is discussed in appendix C. Here, we will present the 4 major designs

implemented in this approach and illustrate their advantages and disadvantages. The

last design is the best one in terms of performance and scalability.

5.1 Basic Jacobi

Figure 5.1: The architecture for Basic Jacobi.

37
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5.1.1 Overview

This architecture shown in Figure 5.1 is the simplest design used. It models the Jacobi

iterative method without optimizations. This design consists of a control unit, main

memory, replica of main memory, diagonal and right-hand-side elements’ memory, non-

diagonal elements’ memory, index memory, and only one ALU.

The control unit sends control signals to all memories to control data flowing out of

memories and into the ALU. Upon receiving the appropriate addresses, memories load

the corresponding data onto the data lines which connect them to the ALU, which in

turn operates on that data and sends the new data back to the memory to save it.

5.1.2 Design modules

5.1.2.1 Top module

This module basically encapsulates all of the design and contains all of the main units,

it also connects all these units together. Table 5.1 shows the parameterized components

of the design.

Table 5.1: Parameterized components of Basic Jacobi.

Parameter Description

number of equations Represents the number of rows in each memory.
It is used to define memory depth

address width Represents the number of bits needed for
the address lines of each memory

5.1.2.2 Control unit

The control unit consists mainly of 3 counters, namely, pipeline stage counter, row

counter, and iteration counter which work as follows:

� Pipeline Stage Counter:

This counter shows the current step which is being executed in the design. That

is, loading data from memory, executing arithmetic operations, or storing data in

memory. It is also used as a driver for the row counter, since the row counter is

incremented after each row has been operated on.
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� Row Counter:

The row counter represents the current row being operated on of the matrix, it is

used for loading data that corresponds to its value from all memories (all the data

needed by the ALU). It is also used as a driver for the iteration counter, since the

iteration counter is incremented when all rows have been operated on during the

current iteration.

� Iteration Counter:

The iteration counter represents the current iteration (since Jacobi is an iterative

method) and it is compared with a pre-defined value given by the user to check

whether or not calculations have been finished. This counter is also used to gen-

erate signals that enable either the main or replica memory to load or store data

depending on the current iteration number.

The control unit also generates the halt signal when the calculations have been finished,

this signal is used as an indicator that can be used to stop simulation, write data into

files, or do some post-processing.

5.1.2.3 Memory

1. Main Memory (Main Result Memory) - Replica of Main Memory (Temp Result

Memory):

These two memories contain the required solutions. Initially, they are loaded with

an assumption of the result, which is chosen to be zero in our case.

During each iteration, one of these memories loads data to be operated on, while

the other memory stores the results of the calculations. This is to ensure that all

data operated on is the data from the last iteration and not new data.

After each iteration, data is stored in one of these memories depending on the

current iteration number. This data is then operated on during the next iteration

until the pre-defined number of iterations is reached.

Each row of these memories contains 1 floating-point element. Memory depth is

equal to the matrix dimension (the number of rows of the matrix).
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2. Diagonal and right-hand-side memory:

This is a read-only memory. For each row of the matrix, it contains the diagonal

and right-hand-side elements.

Depending on the input address, this memory loads these two elements of the

corresponding row onto the data lines for further processing in the ALU.

Each row of this memory contains 2 floating-point elements. Memory depth is

equal to the matrix dimension (the number of rows of the matrix).

3. Non-diagonal memory:

This is a read-only memory. For each row of the matrix, it contains the non-

diagonal elements. Only the non-zero elements of each row are stored in this

memory (since this is a sparse matrix).

Since the application under research generates matrices that contain only 2 non-

diagonal elements of non-zero values per row, each row of this memory contains

only 2 floating-point elements.

Depending on the input address, this memory loads these two elements of the

corresponding row onto the data lines for further processing in the ALU.

Each row of this memory contains 2 floating-point elements. Memory depth is

equal to the matrix dimension ( the number of rows of the matrix ).

4. Index memory:

This is a read-only memory. For each row of the matrix, it contains the indices

of the non-diagonal elements of non-zero values. These indices are then used to

choose the corresponding elements in the result memories to be multiplied by the

non-diagonal elements.

Depending on the input address, this memory loads these two elements of the

corresponding row onto the data lines for further processing in the ALU.

Each row of this memory contains 2 integer values. Memory depth is equal to the

matrix dimension (the number of rows of the matrix).

5.1.2.4 ALU

The ALU is responsible for all arithmetic operations performed on data. It models the

operations used in the Jacobi iterative method and works as follows:
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1. Multiplies the values of the non-diagonal memory with their corresponding val-

ues from the main or replica memory depending on the current iteration number

(whose indices are obtained from the index memory).

2. Adds the results of the multiplication in step 1 together.

3. Subtracts the addition result from the right-hand-side value (obtained from the

diagonal and right-hand-side memory) which corresponds to the current row being

operated on.

4. Divides the subtraction result by the diagonal value (obtained from the diagonal

memory) which corresponds to the current row being operated on.

5.1.3 Pros and Cons

The main advantage of this design is that, it is very simple and does not need much

hardware resources to be implemented. However, it is very slow since this design is not

pipelined and does not utilize the available hardware resources for parallel execution

(Only a single ALU is used).

5.2 Parallel Jacobi

5.2.1 Overview

This is the most complex, and least scalable architecture. It targets a great level of

parallelism in exchange for an exponential increase in cost in terms of hardware resources.

Figure 5.2 shows the design architecture. The ALU works just like Basic Jacobi’s except

for the fact that this design uses multiple ALU cores that operate on multiple data at

the same time for parallelism. This design’s complexity lies in its ability to operate on

all of the matrix rows in parallel, at the expense of a complex memory architecture that

limits this design’s scalability. This is explained in more depth in each section below.
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Figure 5.2: The architecture for Parallel Jacobi.

5.2.2 Design modules

5.2.2.1 Top module

This module encapsulates the design. It contains the main modules of the design and

connects them together. It is also responsible for instantiating the required number of

ALUs. Table 5.2 shows the parameterized components of the design.

Table 5.2: Parameterized components of Parallel Jacobi.

Parameter Description

number of equations Both are used to determine the number of
ALUs to be instantiated and also to

number of ALUs determine the number of block memories required

address width Represents the number of bits required to
access any element of the data memory.
Used in Index Memory to determine the

size of each element.

number of columns Represents the number of elements per row.

number of memories Represents the number of block memories needed

element width Represents the number of bits used for each
floating-point element (32 or 64).
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5.2.2.2 Control unit

Refer to Basic Jacobi’s control unit. One difference is that this design does not contain

a row counter. This is because this design’s main target was to do all calculations in

parallel, meaning that all rows are operated on at the same time, and this means that

the row counter is no longer needed.

5.2.2.3 Memory

1. Main Memory:

The architecture of this memory is completely different from that used in Basic

Jacobi. Due to the restrictions of on-chip memories, this memory instantiates

small memory blocks of 2 rows each. This is due to the fact the on-chip memories

usually have a small number of ports (usually 2). This memory instantiates as

many memories of these small memory elements as needed to hold all of the matrix

data. Using this technique, all of the memory elements can be accessed

at the same time, at the expensive of limited scalability. These memory

elements are then sent to all of the ALUs to be operated on. For more details on

the contents of the Main Memory, refer to Basic Jacobi’s Main Memory section.

2. Diagonal and right-hand-side Memory:

This memory uses the same technique discussed in the Main Memory section above.

The contents of this memory are the same as Basic Jacobi’s Diagonal and right-

hand-side Memory described before.

3. Non-diagonal Memory:

This memory uses the same technique discussed in the Main Memory section above.

The contents of this memory are the same as Basic Jacobi’s Non-diagonal Memory

shown before.

4. Index Memory:

This memory uses the same technique discussed in the Main Memory section above

The contents of this memory are the same as Basic Jacobi’s Index Memory de-

scribed before.
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5.2.2.4 ALU

This ALU operates in the same way as Basic Jacobi’s ALU with one extra step. The

choice of which data elements from the result memory to operate on is done in each ALU

on its own, since on-chip memories are limited in terms of flexibility and usually do not

have enough ports to serve all of the ALUs in this design. And this is the main reason

why this design is not scalable, since each ALU needs its own multiplexer which chooses

2 elements from the data memory. This accounts for a number of multiplexers equal

to number of ALUs multiplied by 2, and each of these multiplexers needs to be large

enough to choose between a huge number of elements which are all of the Main Memory’s

elements. This results in an exponential increase in hardware resources required as the

number of matrix rows increases due to the presence of 2 factors, the number of ALUs

needed for full parallelism, and consequently the number of multiplexers needed to server

all of these ALUs.

5.2.3 Pros and Cons

This design is extremely fast, operations are performed simultaneously on all the RHS

matrix rows. Total number of clock cycles needed for the design is independent of

matrix size. However, it has some disadvantages. It is a very complex design. This also

leads to less satisfactory synthesis results and lower clock frequency rates. The amount

of hardware resources needed increases extremely fast when matrix size increases. As

a result, it is not scalable. Software pre-processing is needed because initial memory

contents need to be split among several files first.

5.3 Pipelined Jacobi

5.3.1 Overview

The architecture shown in Figure 5.3 is an improved version of Basic Jacobi. It makes

a trade-off between design simplicity and high performance at low cost of resources.
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Figure 5.3: The architecture for Pipelined Jacobi.

Pipelined Jacobi consists of the same main components as Basic Jacobi. A control unit,

main memory, replica of main memory, diagonal and right-hand-side elements’ memory,

non-diagonal elements’ memory, index memory, and an ALU.

When a pre-defined number of iterations are reached, the halt signal is generated and

that indicates that the required computations have been finished.

Data flow for this design works as follows:

1. Control unit sends address to read data from the Index Memory.

2. Data read from the Index Memory is then sent to the Main Memory or Replica of

Main Memory to fetch data which needs to be operated on.

3. Control unit sends address to read data from the Non-diagonal Memory.

4. The ALU multiplies the data obtained from steps 2 and 3.

5. The ALU adds the results of the multiplication operations in step 4 together.

6. After step 5 is done, the control unit sends an address to read data from the

Diagonal and right-hand-side Memory.

7. The result obtained from step 5 is subtracted from the right-hand-side element

obtained from step 6. Meanwhile, the diagonal element obtained from step 6 is

delayed by ALU registers to be used later.
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8. The result of the subtraction operation in step 7 is divided by the diagonal element

saved in the ALU registers.

9. The control unit sends the appropriate address to the Main and Replica memories

and the appropriate signals which enable one of them for writing data. Meanwhile,

the ALU output it sent to those 2 memories as well to be stored.

5.3.2 Design modules

5.3.2.1 Top module

Refer to Basic Jacobi’s Top Module section. Table 5.3 shows the parameterized compo-

nents of the design.

Table 5.3: Parameterized components of Pipelined Jacobi.

Parameter Description

number of equations Represents the number of rows in the matrix.
It is used for defining the depth of each memory.

memories address width Represents the number of bits needed for
the address lines of each memory

number of iterations Represents the required number of
iterations to be executed. When this
iterations to be executed. When this

iteration number register width Represents the number of bits needed for
the iteration number counter

5.3.2.2 Control unit

Due to the pipelined nature of this design, the control unit is more complex than its

counterpart in Basic Jacobi. Each memory had to have its own counter that generates

an address that corresponds to the current element required for each ALU operation.

Jacobi method requires many arithmetic operations, 2 multiplications, 1 addition, 1

subtraction, and 1 division operation. Each of them needs different operands. That is

why the control unit is responsible for giving correct addresses to each memory to fetch

the appropriate operands for each operation.

The following counters are the main components of the control unit:
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1. memory index nonzero elements read address:

This counter’s value is sent to the Index Memory to fetch the required row.

2. memory nondiagonal values read address:

This counter’s value is sent to the Non-diagonal Memory to fetch the required row.

It is delayed by 1 cycle after the memory index nonzero elements read address to

account for the time needed by the ALU operations.

3. memory diagonal rhs read address:

This counter’s value is sent to the Diagonal and right-hand-side Memory to fetch

the required row. It is delayed by 5 cycle after the memory index nonzero elements

read address to account for the time needed by the ALU operations.

4. write address both result memories:

This counter’s value is sent to the Main Memory and Replica of Main Memory

along with the signals controlling data writing operations to write the data newly

generated by the ALU. It is delayed by 10 cycle after the memory index nonzero

elements read address to account for the time needed by the ALU operations.

5.3.2.3 Memory

1. Main Memory:

Refer to Basic Jacobi’s Main Memory section.

2. Diagonal and right-hand-side Memory:

Refer to Basic Jacobi’s Diagonal and right-hand-side memory section.

3. Non-diagonal Memory:

Refer to Basic Jacobi’s Non-diagonal Memory section.

