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INTRODUCTION 
A CAPTCHA is "Completely Automated Public Turing test to tell Computers and Humans Apart". 

An image of distorted letters is dynamically generated. Since the letters are a part of an image 

and not text, it is difficult for a spam bot or other computer program to read. A human, in fact, 

has little trouble reading the letters in a captcha image. Using a captcha test on a website is a 

great way to ensure, for instance, that a person and not a spambot is filling out a web form. 

For example, humans can read distorted text as the one shown in Figure 1, but current 

computer programs cannot. 

Captcha is a so called win-win solution, in that if a bot cannot break it, it provides security, but 

if it is automatically broken, that means that a difficult task in computer vision or related areas 

has been solved. 

The problem with current visual text based captcha systems is that most of them have proven 

to be either not robust enough (they have been broken) or they are too complicated or 

annoying to read even for humans. 

 

 
Figure 1 : Example of text based captcha. Source reCaptcha1 

 

VidoopCAPTCHA 
 

VidoopCAPTCHA2 is a verification solution that uses images of objects, animals, people or 

landscapes, instead of distorted text, to distinguish a human from a computer program. By 

verifying that users are human, the site and users are protected against malicious bot attacks. 

                                                 
1
 http://recaptcha.net/ 
2
 http://vidoop.com/captcha/ 



VidoopCAPTCHA is more intuitive for the user compared to the more traditional text based 

CAPTCHAs. It then presents itself as the solution to the current captcha problems. 

  

As shown in Figure 2, a Vidoop challenge image consists in a combination of pictures 

representing different categories. Each picture is associated with a letter which is embedded in 

it. In order to pass the challenge, the user is asked to report the letters corresponding to a list of 

required categories. The robustness of the approach relies in the fact that object recognition is a 

straightforward and fast to solve task for humans, whereas for a computer it is a fundamentally 

hard problem. In fact, it has represented for many years and still represents a topic of active 

research in computer vision. What the authors underestimate, though, is that since a bot can 

try to access a service thousands of times in a day, recognition rates which are considered quite 

low by the object recognition community (50% or 60%), still would allow automatic attacks to 

services protected by the image captcha to be considered fully successful. 

 

 
Figure 2 : Example of an image challenge from VidoopCatcha 

 

 



OBJECTIVE 
The core idea of the project consists in trying to break an image based captcha, and in 

particular VidoopCAPTCHA, following in the line of work initiated by Mori and Malik3. 

The objective of this system is to show that image based captchas, and in particular the 

vidoop one, are not as secure as their authors claim. This automatically leads to insecurity for 

the different applications using the image captchas. We chose this idea in order to show our 

concerns in today’s world where the security methods developed to preserve confidentiality in 

online systems, of which image based captcha represent of the latest developments, are not only 

insecure but are prone to attacks by hackers with high success rates. 

 

ALGORITHM 
The proposed algorithm consists in the following parts (visualized in Figure 3): 

•  Test image preprocessing: isolate the single pictures within the challenge image and extract 

their corresponding 

characters regions with some simple image processing  

•  Image category recognizer: classify the images according to the categories required by the 

test 

•  Character recognizer: extract the characters corresponding to the images classified as being 

part of the required categories 

Data acquisitionData acquisitionData acquisitionData acquisition    

We wrote a Perl script to download 200 Vidoop challenges from their website. The images can 

be found from our project page, together with .txt files containing the correspondent categories 

required by the challenge and manually annotated ground truth letters that actually solve the 

test, and the results of the split and letter detection algorithm,.  

We discovered that only 26 categories are used in the challenges. Their distribution can be 

observed in the graph of Figure 4. 

We also wrote another Perl script to download images from Flickr for every category, in order 

to use them as training data. In this context, we decided to download 500 images per concept, a 

number large enough to train a fairly robust classifier, but small enough to prevent too many  

                                                 
3
 http://www.cs.sfu.ca/~mori/research/gimpy/ 



    
Figure 3 : Process flow of the algorithm 

    

 

Figure 4 : Distribution of 26 categories across 600 requests in 200 Vidoop challenges 
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noisy examples to be in the training set (even though we still found noisy images in the 

training set). In fact, downloading images from Flickr allows to automatically obtain a large 

scale of data, but many examples might not be relevant to the given query. Flickr’s query 

system relies on users tagging or other text labeling of the images, rather than on their actual 

content, therefore mislabeling by users can lead to errors, which increase as we proceed to 

lower rankings in the returned list of results.   

