
COMS 6998 Computational Photography Spring 2009

BREAKING AN IMAGE BASED

CAPTCHA

INTERMEDIATE REPORT

Michele Merler(mm3233)

Jacquilene Jacob (jj2442)

First Step: Data acquisitionFirst Step: Data acquisitionFirst Step: Data acquisitionFirst Step: Data acquisition

We wrote a Perl script to download 200 Vidoop challenges from their website. The images can

be found from our project page, together with .txt files containing the correspondent categories

required by the challenge and manually annotated ground truth letters that actually solve the

test, and the results of the split and letter detection algorithm,.

We discovered that only 26 categories are used in the challenges. Their distribution can be

observed in the graph of Figure 1.

Figure 1 : Distribution of 26 categories across 600 requests in 200 Vidoop challenges

We also wrote another Perl script to download images from Flickr for every category, in order

to use them as training data. In this context, we decided to download 500 images per concept, a

number large enough to train a fairly robust classifier, but small enough to prevent too many

noisy examples to be in the training set. In fact, downloading images from Flickr allows to

automatically obtain a large scale of data, but many examples might not be relevant to the

given query. Flickr’s query system relies on users tagging or other text labeling of the images,

rather than on their actual content, therefore mislabeling by users can lead to errors, which

increase as we proceed to lower rankings in the returned list of results.

Test images preprocessingTest images preprocessingTest images preprocessingTest images preprocessing

The goal of this step is to split each challenge image into the correct subimages, and then

localize and extract the circular region containing the character within each subimage. The

split algorithm we use is based on localizing vertical and horizontal lines containing the

maximum number of edges in the edge image obtained by applying a Laplacian of Gaussian

filter to the original challenge image. Once the image had been split into the subimages, a

generalized Hough transform (we found the code here1) is computed on each subimage to

detect circular regions. The circular region which is detected in most of the subimages in

approximately the same position and with same radius is kept to be the character’s region.

Finally, the rectangle with equal sides of length l = r/sqrt(2) inscribed in the localized circle of

radius r is the final character region, which is thresholded into a binary representation. The

algorithm, while being simple and a little bit as hoc, is quite effective. In fact, it splits and

segments subimages and text regions with 100% accuracy. Figure 2 presents an example of the

processing chain for Challenge1.

Figure 2 : Preprocessing chain: a) original test image, b) LoG based egde image, c) split and

circle detection result.

1
 http://www.mathworks.com/matlabcentral/fileexchange/9168

Features extractionFeatures extractionFeatures extractionFeatures extraction

We are extracting color histogram, edge histogram and color moments features to train and

test classifers as in Assignment 2. We are still in the process of extracting and testing the results,

which will be uploaded soon.

Next StepsNext StepsNext StepsNext Steps

• Besides extracting and testing the proposed features, we will try to explore more

elaborate features (maybe SIFT in a visual codebook fashion)

• We need to build the character recognition classifier. The options are using an existing

OCR system (for example Tesseract2) or build our simple one.

• Once the offline evaluations are done, we’ll implement the online version of the system

2
 http://code.google.com/p/tesseract-ocr/