4. Index Memory:

Refer to Basic Jacobi’s Index Memory section.

5.3.2.4 ALU

There is one difference between this ALU and Basic Jacobi’s ALU. Since this is a

pipelined design, a new row is fetched at each new clock edge. This caused a minor
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problem because the diagonal and right-hand-side memory contained 2 different ele-

ments that are required at different time steps. To solve this, some registers were added

in the ALU to delay the diagonal element by the required number of cycles. This prob-

lem was solved in a later design by splitting the diagonal and right-hand-side memory

into 2 separate entities to avoid using extra hardware resources.

5.3.3 Pros and Cons

This design is faster than Basic Jacobi. It does not need much hardware resources to be

implemented. However, The pipeline needs to be flushed after every iteration, (cannot

just run continuously because all the new data needs to be stored first). Morever, the

design does not utilize the available hardware resources which can be used to turn this

design into a multi-core design for much more productivity.

5.4 Clustered Jacobi

5.4.1 Overview

Figure 5.4 shows the architecture for Clustered Jacobi. This design is quite different

from all of the previous versions. It is different in terms of memory architecture, control

unit architecture and ALU architecture.

Figure 5.4: The architecture for Clustered Jacobi.
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It performs the same arithmetic operations of Jacobi Method except that the final divi-

sion operations is turned into multiplication operations with the second operand being

the inverse of the diagonal element (calculated using software) to save some hardware

resources for more cores. Division operations are not very time-consuming when done

on software. For the order of these arithmetic operations, refer to the ALU section in

Basic Jacobi.

This design splits the matrix into clusters, where each cluster contains a number of rows.

Each cluster is independent on the others, so all of them can be operated on in parallel.

Each cluster takes a single step to be operated on in this design’s pipeline, making this

design very powerful.

Memory architecture is different in that, unlike Basic Jacobi and Pipelined Jacobi, each

memory row contains a whole cluster of data instead of just 1 row of the matrix. This

makes up for memory constraints and allows memories to serve more arithmetic cores

simultaneously. These clusters are also pre-processed on software to minimize any extra

operations needed to get the required data - like multiplexing which costs quite a lot of

hardware resources when used on a large scale - and each memory row is self-contained

such that the older Index Memory used in Basic Jacobi and Pipelined Jacobi is no

longer needed. Each row has its corresponding operands ready in the other memories.

Temporary result memory is no longer needed since each row of the matrix is self-

contained and can - without any conflicts - be overwritten after being operated on

without affecting the other rows, since the other rows are also self-contained and have

their own independent data elements.

5.4.2 Design modules

5.4.2.1 Top module

It encapsulates all of the design modules and simple connects them together. It has

no other functionalities unlike Basic Jacobi and Pipelined Jacobi. Table 5.4 shows the

parameterized components of the design.
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Table 5.4: Parameterized components of Clustered Jacobi.

Parameter Description

number of clusters Represents the number of clusters in the matrix.
Used to define the number of rows in memories.

number of equations per cluster Represents the number of rows per cluster.
Used to define the number of elements in

each row of each memory.

element width Represents the number of bits used for each
floating-point element (32 or 64).

memories address width Represents the number of bits needed for
each address counter in the control unit.

5.4.2.2 Control unit

This design contains a control unit that is somewhat more complex than its counterpart

in Pipelined Jacobi, but still a lot less complex than its counterpart in Parallel Jacobi.

The control unit controls data flowing out of and into memories, which means that this

unit controls data flowing into and out of the ALU as well. It simply controls the whole

design.

The following counters are the main components of the control unit:

1. result memory read address:

This counter controls which row is read from the result memory at the current

cycle.

2. nondiagonal memory read address:

This counter controls which row is read from the non-diagonal memory at the

current cycle, it is completely synchronized with result memory read address since

we no longer need to get the indices of the non-diagonal elements of non-zero values

because each row is self-contained.

3. diagonal memory read address:

This counter controls which row is read from the diagonal memory at the current

cycle. It is delayed after result memory read address by 6 cycles to account for

the order in which ALU operations are done.

4. rhs memory read address:

This counter controls which row is read from the right-hand-side memory at the
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current cycle. It is delayed after result memory read address by 10 cycles to ac-

count for the order in which ALU operations are done.

5. result memory write address:

This counter controls which row is written into the result memory at the current

cycle. It is delayed after the result memory read address by 13 cycles to account

for the order in which ALU operations are done.

5.4.2.3 Memory

1. Main Memory:

Refer to Basic Jacobi’s Main Memory section. The only difference is that each row

in this memory contains a whole cluster instead of a single element. This memory’s

depth is equal to the matrix dimension (the number of rows in the matrix) divided

by the number of rows per cluster.

2. Diagonal and right-hand-side Memory:

There is some difference from Basic Jacobi concerning this module. This design

uses 2 separate memories instead of just 1 memory for both the diagonal and

right-hand-side elements. This allows much more flexibility and also removes the

need to use extra registers to delay data as illustrated in Pipelined Jacobi’s ALU

section. Each row in each of these memories contains a whole cluster of elements.

For further details on these memories’ contents, refer to Basic Jacobi’s Diagonal

and right-hand-side Memory section.

This memory’s depth is equal to the matrix dimension (the number of rows in

the matrix) divided by the number of rows per cluster. Each row of each of these

memories contains a number of floating-point elements equal to the number of

rows per cluster.

3. Non-diagonal Memory:

Refer to Basic Jacobi’s Non-diagonal Memory section. The only difference is that

each row of this memory contains a whole cluster’s worth of data instead of just a

single element. This memory’s depth is equal to the matrix dimension (the number

of rows in the matrix) divided by the number of rows per cluster.
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5.4.2.4 ALU

This ALU is different from the ones implemented in the previous designs in 2 ways.

First, the final division operation is turned into a multiplication by inverse operation to

minimize the ALU core cost in terms of hardware resources and to allow more cores to

be implemented. Second, unlike the previous designs, which used a pre-defined value as

the number of required iterations, this design uses a stand-alone module called Result

Convergence Check which is sophisticated enough to decide when to stop operating

on data. For more details on the Result Convergence Check module, refer to Result

Convergence Check section below.

5.4.3 Result Convergence Check

This is a new module introduced in this design. It is responsible for deciding when to stop

operating on data. It is given a pre-defined value representing the error tolerance between

iterations (the difference in value between two consecutive iterations) and whenever the

current tolerance is below that pre-defined tolerance value, this module generates a halt

signal indicating end of operations.

5.4.4 Pros and Cons

This design has many advantages. It has the least execution time among other designs.

It is a very flexible multi-core system that can be configured for a broad range of matrix

sizes with a broad range of ALU cores for increased productivity (depends on available

hardware resources). Unlike Pipelined Jacobi, the pipeline does not need to be flushed

after each iteration since the memory architecture allows each row to be self-contained.

On the other hand, extra software-based pre-processing is needed to put the matrix in

a form compatible with this design (Cluster form).
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5.5 Summary

The Jacobi approach went through many optimizations depending on the changing re-

quirements and dealing the different drawbacks of each new design.

The first design used was Basic Jacobi, which is a simple design modeling the Jacobi it-

erative method in a simple manner without any optimizations. There were two available

tracks to optimize this design. One of them was by implementing a pipelined design

with a little more hardware resources in order to improve performance greatly. This led

to Pipelined Jacobi. The other track was to utilize the vast hardware resources available

on the emulator by implementing a multi-core design. This led to a prototype, Parallel

Jacobi, which proved to be impractical.

Further improvements occurred which utilize both the advantages of the pipelined de-

sign and the multi-core design. These resulted in an extremely powerful design. After

improving that new design’s pipeline even further, Clustered Jacobi was introduced,

which is by far the most powerful iterative design mentioned here.
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Case study

As a proof of concept, we applied our proposed hardware solutions on a complete case

study by using time-domain finite element methods for solving metamaterial model equa-

tions. We choose Metamaterials because they attracted great attention of researchers

since their successful construction in 2000.

There is currently an enormous effort in the electrical engineering, material science,

physics, and optics communities to come up with various ways of constructing efficient

metamaterials and using them for potentially revolutionary applications in antenna and

radar design, subwavelength imaging, and invisibility cloak design. Hence, simulation

of electromagnetic phenomena in metamaterials becomes a very important issue. For a

detailed discussion about metamaterials and their mathematical models, please refer to

appendix A.

In [22], Jichun Li and Yunqing Huang presents a detailed discussion on how to code the

two-dimensional edge element for solving metamaterial Maxwell’s equations. They cover

the whole programming process including mesh generation, calculation of the element

matrices, assembly process, and postprocessing of numerical solutions. They constructed

a complete MATLAB source codes of a mixed finite element method (FEM) for a 2-D

Drude metamaterial model. We modifed the codes to fit with our case study and our

complete program is discussed below.

Our programs starts with a GUI interface to choose between software or hardware solu-

tion as shown in Figure 6.1.

54



Chapter 6. Case study 55

Figure 6.1: Main GUI application screen.

In the Software solution the whole calculations are performed using MATLAB and the

solver part is based on MATLAB special operator [23]. For the hardware solution, only

pre and post processing calculations are performed on MATLAB while the solver part

is moved to the emulator environment.

6.1 Software solution

If we choose the software solution, another GUI screen would appear as shown in Figure

6.2 to take the inputs from the user as following:

� X Low:

It represents the X co-ordinate of the lower edge in the two-dimentional element.

� Y Low:

It represents the Y co-ordinate of the lower edge in the two-dimentional element.

� X High:

It represents the X co-ordinate of the higher edge in the two-dimentional element.

� Y High:

It represents the Y co-ordinate of the higher edge in the two-dimentional element.
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� X Elements:

It represents the number of elements in which the user needs to divide the hori-

zontal part into meshes in X-direction.

� Y Elements:

It represents the number of elements in which the user needs to divide the vertical

part into meshes in Y-direction.

� Damping freq.:

It represents the damping frequency of the metamaterial.A simple case for achiev-

ing negative refraction index is to choose Damping frequency to be 0 as illustrated

in appendix A.

� Plasma freq.:

It represnets the plasma frequency of the metamaterial (the frequency at which

it becomes transparent). Any metal below its plasma frequency yields negative

values of the permittivity.

Figure 6.2: Software-based solver screen.

The GUI button Simulate calls the main function Drude cn which is divided into three

main parts: Preprocessing, Solver and Postprocessing. These parts are discussed

in the next sections. The final output of this function is the graphs of Electric and

Magnetic fields.
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6.1.1 Preprocessing

This part of code is responsible of generating regular rectangular meshes from the given

two-dimentional element whose parameters are predifined by the user.

The first step is defining the global variables and vectors which are used in important

calculations in the program. The main global variables are ”gauss, psiJ, etaJ” which rep-

resent the Gaussian quadrature points, ”rk4a, rk4b, rk4c” which represent Low storage

Runge-Kutta coefficients [24], ”Ex,Ey,Jx,Jy”, which represent the exact electric field and

electric polarization, ”HH,KK” which represent the exact magnetic field and magnetic

polarization, and ”f1RHS,f2RHS,gRHS” which represent the exact RHS.

The electric polarization is a slight relative shift of positive and negative electric charge

in opposite directions within an insulator, or dielectric, induced by an external electric

field. Polarization occurs when an electric field distorts the negative cloud of electrons

around positive atomic nuclei in a direction opposite the field. This slight separation of

charge makes one side of the atom somewhat positive and the opposite side somewhat

negative. Polarization P in its quantitative meaning is the amount of dipole moment p

per unit volume V of a polarized material, P = p/V .

Magnetic polarization effects are similar to electric polarization effects. Just as electric

dipole moments control the behavior of dielectric materials, magnetic dipole moments

control the behavior of magnetic materials.This polarization produces a new field that

adds to the applied field. However, there are important differences:

1. While dielectric materials reduce an applied electric field, typical magnetic materi-

als enhance an applied magnetic field. These materials are said to be paramagnetic.

Aluminum and sodium are paramagnetic at room temperatures, as is iron oxide.

Iron oxide will be our representative paramagnet.

2. No magnetic charge has ever been isolated. Thus, while electric dipole moments

are caused by a pair of electric charges with opposite sign, this does not seem to

be the mechanism for creating magnetic dipole moments. For all cases in which

the origin of a magnetic dipole moment is understood classically, the moment is

caused by a circulating current. (This omits intrinsic magnetic moments such as

that possessed by the electron, which is apparently a point object.)
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The most important similarity between dielectric and paramagnetic phenomena is the

relation between the applied field and the resulting polarization (measured by the dipole

moment per unit volume).

There is another important variable, id bc, which will be discussed later.