Test images preprocessingTest images preprocessingTest images preprocessingTest images preprocessing    

The goal of this step is to split each challenge image into the correct subimages, and then 

localize and extract the circular region containing the character within each subimage. The 

split algorithm we use is based on localizing vertical and horizontal lines containing the 

maximum  number of edges in the edge image obtained by applying a Laplacian of Gaussian 

filter to the original challenge image. Once the image had been split into the subimages, a 

generalized Hough transform (we found the code here4) is computed on each subimage to 

detect circular regions. The circular region which is detected in most of the subimages  in 

approximately the same position and with same radius is kept to be the character’s region. 

Finally, the rectangle with equal sides of length l = r*sqrt(2) inscribed in the localized circle of 

radius r  is the final character region, which is then rescaled to a size of 27x27 pixels to match 

the training data and thresholded into a binary representation. The algorithm, while being 

simple and a little bit as hoc, is quite effective. In fact, it splits and segments subimages and text 

regions with 100% accuracy. Figure 5 presents an example of the processing chain for 

Challenge1. 
 

CCCCharacter Classificationharacter Classificationharacter Classificationharacter Classification    

We built a 1-Nearest Neighbor classifier (we used code form Piotr Dollar’s ToolBox5) from a 

training data consisting of 64 27x27 binary images per capital letter, generated with the GD 

library. Each image contains a capital letter printed with one out of 20 commonly used fonts 

(Arial, Times New Roman, Courier, etc.), also with bold and italic variations. Figure 6 contains 

some examples for the latter “A”.  

                                                 
4
 http://www.mathworks.com/matlabcentral/fileexchange/9168 
5
 http://vision.ucsd.edu/~pdollar/toolbox/doc/ 



As features representing each image letter we used the simple binary vectors built by 

concatenating image lines one after each other, thus obtaining a 1x729 feature vector per 

image, in a similar fashion to what is done for the MNIST6 handwritten digits dataset. 

The 1-NN classifier proved to be quite effective on the text regions (12*200 = 2400) extracted 

from the Vidoop challenges, achieving 96% accuracy. 

 

 

Figure 5 : Preprocessing chain: a) original test image, b) LoG based egde image, c) split and 

circle detection result. 

 

 

Figure 6 : Examples of training data for 1-NN character classifier 

    

                                                 
6
 http://yann.lecun.com/exdb/mnist/ 



Features EFeatures EFeatures EFeatures Extractionxtractionxtractionxtraction and Image C and Image C and Image C and Image Category Category Category Category Claslaslaslassifierssifierssifierssifiers    

We used and tested 4 types of features to build our image category classifiers: 

� Edge Histograms (6x8 regions)    

� Color Moments (RGB, 3x3 regions)   

� Color Histograms (32+32 bins in CbCr) 

� GIST features (314 dims. vectors) 

 

Edge histograms were computed by simply applying a LoG filter to the grayscale image, split 

the edge image into 6x8 regions and then counting the number of edges in each region. 

Color moments were 1x9 vectors computed as in Assignment 2, with  mean, variance and 

skewness of 9 subregions of the image computed for each of the RGB channels. 

Color histograms were computed as 32 bins histograms in the Cb and Cr channels from YCbCr 

and concatenated into a 1x64 feature vector. The chrominance plane CbCr was used to 

partially avoid dependence from illumination changes and instead extract pure color 

information. 

GIST features are richer descriptors combining bith color and intensity information, computed 

as responses to filters applied at different orientations and scales, and to different subregions of 

the image itself. We used the implementation from Antonio Torralba at MIT7 with default 

settings, which produced 1x314 vectors. 