For creating a mesh, we start by defining the size of each mech through the following

equation:

dx =
highx− lowx

nelex
(6.1)

dy =
highy − lowy

neley
(6.2)

Where dx represents the horizontal length of a mech in X-direction, dy represents the

vertical length of a mech in Y-direction, nelex simulates the user input ”X Elements”

represents the number of elements in which the user needs to divide the horizontal part

into meshes in X-direction and neley is the same as nelex except it represents the number

of elements in Y-direction. The resulted shape of meshes is similar to that in Figure 6.3,

and number of meshes differs according to the given value by the user.

In order to save the coordinates of meshes’ nodes , we created a two-dimentional array

, no2xy, to do this job, where the first row holds the x-coordinate of all nodes and the

second row holds the y-coordinate.

Similar to the classical nodal based finite element method [25], we need to build up a

connectivity matrix ”el2no” which holds the global values of all nodes as shown in Figure

6.4.

el2no is a two-dimentional matrix where each column represents the nodes of a mesh or-

dered counterclockwise. For the lowest-order rectangular edge element, el2no(i,j) denotes

the global label of the i-th node of the j-th element, where i = 1,2,3,4, j = 1,....,numel,

and numel denotes the total number of elements.

Since unknowns in edge element space are associated with edges in the mesh, we need to

number the edges and associate an orientation direction with each edge. To do this, we

assume that each edge is defined by its start and end points, and each edge is assigned a
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Figure 6.3: Mesh generation.

Figure 6.4: Mesh donation using el2no.
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global edge number. This task can be done by creating a two-dimentional array , edges,

which holds the start and end points of all edges of all meshes, this array is sorted to

make sure that all edges are in the increasing direction of X and Y directions. After that,

the function ”Unique” is used to remove all repeated edges from the array (interior edges

between adjacent meshes).The next step, a two-dimentional array el2ed(i,j), is created

to store the global number of i-th edge of the j-th element, where i = 1,...,4, and j =

1,...,numel as shown in Figure 6.5.

Figure 6.5: Final shape of meshes.

Depending on the type of boundary condition of the problem, we set the value of the

variable ”id bc”. As our test case is dealing with Dirichlet boundary condition(Partial

differential equation boundary conditions which give the value of the function on a

surface), we set the value of id bc to be 1 to deal only with the interior edges of the

mesh grid as shown in Figure 6.6.

The last step in preprocessing, two arrays are created, the first one, eint, holds the label

of all interior edges only in the grid, and the other array, edori, is a two-dimentional array

which holds a notation to the orientation of every edge in the grid. If the edge is oriented

clockwise, its value in this array will be one, and if it is oriented counterclockwise, its

value will be negative one.
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Figure 6.6: Using interior edges only from mesh grid.

6.1.2 Solver

The aim of this part of the program is to solve a system of linear equations represented by

metamaterial mesh generated(discussed in the previous section). The main matrix and

the RHS vector are both used to produce electric and magnetic fields. In this software

solution, we use matlab special operator (mldivide, \). x = A\B solves the system of

linear equations A∗x = B where matrices A and B must have the same number of rows.

6.1.3 Postprocessing

Calling the function ”Drude cn post”, our program starts to perform postprocessing.

In this function we draw the resulted electric field and magnetic field of the given material

as shown in Figures 6.7 and 6.8 after solving the system of equations.These figues shows

the

By increasing the number of mesh elements in x-direction and y-direction, the resolution

of calculated electric field and magnetic field will increase too.
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Figure 6.7: Electric field.

Figure 6.8: Magnetic field.
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6.2 Hardware solution

If the user chooses the hardware-based solution from the main GUI screen, another win-

dow appears as shown in Figure 6.9, which consists of the same input parameters used in

software solution, and another four simple GUI buttons which are Generate(Jacobi),

Post-process (for the Jacobian solution technique), Generate(Gaussian) and Post-

process(for the Gaussian solution technique).

Figure 6.9: Hardware-based solver screen.

The hardware solution is divided into three parts like the software one, preprocessing,

solver and postprocessing. But, the difference is that in hardware solution, pre and

postprocessing parts are executed using MATLAB script, while the solver is executed

on an emulator machine.

6.2.1 Preprocessing

The two GUI buttons, Generate(Jacobi) and Generate(Gaussian), are used to perform

this task in the same way as the software solution preprocessing, which is discussed

in an earlier section. For each button, two Matlab functions are called. The first

one, Drude cn fast cluster generate is the same for both buttons. It is respon-

sible for general preprocessing and cluster preparation that will be discussed later.

The second function varies between the two buttons. The Generate(Jacobi) button

calls script cluster separatedMem and the other button, Generate(Gaussian), calls
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two point six writefiles. Both are responsible for generating memory files needed by

the hardware solution. The generated files depend on a new concept called, Clustering,

which is discussed in the coming section.

6.2.2 Clustering

In order to gain a high performance on the hardware for solving system of linear equa-

tions, we need to solve them in parallel. We couldn’t solve linear equation in parallel

as long as there are high dependencies between them, so we need a way to reduce those

dependencies between equations. There is a property in the output matrix of the finite

element method that can be used to reduce those dependencies named Clustering.

This property appears in the output matrix as the finite element method divides the

test element into square meshes and calculations takes place on the edges of the mesh.

Vertical edges in one row and horizontal edges in one column each contribute in the

main output matrix with equations with high dependencies between them and low de-

pendencies with other equations in the matrix we named each group of those equations

a cluster. Figure 6.10 shows the edges contribution in each cluster, edges of the same

cluster has the same color.

Figure 6.10: Edges contribution in each cluster for 3x3 meshes.

The generation of the clusters depends on a matrix generated for the preparation of the

generation of the output matrix in the Matlab code, the matrix name el2ed (element to

edge) and it size is 4 * number of meshes in the test element. Each column of el2ed refers

to a mesh and the four rows refer to the four edges in each mesh, the values stored in
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el2ed represent the location of the contribution of each edge in the main output matrix.

By using the el2ed matrix we could extract each cluster from the main matrix, and then

reform them to smaller sizes as shown in Figure 6.11 and Figure 6.12. Figure 6.11 shows

the main output matrix and the location of some clusters in it. While Figure 6.12 shows

the shape of any cluster extracted from the main output matrix after reformation.

Figure 6.11: Clusters in 40x40 matrix where each colored square refers to a cluster,
blue dots refer to non-zero elements, and white spaces refer to zero elements.

Figure 6.12: Cluster after reformation.

Number of clusters in the main output matrix is related to number of meshes in x-

direction and in y-direction, which is equal to number of mesh in x-direction plus number

of mesh in y-direction.
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There is no doubt that using of the clusters would have a huge impact on the speed of

solving linear system of equations. For example, if we have 40x40 matrix this matrix

would have ten 4x4 clusters so if we design a system that have 10 ALUs to solve all the

clusters in parallel, therefore the time needed to solve 40 linear equation will be equal

to the of solving 4 linear equations which is a huge drop in solving time.

6.2.3 Solver

This part is the most consuming time and as a result it is moved to hardware-based

platform (Emulator). Different hardware implementations were discussed in the previous

chapters. Obtained results will be discussed in the next chapter.

6.2.4 Postprocessing

In this part, we use two different ways of postprocessing depending on the chosen solution

technique (Gaussian or Jacobian). The difference comes from the 1st Matlab function

to be called after the solver. For Jacobi, read out Jacobi takes the emulator output

file as an input and co-operate with declustering to turns it into the regular form that

Matlab can deal with(solution vector n × 1). The function two point six readout

does the same operation but for Gaussian solution.

After that, the Drude cn post function is called. It does the same operations as

illustrated before in the software solution section.

6.3 Another implementation for software solution using

C++

n order to compare our solutions with software-based solvers other than MATLAB, we

implemented a C++ code that performs the same software solution operations (prepro-

cessing and solver) using different language and libraries discussed in the next sections.

Out program starts by calling the main function, which asks the user to provide the

required input parameters used in different operations in the program sequence. As

shown in Figure 6.13, all the input parameters are the same as that used in MATLAB
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software-based solution, except the input variable state which allows the user to choose

whether he wants to solve for interior edges only or to solve for the whole grid of meshes.

Figure 6.13: C++ software-based implementation main screen.

6.3.1 Preprocessing

After setting the input parameters, our program’s contructor method starts to define

all variables and vectors used through the program. The main method we used to

begin our preprocessing is called ”startCalulations”. In this function we define the

same important matrices as MATLAB software-based solver (no2xy, el2no, edges and

el2ed)using the same algorithms discussed earlier in the MATLAB software-based solver.

The ”startCalulation” function starts to call extra implemented functions to perform

another tasks as ”getMin” and ”getMax” which are used to get the minimum and max-

imum elements in a given vector. The function ”otherCalc” is used to perform some

electromagnetic calculations used in creating the system of equations, and the last im-

plemented method is ”getInterior” which is used to produce system of equations using

only the interior edges of the mesh grid.

To implement so, we used an open source library called ALGLIB. ALGLIB is a cross-

platform numerical analysis and data processing library. It supports several program-

ming languages (C++, C#, Pascal, VBA) and several operating systems (Windows,

Linux, Solaris). ALGLIB features include:

� Data analysis (classification/regression, including neural networks).

� Optimization and nonlinear solvers.

� Interpolation and linear/nonlinear least-squares fitting.

� Linear algebra (direct algorithms, EVD/SVD), direct and iterative linear solvers,

Fast Fourier Transform.
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� and many other algorithms (numerical integration, ODEs, statistics, special func-

tions).

6.3.2 Solver

That is the most important part of this software program. It is performed by calling

the function solving(). In this function we use a conditional statement to determine

whether to solve the whole mesh grid’s edges or the interior ones only according to the

value os state variable (id bc) provided by the user at the begining of this program. If

the value of id bc is 1, then the solving will concern only the interior edges, and if it

is 0, it will solve for all edges. The solution process is performed using ALGLIB solver

through these functions: lincgcreate, which initializes linear CG Solver. This solver is

used to solve symmetric positive definite problems, LinCGSolveSparse function which

procedure for solution of A× x = b with sparse matrix, and lincgresults which produces

the result from the solving process.

Finally, we should mention that the C code described above runs on a 2.00GHz Core

i7-2630QM CPU with 6GB of RAM. The optained results are given in chapter 7
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Experimental results

7.1 Experimental setup

Our architectures were modeled using Verilog, and Xilinx ISE Design suite 14.6 was

used to check their functional correctness. Designs were then compiled and run on

Mentor Graphics Emulator (egytrior) with 2 Advanced Verification Boards (AVB). That

platfrom provides a total capacity of 32 Crystal chips with 1GB of memory. Crystal chips

are equivalent to FPGAs but use different technology. A Crystal chip has around 500K

of logic gates. Construction of one AVB is shown in Figure 7.1.

Figure 7.2 highlights the main steps included in the emulation design process. The

Analyze step takes Verilog files as inputs and performs syntax checking. RTLC is re-

sponsible for generating structural Verilog netlist of Veloce primitives; LUT, tri-state,

flip-flop, latch, and memory. VELSYN or Veloce synthesizer performs partitioning and

ASIC netlists for each crystal chip where crystal chip is the programmable logic for em-

ulation. After that, VELCC (Veloce Chip Compiler) does placing and routing. Finally,

VELGS or Veloce Global scheduler performs final timing analysis and generates timing

info for resources access, memories and IO access, emulator events and clocks.

7.2 Experimental results

This section evaluates the performance of the hardware implementations for the de-

signs described in chapters 3, 4 and 5 in terms of resource utilization, speed-up over
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Figure 7.1: Veloce AVB.

Figure 7.2: Emulation flow overview.
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software solution and numerical precision. All test cases used are generated from the

preprocessing part of the case study discussed in chapter 6.

7.2.1 Resource utilization

In this section, resource utilization for the various implementations is discussed. The

measured resources include number of LUTs, number of flip-flops, amount of memory

bytes and number of FPGAs used in each design. Also, the maximum frequency at

which the design is allowed on the emulator is introduced.

7.2.1.1 Cramer architectures

Table 7.1 compares the logic utilization and operating frequency of the first hardware

approach based on Cramer method for different test cases. The approach was discussed

in detail in chapter 3. The obtained results show that the design is not scalable.

Table 7.1: Hardware resource utilization for first approach.

Cramer

Number of equations 2 3 4 5
Max frequency (kHz) 1851.9 1851.9 1851.9 1851.9
Number of LUTs 13,339 59,507 194,331 557,759
Number of flip-flops 288 512 800 1,152

7.2.1.2 Gaussian architectures

Table 7.2 compares the logic utilization, memory capacity and operating frequency of

the first two Gaussian elimination architectures, second approach with skip and Full

skip discussed in Sections 4.4 and 4.5.

Table 7.2: Hardware resource utilization for second approach With skip and Full skip.

With skip Full skip

Number of equations 12 60 420
Max frequency (kHz) 469 432 497
Number of LUTs 84,298 154,500 1,057,067
Number of flip-flops 6,769 15,774 107,946
Memory bytes 624 15,616 862,208
Number of FPGAs in design 3 3 15
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Table 7.3 compares the logic utilization, memory capacity and operating frequency of

Parallel Jacobi discussed in Section 4.7 for different test cases.

Table 7.3: Hardware resource utilization for single floating point Clustered Gaussian
using different test cases.

second approach using sparse with clusters

Number of equations 40 420 11,100 19,800 44,700 60,900
Number of ALUs 10 30 150 200 300 350
Max frequency (kHz) 411 406.5 387 396 347 370.4
Number of LUTs 65,178 195,472 977,195 1,302,918 1,954,331 2,280,075
Number of flip-flops 5,132 15,376 76,822 102,422 153,624 179,224
Memory bytes 480 5,760 230,400 307,200 921,600 1,075,200
Number of FPGAs in design 1 3 13 18 26 31

7.2.1.3 Jacobi architectures

Table 7.4 compares the logic utilization, memory capacity and operating frequency of

basic and pipelined jacobi discussed in Sections 5.1 and 5.3.

Table 7.4: Hardware resource utilization for Basic and Pipelined Jacobi.

Basic Jacobi Pipelined Jacobi

Number of equations 24 24
Number of ALUs 1 1
Max frequency (kHz) 476.2 1851.9
Number of LUTs 6,634 6,863
Number of flip-flops 805 884
Memory bytes 832 832
Number of FPGAs in design 1 1

Table 7.5 compares the logic utilization, memory capacity and operating frequency of

Parallel jacobi discussed in Section 5.2 for different test cases. The results show that the

number of LUTs and flip-flops used increases exponentially and the operating frequency

decreases as the number of solved equations increases. That occurs due to the problem

of distributed memory illustrated in Section 5.2.2.3.

Table 7.6 and Table 7.7 show the logic utilization, memory capacity and operating

frequency of Clustered jacobi discussed in Section 5.4 using single and double floating

point precision for different test cases. The obtained results show that the operating

frequency is almost stable for different test cases and equals the maximum available

frequency for the used emulator. That guarantees linear running time as it will depend
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Table 7.5: Hardware resource utilization for Parallel Jacobi using different test cases.

Parallel Jacobi

Number of equations 12 24 60 144
Max frequency (kHz) 450.5 387.6 411.5 352.4
Number of LUTs 85,401 185,149 586,797 2,101,129
Number of flip-flops 8,171 16,379 41,051 99,083
Memory bytes 252 516 1,290 3,168
Number of FPGAs in design 2 3 8 29

only on the number of clock cycles. The main source that introduces an increase in

hardware resources consumption is the increase in the number of ALUs. The critical

path is generally not affected.

Table 7.6: Hardware resource utilization for single floating point Clustered Jacobi
using different test cases.

Clustered Jacobi (single)

Number of equations 420 1,200 4,900 11,100 44,700 179,400
Number of ALUs 14 24 49 74 149 299
Max frequency (kHz) 1666.7 1666.7 1851 1754.4 1587.3 1754.4
Number of LUTs 106,401 177,933 356,749 535,566 1,071,976 2,144,796
Number of flip-flops 18,752 29,878 57,684 85,490 168,896 335,702
Memory bytes 8,704 30,208 124,416 376,832 1,521,664 6,115,328
Number of FPGAs in design 2 3 5 8 15 29

Table 7.7: Hardware resource utilization for double floating point Clustered Jacobi
using different test cases.

Clustered Jacobi (double)

Number of equations 420 1,200 3,120
Number of ALUs 14 24 39
Max frequency (kHz) 1282.1 1333.3 1149.4
Number of LUTs 716,902 1,236,864 2,016,786
Number of flip-flops 69,359 114,645 182,571
Memory bytes 17,408 60,416 197,632
Number of FPGAs in design 10 17 27

7.2.2 Speed-up

Speed-up is a very common criterion to evaluate the performance of a parallel system.

In this section, the speed-up is evaluated using the hardware implementations presented

in chapters 3, 4 and 5 against the best software algorithms; Matlab and ALGLiB.
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We used Matlab’s special operator for solving systems of linear equations on a 2.00GHz

Core i7-2630QM CPU and ALGLiB, a numerical analysis and data processing library,

using C++ programming language under linux on a 2.00GHz Core i7-2630QM CPU.

7.2.2.1 Gaussian architectures

Tables 7.8 and 7.9 show the obtained results from comparing the 32-bit Floating-point

Clustered Gaussian Elimination Hardware Implementation against software solutions.

Table 7.8: 32 bit Floating-point Clustered Gaussian Hardware vs Software (MAT-
LAB)

Number of equations Matlab Gaussian speed-up

40 7.70E-05 7.79E-05 0.988
420 0.000203721 3.25E-04 0.627

11,100 0.004055954 0.001891473 2.1444
19,800 0.009724745 0.002479798 3.922
44,700 0.025323542 0.004270893 5.929
60,900 0.0367694 4.68E-03 7.8633

Table 7.9: 32 bit Floating-point Clustered Gaussian Hardware vs Software (ALGLIB)

Number of equations ALGLIB Gaussian speed-up

40 7.59205E-06 7.79E-05 0.09752
420 4.09283E-05 3.25E-04 0.12604

11,100 0.001118666 0.001891473 0.591449
19,800 0.00211229 0.002479798 0.851832
44,700 0.00517497 0.004270893 1.21171
60,900 0.00948192 4.68E-03 2.0277844

Figure 7.3 shows a graphical representation of the results in Tables 7.8 and 7.9. Time

(in seconds) is plotted against the number of equations solved for different test cases.

7.2.2.2 Jacobi architectures

Tables 7.10 and 7.11 give the obtained results from comparing the 32-bit Floating-point

Clustered Jacobi Hardware Implementation against software solutions.

Figure 7.4 shows a graphical representation of the results in Tables 7.10 and 7.11. Time

(in seconds) is plotted against the number of equations solved for different test cases.

Both software and hardware solutions increase almost linearly. However the slope in
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Figure 7.3: 32 bit Floating-point Clustered Gaussian Hardware vs Software

Table 7.10: 32 bit Floating-point Clustered Jacobi Hardware vs Software (MATLAB)

Number of equations Matlab Jacobi (32-bit) speed-up

420 0.000203721 3.19E-04 0.639
1,200 0.000458758 6.72E-04 0.683
4,900 0.001747283 0.001091 1.6
11,100 0.004055954 0.001721 2.357
44,700 0.025323542 0.0037926 6.676
179,400 0.160800825 0.006167 26.07

Table 7.11: 32 bit Floating-point Clustered Jacobi Hardware vs Software (ALGLIB)

Number of equations ALGLIB Jacobi (32-bit) speed-up

420 4.09283E-05 3.19E-04 0.128467
1,200 0.000107811 6.72E-04 0.160436
4,900 0.000513232 0.001091 0.470423
11,100 0.001118666 0.001721 0.650009
44,700 0.00517497 0.0037926 1.36449
179,400 0.03611 0.006167 5.85526
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case of the hardware solution is less than the slope of software solutions. As a result,

More speed-up is obtained at large number of equations.

Figure 7.4: 32 bit Floating-point Clustered Jacobi Hardware vs Software

Tables 7.12 and 7.13 give the obtained results from comparing the 64-bit Floating-point

Clustered Jacobi Hardware Implementation against software solutions.

Table 7.12: 64 bit Floating-point Clustered Jacobi Hardware vs Software (MATLAB)

Number of equations Matlab Jacobi (64-bit) speed-up

420 0.000203721 9.57E-04 0.212
1,200 0.000458758 0.00152 0.302
3,120 0.001165882 0.0028 0.416

Table 7.13: 64 bit Floating-point Clustered Jacobi Hardware vs Software (ALGLIB)

Number of equations ALGLIB Jacobi (64-bit) speed-up

420 4.09283E-05 9.57E-04 0.042766
1,200 0.000107811 0.00152 0.070928
3,120 0.000348027 0.0028 0.124295
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7.2.3 Numerical precision

In this section, numerical precision is compared between hardware implementations and

Matlab solution for our case study discussed in chapter 6. The maximum absolute error

between Matlab solution and both hardware solutions (Clustered Jacobi and Clustered

Gaussian) for different test cases are given in Table 7.14.

Table 7.14: Absolute error in the Clustered Jacobi and Clustered Gaussian with
respect to software(Matlab)

Number of equations Jacobi error Gaussian error

420 6.17E-07 1.34E-07
11,100 9.88E-07 1.42E-07
44,700 1.03E-06 1.44E-07

Table 7.15 shows the effect of using 64 bit Floating-point modules instead of 32 bit

Floating-point ones on accuracy. The absolute error decreased dramatically from 10−6

to 10−13. That happens at the expense of the total number of LUTs and other hardware

resources used to implement the design.

Table 7.15: Absolute error in the 64 bit Floating-point Clustered Jacobi with respect
to software(Matlab)

Number of equations Jacobi d error

420 3.76E-13
1,200 6.65E-13
3,120 8.10E-13



Chapter 8

Conclusion and future work

8.1 Conclusion

This work tackled the electromagnetic fields simulation problem, which is one of the most

widely studied problems in electrical engineering. The main target was to implement

hardware solutions capable of minimizing the huge time requirements for simulating

complex electromagnetic systems, which would consequently greatly minimize analysis

time, debugging time, and time to market. Being one of the most recently introduced

topics with a wide range of important applications, this work used Metamaterials as a

case study.

Among the different available numerical methods for solving Maxwell’s equations, the

Finite Element Method was chosen as it is a highly versatile numerical method that has

received considerable attention by scientists and researchers around the world after the

latest technological advancements and computer revolution of the twentieth century.

Three different algorithms for solving systems of linear equations were implemented in

Verilog as hardware-based solutions. Moreover, many variants of each of these algorithms

were introduced depending on the growing need for more efficient solutions throughout

this work. The introduced approaches included Cramer and Gaussian Elimination as

direct methods, and Jacobi method as an example of iterative methods. These variants

ranged from extremely fast designs which were not scalable such as Cramer and Par-

allel Jacobi, to considerably fast, scalable designs with a high degree of flexibility such

as Clustered Sparse Gaussian Elimination and Clustered Jacobi, going through other
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designs which were the bases of all these efficient algorithms such as Basic Jacobi and

Gaussian Elimination. Other solutions were considered which were not as promising,

and therefore, were not mentioned in this thesis.

Emulation technology was introduced in this work for the first time in electrical engi-

neering research, which shed light on a new path of research in solutions to problems

involving electromagnetic fields as a specific example, and other problems involving hard-

ware platforms in general. Many test cases were considered and tested on the emulator

hardware platform against software solutions including Matlab as a benchmark for ma-

trix solvers, and ALGLiB as an example of standard C++ libraries. The results of these

various test cases were documented in this thesis to show the difference in efficiency

between software and hardware solutions.
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8.2 Future work

Some suggestions and directions for future work are presented below:

1. The architecture of 64 bit floating-point Clustered Jacobi need to be enhanced to

achieve higher speed up over software solutions.

2. There is a need to implement the GUI and the post-processing part of our program

in C/C++. That will give us the opportunity to move all our work to the Emulator

server machine.

3. Implementing hardware solutions for Maxwell’s equations using methods other

Finite Element Method would be another useful extension of this study, as the

problem targeted in the thesis mainly depends on FEM.

4. The concept of DPI has only been demonstrated on one architecture. It would

be useful to integrate the whole designs with DPI to have more flexiblity on the

emulator environment and save compiling time.

5. Currently, A simple Electormagnetic fields case study is introduced as a proof of

concept only. Complex designs need to be discussed to evaluate the performacne of

the hardware-based implementations against large scale problems. Timing results

need to be compared to EM simulators like HFSS and CST.



Appendix A

Metamaterials

Let us start this Appendix with a brief discussion on the origins of metamaterials, and

their basic electromagnetic and optical properties. We then present some of metamate-

rial potential applications. After all these, a brief overview of the related mathematical

problems is provided by introducing the governing equations used to model the wave

propagation in metamaterials.

A.1 The Concept of Metamaterials

A metamaterial is a metallic or semiconductor substance whose properties depend on its

inter-atomic structure rather than on the composition of the atoms themselves. Certain

metamaterials bend visible light rays in the opposite sense from traditional refractive

media. Some metamaterials also exhibit such behavior at infrared (IR) wavelengths.

A light beam passing from air or a vacuum into a common refractive medium such as

glass, water or quartz is bent at the surface boundary so its path inside the material is

more nearly perpendicular to the surface than its path outside the material Figure A.1.

The extent of the bending depends on the angle at which the ray strikes the boundary

and also on the index of refraction of the medium. All common transparent materials

have positive indices of refraction. A metamaterial bends an incident ray so its internal

direction is reversed Figure A.2.