For each type of feature and for each category, we trained an SVM classifier from the ~500 

positive examples downloaded from Flickr for that category and ~500 negative examples 

randomly selected from the other 25 categories. 

Figure 7 presents the image category recognition performances on  the 200 test challenges of 

the SVM classifiers built on the 4 feature types. The best performing (as expected, since it’s a 

richer descriptor) is GIST, which recognizes 1 out of the 3 requested images on 79 challenges, 

2 out 3 on 54 challenges and all 3 requested images on 7 challenges, for a total of 79 + 54*2 + 

7*3 = 208 correctly recognized images out of the 600 (200*3) requested. GIST has therefore a 

classification accuracy of 34.7%. The worst performing is the Color Histogram based classifier, 

with accuracy of 14.8%. 

 

                                                 
7
 http://people.csail.mit.edu/torralba/LabelMeToolbox/ 



 

Figure 7 : Image category recognition results 

    

FFFFiiiinal Resultsnal Resultsnal Resultsnal Results    

Final challenge break performances are reported in Figure 8, where again GIST based 

classification allows the system to break 6 (not 7 as Figure 7 suggests, because of an error of the 

character recognizer) challenges out of  the 200 tested. The Captcha breaking rate of our 

system is therefore 3%. This results, which at first glance may not result quite exciting, is 

acceptable enough to consider the Image based Captcha proposed by Vidoop not secure, for 2 

reasons.  

The first reason is that if we compare our performances with random choices, which are in the 

order of 1/123 , we see that our method performs definitely better than a random brute force 

baseline. 

In second instance, if we consider that when using a GIST based SVM category recognizer, the 

average processing time per challenge is 12 seconds, we can see we are able to break 9 image 

captchas per hour, and 216 in a day. If we further consider that our implementation could be 

made more efficient by using a faster programming language than Matlab (for example C++), it 

is clear that the performances are more  then  sufficient to consider the captcha broken, or at 

least not safe. 
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Figure 8 : Test breaking results 

 

CCCConclusions and Future Directionsonclusions and Future Directionsonclusions and Future Directionsonclusions and Future Directions    

We  proposed and implemented an automatic system able to  break an Image based Captcha, 

specifically the on proposed  by Vidoop. The experimental results show that our system  is able 

to break 9 challenges in one hour, and could be potentially improved to be even more efficient 

and effective. 

Therefore, the Vidoo image based captcha is not secure, as its authors claim. 

There are a few things that time constrains did not allow us to test, and which would be 

interesting to try and could improve our system: 

• Try other features (SIFT + codebook) 

•  Obtain cleaner training data (performances suggest poor training data) 

• Improve speed and efficiency using more powerful programming languages 

• Test online version of Captcha breaker 
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As a final remark, we had a lot of fun working on this problem. Even though the performances 

are not explosively good, we feel that we managed to prove our point. Both of us spent a good 

deal of effort in building the system, and were gratified by seeing the results. We could 

experiment and try different algorithms that maybe we would not have considered or used if 

not challenged by the class project. Of course, we realize that the main nature of our work has 

been “destructive”, in the sense that  we just showed that other people’s work are not robust, 

but we also think that thanks to this experience and to recognizing the weaknesses of existing 

systems, we might be able to come up with a more robust Captcha system. 

    

CCCCoooodededede    
Data acquisition         

• flickrDownload.pl            

• vidoopDownload.pl         

• testConceptStats.m        
 

 

Test image preprocessing 

• processTestImages.m    

• imresizecrop.m     

• CircularHough_Grd.m        

• DrawCircle.m                    

    

Features extraction and image category classification 

• training.m        

• extractGistFeatures.m             

• createGabor.m           

• LMgist.m                  

• extractColorMoments.m     

• extractEdgeHistogram.m    

• prepareData.m             

• svm-predict.exe        

• svm-train.exe               
 

Character classification 

• characterTrain.m          

• clfKnn.m                  

• clfKnnDist.m              

• clfKnnFwd.m               



• clfKnnTrain.m       

• pdist2.m                        
 

Testing 

• testChallenge.m           
 