More specifically, we are interested in a metamaterial with simultaneously negative elec-

tric permittivity ε and magnetic permeability µ. In general, both permittivity ε and
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Figure A.1: Incident ray on conventional refractive medium.

Figure A.2: Incident ray on Metamaterial.

permeability µ depend on the molecular and perhaps crystalline structure of the mate-

rial, as well as bulk properties such as density and temperature.

A.2 Historical background

Back in 1968, Russian physicist Victor Veselago wrote a seminar paper [26] on meta-

materials (he then called them left-handed materials). In that paper, he speculated

that the strikingly unusual phenomena could be expected in a hypothetical lefthanded

material in which the electric field E, the magnetic field H and the wave vector k form

a left-handed system. The paper explicitly presented that to achieve such a left-handed

material, the required material parameters should be simultaneously negative for both

permittivity and permeability. However, due to the non-existence of such materials in

nature, Veselago’s paper did not make a big impact until the first successful construction

of such a medium by Smith et al.

In 2000 [27], and the first experimental demonstration of the negative refractive index

in 2001 [28]. Another catalyst was caused by Pendry’s landmark work on perfect lens

[29], which sparked the attempt to consider metamaterials for many potentially exciting

applications. According to [30] p.317, these four seminar papers together made the birth

of the subject of metamaterials. Since 2000, there has been a tremendous growing inter-

est in the study of metamaterials and their potential applications in areas ranging from

electronics, telecommunications to sensing, radar technology, sub-wavelength imaging,

data storage, and design of invisiblity cloak.
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A.3 Potential Applications

A.3.1 Antenna Applications

Recently, researchers have proposed some methods to obtain miniaturized antennas

made of ideal homogenized metamaterials. The first design of a subwavelength an-

tenna with metamaterials for the case of dipole and monopole radiators was proposed

by Ziokowski’s group [31]. The basic design consists of an electrically short electric dipole

(or monopole) surrounded by a double-negative (DNG) or an epsilon-negative (ENG)

spherical shell with an electrically short radius. The compact resonance arises at the

interface between the DNG (or ENG) shell and the free space. Similar ideas have been

used to design subwavelength patch antennas [32, 33] and leaky-wave antennas [34].

A.3.2 Cloaking

Invisibility has long been a dream of human beings. Cloaking devices are advanced

stealth technologies still in development that can make objects partially or wholly in-

visible to some portions of the electromagnetic spectrum. Generally speaking, there are

several major approaches to render objects invisible. But in May 2006, the first full

wave numerical simulations on cylindrical cloaking was carried out by Cummer et al.

[35]. A few months later, the first experiment of such a cloak at microwave frequencies

was successfully demonstrated by Schurig et al. [36], where the cloak surrounding a 25-

mm-radius Cu cylinder was measured. After 2006, numerous studies have been devoted

to cloaking, mainly inspired by [35, 36].

A.3.3 Particle Detection and Biosensing

Other potential applications are Particle Detection and Biosensing. Particle Detection

makes use of the negative refractive index of metamaterials , which results in the so-

called reversed Cherenkov radiation (CR) [26], in improving the Cherenkov detectors

inside nuclear reactors.

Conventional biosensors (such as those based on electro-mechanical transduction, fi-

uorescence, nanomaterials, and surface plasmon resonance) often involve labor-intensive
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sample preparation and very sophisticated equipment. In recent years, researchers have

proposed to use metamaterials as candidates for detection of highly sensitive chemical,

biochemical and biological analytes.

A.4 Governing Equations for Metamaterials

The Maxwell’s equations are the fundamental equations for understanding most electro-

magnetic and optical phenomena. In time domain, the general Maxwell’s equations can

be written as

Faraday′slaw(1831) : ∇×E = −∂B

∂t
. (A.1)

Ampere′slaw(1820) : ∇×H =
∂D

∂t
. (A.2)

which are used to describe the relationship between electric field E(x,t) and magnetic

field H(x,t), and the underlying electromagnetic materials can be described by two

material parameters: the permittivity ε and the permeability µ. In equation A.1 and

equation A.2, we use the electric flux density D(x,t) and magnetic flux density B(x,t),

which are related to the fields E and H through the constitutive relations given by

D = ε0E + P ≡ εE, B = µ0H + M ≡ µH. (A.3)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P and M are

the induced polarization and magnetization, respectively. Note that P and M are caused

by the impinging fields, which can influence the organization of electrical charges and

magnetic dipoles in a medium. How big the induced polarization P and magnetization

M are depends on the particular material involved. For example, in vacuum, ε = ε0 ,

µ = µ0, hence P = M = 0; while in pure water, ε = 80ε0 and µ = µ0 , which lead to

P = 79ε0E and M = 0.

For metamaterials, the permittivity ε and the permeability µ are not just simple con-

stants due to the complicated interaction between electromagnetic fields and meta-atoms
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(i.e., the unit cell structure). Since the scale of inhomogeneities in a metamaterial is

much smaller than the wavelength of interest, the responses of the metamaterial to exter-

nal fields can be homogenized and are described using effective permittivity and effective

permeability. A popular model for metamaterial is the lossy Drude model [37, 38], which

in frequency domain is described by:

ε(ω) = ε0(1−
ω2
pe

ω(ω − jΓe)
) = ε0εr. (A.4)

µ(ω) = µ0(1−
ω2
pm

ω(ω − jΓm)
) = µ0µr. (A.5)

where ωpe and ωpm are the electric and magnetic plasma frequencies, Γe and Γm are the

electric and magnetic damping frequencies, and ω is a general frequency. A simple case

for achieving negative refraction index n = −√εrµr = −1 is to choose Γe = Γm = 0 and

ωpe = ωpm =
√

2ω.

A derivation of A.4 is given in[39] for very thin metallic wires assembled into a periodic

lattice. Assuming that the wires have radius r, and are arranged in a simple cubic lattice

with distance a between wires, and σ is the conductivity of the metal, Pendry et al. [39]

showed that

ω2
pe =

2πc2

a2 ln (a/r)
, Γe =

ε0a
2ω2

pe

πr2σ
. (A.6)

where c denotes the speed of light in vacuum.

Using a time-harmonic variation of exp(jwt). from A.3 to A.5 we can obtain the cor-

responding time domain equations for the polarization P and the magnetization M as

follows:

∂2P

∂t2
+ Γe

∂P

∂t
= ε0ω

2
peE. (A.7)

∂2M

∂t2
+ Γm

∂M

∂t
= µ0ω

2
pmH. (A.8)
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Furthermore, if we denote the induced electric and magnetic currents

J =
∂P

∂t
, K =

∂M

∂t
, (A.9)

then we can obtain the governing equations for modeling the wave propagation in a

DNG medium described by the Drude model [40]:

ε0
∂E

∂t
= ∇×H− J. (A.10)

µ0
∂H

∂t
= −∇×E−K. (A.11)

1

ε0ω2
pe

∂J

∂t
+

Γe
ε0ω2

pe

J = E. (A.12)

1

µ0ω2
pm

∂K

∂t
+

Γm
µ0ω2

pm

K = H. (A.13)

Note that the two-dimensional transverse magnetic model of [37], Eq. (10) can be

obtained directly from A.10 to A.13 by assuming that components Ey, Hx, Hz 6= 0,

while the rest components are 0.

Another popular model used for modeling wave propagation in metamaterials is de-

scribed by the so-called Lorentz model [38, 41, 42], which in frequency domain is given

by

ε(ω) = ε0(1−
ω2
pe

ω2 − ω2
e0 − jΓeω)

), µ(ω) = µ0(1−
ω2
pm

ω2 − ω2
m0 − jΓmω)

). (A.14)

where ωpe, ωpm, Γe and Γm have the same meaning as the Drude model. Furthermore,

ωe0 and ωm0 are the electric and magnetic resonance frequencies, respectively.

A derivation of µr(ω) = 1 − Fω2

ω2−ω2
m0−jΓmω

is shown by Pendry et al. for a composite

medium consisting of a square array of cylinders with split ring structure(cf. [43], Fig.3)

formed by two sheets separated by a distance d. More specifically, they derived
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ω2
m0 = 3dc2

π2r3
, Γm = 2σ

µ0r
, F = πr2

a2
.

where the parameters a, c, r and σ have the same meaning as in A.6. Later, Smith and

Kroll [269] changed Fω2 to Fω2
0 to ensure that µr(ω)→ 1 as ω →∞. This new choice

results the Lorentz model A.14 with ω2
pm = Fω2

0.

Transforming A.14 into time domain, we obtain the Lorentz model equations for meta-

materials:

ε0
∂E

∂t
+
∂P

∂t
−∇×H = 0. (A.15)

µ0
∂H

∂t
+
∂M

∂t
+∇×E = 0. (A.16)

1

ε0ω2
pe

∂2P

∂t2
+

Γe
ε0ω2

pe

∂P

∂t
+

ω2
e0

ε0ω2
pe

P−E = 0. (A.17)

1

µ0ω2
pm

∂2M

∂t2
+

Γm
µ0ω2

pm

∂M

∂t
+

ω2
m0

µ0ω2
pm

M−H = 0. (A.18)

he last popular model we want to mention is a mixed model used by engineers and

physicists [29, 41–44], in which the permittivity is described by the Drude model, while

the permeability is described by the Lorentz model. More precisely, the permittivity is

described by the Drude model [29, 43]:

ε(ω) = ε0(1−
ω2
p

ω(ω + jv)
) (A.19)

where ω is the excitation angular frequency, ωp > 0 is the effective plasma frequency,

and v > 0 is the loss parameter. On the other hand, the permeability can be described

by the Lorentz model [41, 42]:

µ(ω) = µ0(1− Fω2
0

ω2 + jγω − ω2
0)

) (A.20)
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where ω0 > 0 is the resonant frequency, γ ≥ 0 is the loss parameter, and F ∈ (0, 1) is a

parameter depending on the geometry of the unit cell of the metamaterial.

Using a time-harmonic variation of exp(jwt), and substituting A.19 and A.20 into A.3,

respectively, we obtain the time-domain equation for the polarization:

∂2P

∂t2
+ v

∂P

∂t
= ε0ω

2
pE. (A.21)

and the equation for the magnetization:

∂2M

∂t2
+ γ

∂M

∂t
+ ω2

0M = µ0Fω
2
0H. (A.22)

To facility the mathematical study of the model, by introducing the induced electric

current J = ∂B
∂t and magnetic current K = ∂M

∂t , we can write the time domain governing

equations for the Drude-Lorentz model as following:

ε0
∂E

∂t
= ∇×H− J. (A.23)

µ0
∂H

∂t
= −∇×E−K. (A.24)

1

µ0ω2
0F

+
γ

µ0ω2
0F

K +
1

µ0F
M = H. (A.25)

1

µ0F

∂M

∂t
=

1

µ0F
K. (A.26)

1

ε0ω2
p

∂J

∂t
+

v

ε0ω2
p

J = E. (A.27)
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Finite Element Method

Computational electromagnetics [45] can be classified into either frequency-domain sim-

ulation or time-domain simulation. Each category can be further classified into surface-

based or volume-based methods. The method of moments (MoM) or boundary element

method (BEM) is formulated as integral equations given on the surface of the physical

domain. Note that MoM [46] or BEM [47, 48] is applicable to problems for which Green’s

functions of the underlying partial differential equations are available, which limits its

applicability.

Hence the volume-based methods such as the finite element method, the finite difference

method, the finite volume method (e.g. [49, 50]), and the spectral method (direct

applications in computational electromagnetics [51, 52]; applications in broader areas

[28, 53]) are quite popular.

One of the most favorite methods is the so-called finite-difference time-domain (FDTD)

method proposed by Yee in 1966 [54]. Due to its simplicity, the FDTD method is very

popular in the electrical engineering community, and it is especially useful for broadband

simulations, since one single simulation can cover a wide range of frequencies.

But the FDTD method has a major disadvantage when it is used for complex geometry

simulation. In this case, the finite element method (FEM) is a better choice as evidenced

by several published books in this area. For example, books [55] and [56] focus on

how to develop and implement FEMs for solving Maxwell’s equations. Many other

books mainly focus on Maxwell’s equations in free space, except that [57] is devoted

89
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to Maxwell’s equations in metamaterials. In this Appendix, we will focus on the finite

element method.

B.1 Overview

The finite element method is considered as the most general and well understood PDEs

solution available.“The finite element method replaces the original function with a func-

tion that has some degree of smoothness over the global domain but is piecewise polyno-

mial on simple cells, such as small triangles or rectangles.”[7]

The essential idea of the finite element method is to approach the continuous functions

of the exact solution of the PDE using piecewise approximations, generally polynomials

[58]. A complex system is constructed with points called nodes which constitute a

grid called a mesh. This mesh is programmed to contain the material and structural

properties which define how the structure will react to predefined loading conditions in

the case of structural analysis. Nodes are assigned at a predefined density throughout

the material depending on the anticipated stress levels of a particular area.

B.2 Finite Element Algorithm

A basic flow chart of FEM is shown in Figure B.1. First, the spatial domain for the

analysis is sub-divided by a geometric discretization based on a variety of geometrical

data and material properties using a number of different strategies. Generally, the solu-

tion domain is descretized into triangular elements or quadrilateral elements, which are

the two most common forms of two-dimensional elements. Then, the element matrices

and forces are formed; then the system equations are assembled and solved. Finally, the

results are post-processed so that the results are presented in a suitable form for human

interaction.

The finite element method is used to model and simulate complex physical systems.

The continuous functions are discretized into piecewise approximations, so the whole

system is broken to many, but finite parts. However, the finite element method can

be extremely computationally expensive and the available memory can be exhausted,

especially when the number of grid points becomes large. The resulting system of
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Figure B.1: Flow chart for the finite element algorithm.

equations may be solved either by direct methods or iterative methods such as Jacobi,

Gauss Seidel, Conjugate Gradients or other advanced iterative methods such as the

Preconditioned Conjugate Gradient (PCG) method, Incomplete Cholesky Conjugate

Gradient method and GMRES.

The direct method can provide the accurate solution with minimal round-off errors, but

it is computationally expensive in terms of both processing and memory requirements,

especially for large matrices and three dimensional problems because the original zero

entries will be filled in during the elimination process. The global matrix for linear

structural problems is a symmetric positive definite matrix. In general, it is also large

and sparse. Consequently, the iterative methods are more efficient and more suitable for

parallel computation but with lower accuracy (though higher accuracy can be obtained

at the expense of computational time) and the risk of a slow convergence rate.

Instead of assembling the global matrix, element stiffness matrices can be used directly

for iterative solution techniques. An element-by-element approximation for finite ele-

ment equation systems was presented in [59], and applied in the context of conventional

parallel computing in [60]. This approach is very memory-efficient (despite the fact

that more memory is required than storing just the non-zero elements as in the CSR

structure), computationally convenient and retains the accuracy of the global coefficient

matrix.
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Solving system of linear equations

In this appendix, we provide the background material related to systems of linear equa-

tions in general and the mathematical methods commonly used in solving them.

C.1 Systems of Linear Equations

A system of M linear equations with N unknown variables, as shown in Equation C.1, is

often represented in a matrix and vector form, as shown in Equation C.2. The coeffcients

of the variables in each linear equation are represented in each row of an M x N matrix (A)

and they are multiplied by the N-element vector of unknown variables (x). A solver must

determine the values of x for which the product generates the Mdimensional constant

(b). Given a system of linear equations, there can be one solution, an infinite number

of solutions or no solution. Here, we only focus on sparse linear systems generated from

the FEM.

a1,1x1 + a1,2x2 + . . .+ a1,NxN = b1

a2,1x1 + a2,2x2 + . . .+ a2,NxN = b2

... (C.1)

aM,1x1 + aM,2x2 + . . .+ aM,NxN = bM
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Ax = b

A =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N

...
...

. . .
...

aM,1 aM,2 · · · aM,N

x =


x1

x2

...

xN

 b =


b1

b2
...

bM

 (C.2)

C.2 Different methods of solving sparse linear systems

In general, Methods to solve sparse linear systems (SLS) of equations fall under two

broad categories: direct methods and iterative methods. Iterative methods start with

an initial guess and compute a sequence of intermediate results that converge to a final

solution while direct methods determine the solution in a single process. Moreover,

iterative methods are useful for finding solutions to large systems of linear equations

where direct methods are prohibitively expensive. However, convergence is not always

guaranteed for iterative methods since they are more sensitive to the matrix type being

solved which limits the scope of the range of the matrices that can be solved.

The most common direct methods are Gaussian elimination, Gauss-Jordan and LU de-

composition. All of them have a computational complexity of order n3 and are sensitive

to numerical errors. For iterative technique, Jacobi and Gauss Seidel methods are used

typically and have computational complexity of order n2 for each iteration step, and can

produce results with higher precision than direct methods. Hence, both iterative and

direct solvers are widely used. More details on methods of solving linear equations can

be found in [61] and [62].

C.2.1 Iterative methods for sparse linear systems

There are two main iterative methods used to solve the SLS expressed as Ax = b. They

are described in the following sections.
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C.2.1.1 Jacobi method

Consider a SLS represented as Ax = b. Then the ith equation can be represented as

n∑
j=1

ai,jxj = bi (C.3)

To solve for xi iteratively, equation C.3 can be rearranged to have a relation between

xi
(t+1) and xi

(t)

xi
(t+1) =

bi −
∑n

j=1
j 6=i

ai,jxj
(t)

ai,i
(C.4)

The Jacobi method starts with an initial guess of vector x and solves each unknown x

using equation C.4. The obtained xi
(t+1) is then used as the current solution (acts as

xi
(t) ) and the process is iterated again. This process continues until it converges to a

solution.

From equation C.4, each xi can be solved independently and thus the Jacobi method

has inherent parallelism. Furthermore, the most computationally intensive operation is

to find the summation. Besides, the division operation takes more computational time

than any other numerical operation used in equation C.4. Therefore, an architecture

that finds the summation quickly and maximally overlaps the division operation with

the computation of numerator of equation C.4, should result in faster system operation.

C.2.1.2 Gauss seidel method

In contrast to the Jacobi method, the Gauss Seidel method not only uses xi
(t) but also

uses xi
(t+1) as soon as they become available. The independent nature of xi variables

in any particular iteration, as in the Jacobi method, does not hold here.

Mathematically, in order to find the solutions of any SLS represented in a matrix format

Ax = b is given below:

xi
(t+1) =

bi −
∑n

j<1 ai,jxj
(t+1) −

∑n
j>1 ai,jxj

(t)

ai,i
(C.5)
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From equation C.5, the computations of xi appear to be serial. Thus the updates cannot

be done simultaneously as in the Jacobi method.

C.2.1.3 Convergence criterion

It is important to consider that not all matrices can be solved using iterative methods.

A matrix can be solved only when it is diagonally dominant. A matrix is said to be

diagonally dominant if the magnitude of every diagonal entry is more than the sum of

the magnitude of all the non-zero elements of the corresponding row. Mathematically,

a matrix is diagonally dominant if it satisfies equation C.6 for all i = 1..n

|ai,i| >
n∑

j=1,j 6=i
|ai,j | (C.6)

Both methods sometimes converge even if this condition is not satisfied. However, it is

necessary that the magnitude of diagonal terms in a matrix is greater than the magnitude

of other terms.

C.2.2 Direct methods for sparse linear systems

Here, we will focus on Gaussian elimination, the one used in the second hardware im-

plementation.

C.2.2.1 Gaussian elimination method

Direct methods for solving the system equations theoretically deliver an exact solution in

arbitrary-precision arithmetic by a (predictable) finite sequence of operations based on

algebraic elimination. Gauss elimination, Gauss Jordan elimination and LU factorization

are some of the examples of direct methods.

Consider the system of linear algebraic equations,

Ax = b (C.7)

where matrix A is the coefficient nxn matrix obtained from the system of equations.
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The Gauss elimination procedure is summarized as follows [63]:

1. Define the nxn coefficient matrix A, and the nx1 column vectors x and b,


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




x1

x2

...

xn

 =


b1

b2
...

bm

 (C.8)

2. Perform elementary row operations to reduce the matrix into the upper triangular

form 
a′1,1 a′1,2 · · · a′1,n

0 a′2,2 · · · a′2,n
...

...
. . .

...

0 0 · · · a′m,n




x1

x2

...

xn

 =


b′1

b′2
...

b′m

 (C.9)

3. Solve the equation of the nth row for xn, then substitute back into the equation of

the (n− 1)th row to obtain a solution for xn−1, etc., according to the formula

xi =
1

a′i,j
(b′i −

n∑
j=i+1

a′i,jxj) (C.10)

The number of operations required by Gauss elimination method isN = (n3/3−n/3)+n2

The Gauss-Jordan method, the matrix inverse method, the LU factorization method and

the Thomas algorithm are variations or modifications of the Gauss elimination method.

The Gauss-Jordan method requires more operations than the Gauss elimination method,

which is N = (n3/2 − n/2) + n2. The matrix inverse method is simple but not all

matrices have an inverse (there is no inverse matrix if the matrix’s determinant is zero,

i.e. singular, and no unique solution for the corresponding system of equations). The

LU method requires N = (4n3/3 − n/3) multiplicative operations, which is much less

than Gauss elimination, especially for large systems.

When either the number of equations is small (100 or less), or most of the coefficients

in the equations are non-zero, or the system domain is not diagonal, or the system

of equations is ill conditioned (The condition number of a matrix is the ratio of the

magnitudes of its maximum and minimum eigenvalues. A matrix is ill-conditioned if its
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condition number is very large.) direct elimination methods would normally be used.

Otherwise, an alternative solution method for the system of equations is an iterative

method. This is desirable when the number of equations is large, especially when the

system matrix is sparse [64].



Appendix D

Floating Point

In this this Appendix we are going to introduce the floating point standards and its rule

in this project

D.1 Overview

In this section we introduce some general information about Floating point IEEE stan-

dard and how it works.

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard

for floating-point computation established in 1985 by the Institute of Electrical and

Electronics Engineers (IEEE). The standard addressed many problems found in the

diverse floating point implementations that made them difficult to reliably and portably

use. The current version, IEEE 754-2008 published in August 2008, includes nearly all

of the original IEEE 754-1985 standard and the IEEE Standard for Radix-Independent

Floating-Point Arithmetic (IEEE 854-1987).

IEEE 754-1985 was implemented in software, in the form of floating-point libraries, and

in hardware, in the instructions of many CPUs and FPUs. The first integrated circuit

to implement the draft of what was to become IEEE 754-1985 was the Intel 8087.

IEEE 754-1985 represents numbers in binary, providing definitions for four levels of

precision, but the most used levels of precision are single and double precision as

shown in Figure D.1.
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Figure D.1: Levels of precision implemented by IEEE standard.

Precision is the number of decimal digits precision is calculated via number of mantissa bits

* Log10(2). Thus 7.2 and 15.9 for single and double precision respectively.

D.2 IEEE standard representations

The standard also defines the normailzed and denormalized numbers representation, a

negative zero representation, positive and negative infinity, NaN specaial value repre-

sentation for invalid floating-point arithmatic operations, and four rounding modes. All

these definitions are discused in the next sections.

D.2.1 Normalized numbers representation

Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased

exponent, and a fraction as shown in Figure D.2.

Figure D.2: The three fields in a 64 bit IEEE 754 float.

IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared

conveniently by the same hardware that compares signed 2’s-complement integers. Using

a biased exponent, the lesser of two positive floating-point numbers will come out ”less

than” the greater following the same ordering as for sign and magnitude integers. If two

floating-point numbers have different signs, the sign-and-magnitude comparison also

works with biased exponents. However, if both biased-exponent floating-point numbers

are negative, then the ordering must be reversed. If the exponent were represented as,

say, a 2’s-complement number, comparison to see which of two numbers is greater would
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not be as convenient. The leading 1 bit is omitted since all numbers except zero start

with a leading 1; the leading 1 is implicit and doesn’t actually need to be stored which

gives an extra bit of precision for ”free”.

D.2.2 Denormalized numbers representation

As discussed in Normalized numbers representation section, the implicit leading

binary digit is a 1. To reduce the loss of precision when an underflow occurs, IEEE 754

includes the ability to represent fractions smaller than are possible in the normalized

representation, by making the implicit leading digit a 0. Such numbers are called ”de-

normal”. They don’t include as many significant digits as a normalized number, but

they enable a gradual loss of precision when the result of an arithmetic operation is not

exactly zero but is too close to zero to be represented by a normalized number.

A denormal number is represented with a biased exponent of all 0 bits, which represents

an exponent of -126 in single precision (not -127), or -1022 in double precision (not

-1023). In contrast, the smallest biased exponent representing a normal number is 1.

D.2.3 Negative zero representation

The number zero is represented specifing sign = 0 for positive zero, and sign = 1 for

negative zero. The biased exponent value equals zero, and the fraction value also equals

zero.

D.2.4 Positive and negative infinty representation

Positive and negative infinity are represented by specifing sign = 0 for positive infinity,

and sign = 1 for negative infinity. The biased exponent value is set to one for all its

bits, and the fraction value is set to zero for all its bits.

D.2.5 NaN special value

Some operations of floating-point arithmetic are invalid, such as dividing by zero or

taking the square root of a negative number. The act of reaching an invalid result is
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called a floating-point exception. An exceptional result is represented by a special code

called a NaN, for ”Not a Number”. All NaNs in IEEE 754-1985 have this format:

� sign = either 0 or 1.

� biased exponent = all 1 bits.

� fraction = anything except all 0 bits (since all 0 bits represents infinity).

D.2.6 Rounding modes

The IEEE standard has four different rounding modes; the first is the default; the others

are called directed roundings.

� Round to Nearest : rounds to the nearest value; if the number falls midway

it is rounded to the nearest value with an even (zero) least significant bit, which

occurs 50% of the time (in IEEE 754-2008 this mode is called roundTiesToEven

to distinguish it from another round-to-nearest mode).

� Round toward 0 : directed rounding towards zero.

� Round toward positive infinity : directed rounding towards positive infinity.

� Round toward negative infinity : directed rounding towards negative infinity.

D.3 Floating point modules

In this section we are going to discuss the main floating-point modules used and how

they work.

D.3.1 Arithmetic Operations

First analyze the main arithmetic operations and generate the corresponding computa-

tion algorithms. In what follows it will be assumed that the significand s is represented

in base B (in binary if B = 2, in decimal if B = 10) and that it belongs to the interval

(1 ≤ Bs ≤ B − ulp), where ulp stands for the unit in the last position or unit of least
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precision. Thus s is expressed in the form (s0, s1, s2, sp). B
e where emin ≤ e <= emax

and 1 ≤ s0 ≤ B−.

The binary subnormals and the decimal floating point are not normalized numbers and

are not included in the following analysis. This situation deserves some special treatment

and is out of the scope of this section.

D.3.1.1 Addition of positive numbers

Given two positive floating-point numbers s1.B
e1 and s2.B

e2 their sum s.Be is computed

as follows: assume that e1 is greater than or equal to e2; then (alignment) the sum of

s1 ∗ (Be1) and s2 ∗ (Be2) can be expressed in the form s.Be where

s = s1 + s2/B
e1−e2 and e = e1 (D.1)

The value of s belongs to the interval

1 ≤ s ≤ 2.B − 2.ulp (D.2)

so that s could be greater than or equal to B. If it is the case, that is if

B ≤ s ≤ 2.B − 2.ulp (D.3)

then (normalization) substitute s by s/B, and e by e+1, so that the value of s.Be is the

same as before, and the new value of s satisfies

1 ≤ s ≤ 2− (2/B).ulp ≤ B − ulp (D.4)

The significands s1 and s2 of the operands are multiples of ulp. If e1 is greater than e2,

the value of s could no longer be a multiple of ulp and some rounding function should

be applied to s. Assume that s
′
< s < s” = s

′
+ ulp, s

′
and s” being two successive

multiples of ulp. Then the rounding function associates to s either s
′

or s”, according

to some rounding strategy. According to D.4 and to the fact that 1 and B − ulp are
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multiples of ulp, it is obvious that 1 ≤ s′ < s” ≤ B − ulp. Nevertheless, if the condition

in equation D.3 does not hold, that is if 1 ≤ s < B, s could belong to the interval so that

rounding(s) could be equal to B, then a new normalization step would be necessary. i.e.

substitution of s = B by s = 1 and e by e+ 1.

B − ulp < s < B (D.5)

D.3.1.2 Difference of positive numbers

Given two positive floating-point numbers s1.B
e1 and s2.B

e2their difference s.Be is com-

puted as follows: assume that e1 is greater than or equal to e2; then (for alignment) the

difference between s1.B
e1 and s2.B

e2 can be expressed in the form s.Be where

s = s1 − s2/(Be1−e2)ande = e1 (D.6)

The value of s belongs to the interval −s.−(B−ulp) ≤ s ≤ B−ulp. If s is negative, then

it is substituted by and the sign of the final result will be modified accordingly. If s is

equal to 0, then an exception equalzero could be raised. It remains to consider the case

where 0 < s ≤ Bulp. The value of s could be smaller than 1. In order to normalize the

significand, s is substituted by s.Bk and e by e− k, where k is the minimum exponent

k such that s.Bk ≥ 1: Thus, the relation 1 ≤ sleqB holds. It remains to round (up or

down) the significand and to normalize it if necessary.

D.3.1.3 Addition and subtraction

Given two floating-point numbers (−1)sign1 .s1.B
e1 and (−1)sign2 .s2.B

e2 ; and a control

variable operation, an algorithm is defined for computing

z = (−1)sign.s.Be = (−1)sign1 .s1.B
e1 + (−1)sign2 .s2.B

e2 , ifoperation = 0;

z = (−1)sign.s.Be = (−1)sign1 .s1.B
e1 − (−1)sign2 .s2.B

e2 , ifoperation = 1;

Once the significands have been aligned, the actual operation (addition or subtraction

of the significands) depends on the values of operation, sign1andsign2, shown in figure

D.3.
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Figure D.3: Effective operation in floating point adder-subtractor.

D.3.1.4 Multiplication

Given two flooating-point numbers (−1)sign1 .s1.B
e1 and (−1)sign2 .s2.B

e2 their product

(−1)sign.s.Be is computed as follows:

sign = sign1 xor sign2, s = s1.s2, e = e1 + e2 (D.7)

The value of s belongs to the interval 1 ≤ s ≤ (B − ulp)2, and could be greater than or

equal to B. If it is the case, that is if B ≤ s ≤ (B−ulp)2, then (normalization) substitute

s by s/B, and e by e+ 1. The new value of s satisfies

1 ≤ s ≤ (B − ulp)2/B = B − 2.ulp+ (ulp)2/B < B − ulp (D.8)

(ulp < B so that 2− ulp/B > 1). It remains to round the significand and to normalize

if necessary.

D.3.1.5 Division

Given two floating-point numbers (−1)sign1.s1.B
e1 and (−1)sign2.s2.B

e2 their quotient

(−1)sign.s.Be is computed as follows:

sign = sign1 xor sign2, s = s1/s2, e = e1 − e2 (D.9)
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The value of s belongs to the interval 1/B < s ≤ B − ulp, and could be smaller than

1. If that is the case, that is if s = s1/s2 < 1; then s1 < s2, s1 ≤ s2 − ulp, s1/s2 <

1−ulp/s2 < 1−ulp/B, and 1/B < s < 1−ulp/B Then (normalization) substitute s by

s.B, and e by e− 1. The new value of s satisfies 1 < s < B − ulp. It remains to round

the significand.

D.3.2 Rounding schemes

Given a real number x and a floating-point representation system, the following situa-

tions could happen: |x| < smin.B
emin , that is, an underflow situation, |x| > smax.B

emin ,

that is, an overflow situation, |x| = s.Be, where emin ≤ e ≤ emax and smin ≤ s ≤ smax,

In the third case, either s is a multiple of ulp, in which case a rounding operation is not

necessary, or it is included between two multiples s
′

and s” of ulp:

s
′
< s < s”.

The rounding operation associates to s either s
′

or s”, according to some rounding

strategy. The most common are the following ones:

� The truncation method (also called round toward 0 or chopping) is accomplished

by dropping the extra digits, i.e. round(s) = s
′

if s is positive, round(−s) = s” if

s is negative.

� The round toward plus infinity is defined by round(s) = s”.

� The round toward minus infinity is defined by round(s) = s
′
.

� The round to nearest method associates s with the closest value, that is, if s <

s
′
+ ulp/2, round(s) = s

′
, and if s > s

′
+ ulp/2, round(s) = s”.

If the distances to s
′

and s” are the same, that is, if s = s
′

+ ulp/2, there are

several options.

beginitemize

� round(s) = s
′
;

� round(s) = s”;
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� round(s) = s0 if s is positive, round(s) = s” if s is negative. It is the round to

nearest, ties to zero scheme.

� round(s) = s” if s is positive, round(s) = s
′
if s is negative. It is the round to

nearest, ties away from zero scheme.

� round(s) = s
′
if s

′
is an even multiple of ulp, round(s) = s” if s” is an even multiple

of ulp. It is the default scheme in the IEEE 754 standard.

� round(s) = s
′

if s
′

is an odd multiple of ulp, round(s) = s” if s” is an odd multiple

of ulp.

The preceding schemes (round to the nearest) produce the smallest absolute error, and

the two last (tie to even, tie to odd) also produce the smallest average absolute error

(unbiased or 0-bias representation systems). Assume now that the exact result of an

operation, after normalization, is

s = 1.s−1.s−2.s−3....s−p|s−(p+1).s−(p+2).s−(p+3)...

where ulp is equal toB−p (the — symbol indicates the separation between the digit which

corresponds to the ulp and the following). Whatever the chosen rounding scheme, it is

not necessary to have previously computed all the digits s−(p+1)s−(p+2)..., it is sufficient

to know whether all the digits s−(p+1)s−(p+2)... are equal to 0, or not. For example the

following algorithm computes round(s) if the round to the nearest, tie to even scheme is

used.

D.4 FloPoCo

FloPoCo is an open-sourcee generator of arithmetic cores (Floating-Point Cores, but not

only) for FPGAs (but not only).

The purpose of the FloPoCo project is to explore the many ways in which the flexibility

of the FPGA target can be exploited in the arithmetic realm, with a focus on floating-

point.

FloPoCo focuses on exotic operators and exotic precisions. However it also provides

basic operators(+,-,*,/ and square root) whose performance matches vendor-supplied

operators while offering more flexibility.
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FloPoCo is not a library of operators, but a generator of operators written in C++. It

inputs operator specifications, and outputs synthesizable VHDL. This approach allows

much better optimization and customization than what VHDL alone permits. In ad-

dition, FloPoCo is to our knowledge the easiest way to design complex operators with

flexible pipeline.

FloPoCo supersedes FPLibrary, and is compatible with it.

There are two main differences between the format (wE=8, wF=23) and the IEEE-754

single precision format (the same holds for double).

� Exceptional cases (zeroes, infinities and Not a Number or NaN) are encoded as

separate bits in FloPoCo, instead of being encoded as special exponent values in

IEEE-754. This saves quite a lot of decoding/encoding logic. The main drawback

of this format is when results have to be stored in memory, where they consume

two more bits. However, FPGA embedded memory can accomodate 36-bit data,

so adding two bits to a 32-bit IEEE-754 format is harmless as long as data resides

within the FPGA.

As a side effect, the exponent can take two more values in FloPoCo than in IEEE-

754 (one for very large numbers, one for very small ones).

� FloPoCo does not support subnormal numbers. If you think you need subnormal

numbers, consider adding one bit to your exponent field instead: you will thus get

all the subnormals, and many more. If you are still not convinced, maybe you are

right: please get in touch with us.

Note that anyway, FloPoCo provides conversion operators from and to IEEE-754

formats (single and double precision).
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Direct Programming Interface

E.1 Introduction

Currently system-level design and functional verification methodology based on high-

level abstraction becomes more important to increase the productivity of SoC design. In

system-level design and verification, hardware/software partitioning of a system through

design space exploration affects the structure and performance of the final system, and

the importance of the verifying functional interaction between hardware part and soft-

ware part is increasing ever [65–68].

SystemC [69–71], is a design language at multiple abstraction levels, and enables the

design on a higher abstraction level to proceed to a synthesizable RT-level design through

a progressive refinement. SystemVerilog [72–76] is a set of extensions to the Verilog

HDL that allows higher level modeling and efficient verification of large digital systems.

SystemVerilog adds hardware functional verification constructs such as object-oriented

programming (OOP), randomization, thread, etc.

SystemVerilog DPI (Direct Programming Interface) is an interface which can be used

to interface SystemVerilog with foreign languages. These Foreign languages can be C,

C++, SystemC as well as others. DPIs consist of two layers: A SystemVerilog Layer

and a foreign language layer. Both layers are isolated from each other. Which program-

ming language is actually used as the foreign language is transparent and irrelevant for

the System-Verilog side of this interface. Neither the SystemVerilog compiler nor the

foreign language compiler is required to analyze the source code in the other’s language.

108
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Different programming languages can be used and supported with the same intact Sys-

temVerilog layer. For now, however, SystemVerilog defines a foreign language layer only

for the C programming language.

The motivation for this interface is two-fold. The methodological requirement is that

the interface should allow a heterogeneous system to be built (a design or a testbench)

in which some components can be written in a language (or more languages) other than

SystemVerilog, hereinafter called the foreign language. On the other hand, there is also

a practical need for an easy and efficient way to connect existing code, usually written in

C or C++, without the knowledge and the overhead of Programming Language Interface

(PLI) or Verilog Procedural Interface (VPI).

DPI follows the principle of a black box: the specification and the implementation of a

component are clearly separated, and the actual implementation is transparent to the

rest of the system. Therefore, the actual programming language of the implementation

is also transparent, although this standard defines only C linkage semantics. The sepa-

ration between SystemVerilog code and the foreign language is based on using functions

as the natural encapsulation unit in SystemVerilog. By and large, any function can

be treated as a black box and implemented either in SystemVerilog or in the foreign

language in a transparent way, without changing its calls.

E.2 Tasks and functions

DPI allows direct inter-language function calls between the languages on either side

of the interface. Specifically, functions implemented in a foreign language can be called

from SystemVerilog; such functions are referred to as imported functions. SystemVerilog

functions that are to be called from a foreign code shall be specified in export decla-

rations. DPI allows for passing SystemVerilog data between the two domains through

function arguments and results. There is no intrinsic overhead in this interface.

It is also possible to perform task enables across the language boundary. Foreign code

can call SystemVerilog tasks, and native Verilog code can call imported tasks. An

imported task has the same semantics as a native Verilog task: it never returns a value,

and it can consume simulation time.
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All functions used in DPI are assumed to complete their execution instantly and consume

zero simulation time, just as normal SystemVerilog functions. DPI provides no means

of synchronization other than by data exchange and explicit transfer of control.

Every imported task and function needs to be declared. A declaration of an imported

task or function is referred to as an import declaration. Import declarations are very

similar to SystemVerilog task and function declarations. Import declarations can occur

anywhere where SystemVerilog task and function definitions are permitted. An import

declaration is considered to be a definition of a SystemVerilog task or function with

a foreign language implementation. The same foreign task or function can be used

to implement multiple SystemVerilog tasks and functions (this can be a useful way of

providing differing default argument values for the same basic task or function), but a

given SystemVerilog name can only be defined once per scope.

Imported task and functions can have zero or more formal input, output, and inout

arguments. Imported tasks always return a void value and thus can only be used in

statement context. Imported functions can return a result or be defined as void functions.

DPI is based entirely upon SystemVerilog constructs. The usage of imported functions

is identical to the usage of native SystemVerilog functions. With few exceptions, im-

ported functions and native functions are mutually exchangeable. Calls of imported

functions are indistinguishable from calls of SystemVerilog functions. This facilitates

ease of use and minimizes the learning curve. Similar interchangeable semantics exist

between native SystemVerilog tasks and imported tasks.

E.2.1 Function Import and Export

Function Import: A function implemented in Foreign language can be used in Sys-

temVerilog by importing it. A Foreign language function used in SystemVerilog is called

imported function.

Properties of Imported Function and Task:

1. An imported function shall complete their execution instantly and consume zero

simulation time. Imported task can consume time.

2. Imported function can have input, output, and inout arguments.
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(a) The formal input arguments shall not be modified. If such arguments are

changed within a function, the changes shall not be visible outside the func-

tion.

(b) Imported function shall not assume any initial values of formal output argu-

ments. The initial value of output arguments is undetermined and implemen-

tation dependent.

(c) Imported function can access the initial value of a formal inout argument.

Changes that the imported function makes to a formal inout argument shall

be visible outside the function.

3. An imported function shall not free the memory allocated by SystemVerilog code

nor expect SystemVerilog code to free memory allocated by Foreign code or (For-

eign Compiler).

4. A call to an imported task can result in suspension of the currently executing

thread. This occurs when an imported task calls an Exported task, and the ex-

ported task executes a delay control, event control or wait statement. Thus it is

possible for an imported task to be simultaneously active in multiple execution

threads.

5. An imported function or task can be equip with special properties called pure or

context.

E.2.2 Pure Functions

A pure function call can be safely eliminated if its result is not needed or if the previous

result for the same values of input arguments is available somehow and can be reused

without needing to recalculate. Only non void functions with no output or inout argu-

ments can be specified as pure. Functions specified as pure shall have no side effects

whatsoever; their results need to depend solely on the values of their input arguments.

Calls to such functions can be removed by SystemVerilog compiler optimizations or re-

placed with the values previously computed for the same values of the input arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other

functions) perform the following:
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� Perform any file operations.

� Read or write anything in the broadest possible meaning, including input/output,

environment variables, objects from the operating system or from the program or

other processes, shared memory, sockets, etc.

� Access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler opti-

mizations can lead to unexpected behavior, due to eliminated calls or incorrect results

being used.

E.3 Data types

SystemVerilog data types are the sole data types that can cross the boundary between

SystemVerilog and a foreign language in either direction (i.e., when an imported function

is called from SystemVerilog code or an exported SystemVerilog function is called from

a foreign code). It is not possible to import the data types or directly use the type

syntax from another language. A rich subset of SystemVerilog data types is allowed for

formal arguments of import and export functions, although with some restrictions and

with some notational l extensions. Function result types are restricted to small values,

The following SystemVerilog data types are allowed for imported function results:

� void, byte, shortint, int, longint, real, shortreal, chandle, and string.

� Scalar values of type bit and logic.

However, formal arguments of an imported function can be specified as open arrays.

A formal argument is an open array when a range of one or more of its dimensions,

packed or unpacked, is unspecified. An open array is like a multidimensional dynamic

array formal in both packed and unpacked dimensions and is thus denoted using the

same syntax as dynamic arrays, using [] to denote an open dimension. This is solely a

relaxation of the argument-matching rules. An actual argument shall match the formal

one regardless of the range(s) for its corresponding dimension(s), which facilitates writing

generalized code that can handle SystemVerilog arrays of different sizes.
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Table E.1 defines the mapping between the basic SystemVerilog data types and the

corresponding C types.

Table E.1: Mapping data types.

SystemVerilog type C type

byte char

shortint short int

int int

longint long long

real double

shortreal float

chandle void*

string const char*

bit unsigned char

logic/reg unsigned char

DPI does not add any constraints on how SystemVerilog-specific data types are actually

implemented. Opti mal representation can be platform dependent. The layout of 2- or

4-state packed structures and arrays is implementation and platform dependent.

The implementation (representation and layout) of 4-state values, structures, and arrays

is irrelevant for SystemVerilog semantics and can only impact the foreign side of the

interface.

E.4 Importance of DPI In our work

In order to make any module ready to work, we need to compile it first and then run the

emulator. After the emulator finishes its work, it dumps the contents of the memory to

files, so we can use it. Each time we change the input memory contents and test another

design, we have to repeat that operation. However, if you need to update the memory

and catch the output in the running time that what DPI will guarantee.

We attempt to use DPI with our hardware iterative solution (Jacobi) to catch the output

that the system give and save it in the software side. We succeeded in doing this on

ModelSim PE student Edition 10.3 under windows and Questa simulator under linux .
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For applying this simple example we chosen to do on the emulation we found that we

have to use TestBench-Xpress (TBX) beside the DPI. We searched for examples which

demonstrate how to use the dpi in our work, we found that to use the DPI we have to

make our program consists of two layers SystemVerilog layer and the SystemC layer and

to connect between them we use Makefile, And after applying this in our work it worked

correctly on the windows DPI under windows. After this we began to work on DPI

for Questa ”under linux” the simulation worked correctly. So, we started working on

the emulator using TBX. A brief overview about TBX would be given in the following

section.

E.5 TBX

E.5.1 Introduction

TestBench-Xpress (TBX) is a verification accelerator. TBX uses a transaction-based

test bench compilation technology to deliver orders of magnitude higher performance.

TBX can be used to accelerate existing environments (including those based on SystemC

and SystemVerilog), and to create transaction-based verification environments.

TBX enables efficient verification techniques, such as random stimulus, directed random

stimulus, and coverage driven verification coupled to the Veloce emulation platform.

TBX is ideally suited for system tests where long periods of stimulus are required to

fully test the design functionality. Examples include the following:

� Booting a real time OS on an embedded processor.

� Running a particular duration of a device protocol.

� Acquiring the pilot or initiating a call on a cell phone.

� Setting up and dropping a telecom connection.

� Simulating Transmission Control Protocol/Internet Protocol (TCP/IP) traffic over

the Ethernet.
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These examples share the need to reactively simulate long running complex protocols or

instruction sequences to gain confidence in the correctness of a design at the RTL and

system levels.

TBX enables design and verification engineers to construct environments that include

streaming data, multiple asynchronous data and control channels, multiple transaction

interfaces, constrained random data generation, transaction-based verification, and bus

functional models.

TBX improves performance and productivity gains through technology that eliminates

co-simulation performance limitations. TBX compiles transaction-based test benches

written at the eXtended RTL (XRTL) SystemVerilog level into the Veloce emulator and

executes it along with a High-Level Verification Language (HVL) based test bench (see

page 477) running on the workstation. TBX also creates a co-modeling interface between

the two. This co-modeling interface interacts at a transaction-level. This interface

enables C, SystemC, or HVL models to connect efficiently to Veloce.

XRTL, combined with the SystemVerilog DPI interface to create trans-actors, provides

you with a level of performance that matches the performance obtained by models

written in the traditional RTL level of abstraction.

The XRTL modeling abstraction encompasses all the RTL modeling abstraction as sup-

ported by standard synthesis tools including the Mentor Graphics RTL Compiler. In

addition, XRTL supports the following major special extensions:

� Clock and reset specifications

� SystemVerilog DPI function/task calls as building blocks for transactions

� Relevant non-RTL constructs:

– Initial blocks for signal initialization

– Named event triggers/synchronous for signaling mechanisms

– Procedural assigns on a register from multiple processes

� Implicit state machines with initial blocks
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These extensions can be simulated on any SystemVerilog simulator as is, including the

clock and reset specifications. TBX is compliant with SCE-MI 1.1 and 2.0 modeling

interface standards.

TBX supports designs written in SystemVerilog, RTL/VHDL, and mixed-language RTL.

Testbenches and stimulus generation for TBX can be in C, SystemC, Verilog RTL, or

a combination of these languages. Stimulus to the DUT can also be provided through

in-circuit devices.

E.5.2 Compiler

The TBX compiler performs three major functions:

� RTL compilation

� XRTL transactor compilation

� Construction of an infrastructure to create a connection between RTL SystemVer-

ilog and a C or SystemC environment.

TBX uses SystemVerilog DPI to provide the building blocks that create the transaction-

based communication link between HVL and HDL. Based on these functions and tasks,

TBX automatically generates a connection between a C or SystemC environment. This

connection transparently handles inter-language calls, coordination of threads between

SystemC and Verilog, argument translation, and SCE-MI callbacks. This level of au-

tomation makes it simple to create a transaction-based verification environment that

combines the abstraction and performance of untimed SystemC models with the perfor-

mance of emulation.

E.5.3 Modeling Constructs

The basic transaction modeling constructs in TBX are the SystemVerilog DPI exported

functions/tasks and imported functions/tasks. They all illustrated before.
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Figure E.1: TBX Compile and Runtime Views.

E.5.4 Transaction-Based Interface for C Testbenches

In transaction-based testbenches, the system-level tests that algorithmically generate

high-level test data (transactions) can be written in SystemC, C, and C++. The trans-

action processing part of the test bench (transactors) that applies the transaction to

the DUT can be written more naturally in XRTL SystemVerilog RTL. This is because

interaction with the DUT requires timing, which is often awkward to model in C.

The direct C testbench interface is available by coupling the C testbench with the XRTL

transactors through the HDL-to-C and C-to-HDL function call mechanism.

Transaction-based testbenches enable the following:

� Separation of untimed (algorithmic) test generation from the timed DUT model.

� Standardization of the coupling interface between untimed and timed parts.

� Use of a higher level of the verification methodology.

� Assertions for interface and protocol verification.

� Constrained test generation for intelligent tests.

� Use of reusable verification IP (for example, Ethernet, PCI).
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E.5.5 SystemVerilog Testbenches

Besides C and SystemC models using DPI, TBX also supports SystemVerilog test-

benches. These testbenches could be run on the workstation using any standard high

level simulator. TBX is tightly integrated with the Questa simulator, which already

supports C, C++, SystemC, and SystemVerilog. With Questa as your HVL simula-

tor, any of these languages or their combination could be used to model the test bench

(HVL). The only precondition is the communication between the HVL and HDL must

be at a transaction level. Following some basic rules of modeling, modern verification

methodologies could be natively accelerated using TBX.

Most modern SystemVerilog testbenches use virtual interfaces for connection between

the dynamic test bench and the static DUT. In the context of co-emulation, the same

concept is used. You can define functions or tasks in a synthesizable SystemVerilog

interface. These tasks could be called from the HVL by using the virtual interface

handle pointing to it. Along the same lines, the interface could contain a pointer to a

SystemVerilog class. Using this pointer, the HDL could call functions defined in that

class. Just like DPI, TBX will natively support the aforementioned modeling style for

SystemVerilog test benches. In addition, TBX also ships an accelerated version of TLM

libraries, known as XTLM. This library could also be used for direct communication

between non-synthesizable HVL and synthesizable HDL.
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