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ABSTRACT

Many network monitoring applications must analyze traffic beyond
the network layer to allow for connection-oriented analysis, and
achieve resilience to evasion attempts based on TCP segmentation.
However, existing network traffic capture frameworks provide ap-
plications with just raw packets, and leave complex operations like
flow tracking and TCP stream reassembly to application develop-
ers. This gap leads to increased application complexity, longer de-
velopment time, and most importantly, reduced performance due
to excessive data copies between the packet capture subsystem and
the stream processing module.

This paper presents the Stream capture library (Scap), a network
monitoring framework built from the ground up for stream-oriented
traffic processing. Based on a kernel module that directly handles
flow tracking and TCP stream reassembly, Scap delivers to user-
level applications flow-level statistics and reassembled streams by
minimizing data movement operations and discarding uninterest-
ing traffic at early stages, while it inherently supports parallel pro-
cessing on multi-core architectures, and uses advanced capabilities
of modern network cards. Our experimental evaluation shows that
Scap can capture all streams for traffic rates two times higher than
other stream reassembly libraries, and can process more than five
times higher traffic loads when eight cores are used for parallel
stream processing in a pattern matching application.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network Monitoring
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Traffic Monitoring; Stream Reassembly; Packet Capturing; Packet
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1. INTRODUCTION
Passive network monitoring is an indispensable mechanism for

increasing the security and understanding the performance of mod-
ern networks. For example, Network-level Intrusion Detection Sys-
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tems (NIDS) inspect network traffic to detect attacks [36, 40] and
pinpoint compromised computers [18, 43]. Similarly, traffic clas-
sification tools inspect traffic to identify different communication
patterns and spot potentially undesirable traffic [1, 24]. To make
meaningful decisions, these monitoring applications usually ana-
lyze network traffic at the transport layer and above. For instance,
NIDSs reconstruct the transport-layer data streams to detect attack
vectors spanning multiple packets, and perform traffic normaliza-
tion to avoid evasion attacks [14, 19, 38].

Unfortunately, there is a gap between monitoring applications

and underlying traffic capture tools: Applications increasingly need
to reason about higher-level entities and constructs such as TCP
flows, HTTP headers, SQL arguments, email messages, and so on,
while traffic capture frameworks still operate at the lowest possible
level: they provide the raw—possibly duplicate, out-of-order, or
overlapping—and in some cases even irrelevant packets that reach
the monitoring interface [11, 28, 29]. Upon receiving the captured
packets at user space, monitoring applications usually perform TCP
stream reassembly using an existing library such as Libnids [2] or a
custom stream reconstruction engine [36, 40]. This results in addi-
tional memory copy operations for extracting the payloads of TCP
segments and merging them into larger stream “chunks” in contigu-
ous memory. Moreover, it misses several optimization opportuni-
ties, such as the early discarding of uninteresting packets before
system resources are spent to move them to user level, and assign-
ing different priorities to transport-layer flows so that they can be
handled appropriately at lower system layers.

To bridge this gap and address the above concerns, in this pa-
per we present the Stream capture library (Scap), a unified passive
network monitoring framework built around the abstraction of the
Stream. Designed from the beginning for stream-oriented network
monitoring, Scap (i) provides the high-level functionality needed
by monitoring applications, and (ii) implements this functionality
at the most appropriate place: at user level, at kernel level, or even
at the network interface card.

To enable aggressive optimizations, we introduce the notion of
stream capture: that is, we elevate the Stream into a first-class ob-
ject that is captured by Scap and handled by user applications. Al-
though previous work treats TCP stream reassembly as a necessary
evil [50], used mostly to avoid evasion attacks against intrusion
detection and other monitoring systems, we view streams as the
fundamental abstraction that should be exported to network moni-
toring applications, and as the right vehicle for the monitoring sys-
tem to implement aggressive optimizations all the way down to the
operating system kernel and network interface card.

To reduce the overhead of unneeded packets, Scap introduces the
notion of subzero packet copy. Inspired by zero-copy approaches
that avoid copying packets from one main memory location to an-



other, Scap not only avoids redundant packet copies, but also avoids
bringing some packets in main memory in the first place. We show
several cases of applications that are simply not interested in some
packets, such as the tails of large flows [9, 26, 27, 33]. Subzero
packet copy identifies these packets and does not bring them in
main memory at all: they are dropped by the network interface
card (NIC) before reaching the main memory.

To accommodate heavy loads, Scap introduces the notion of pri-
oritized packet loss (PPL). Under heavy load, traditional monitor-
ing systems usually drop arriving packets in a random way, severely
affecting any following stream reassembly process. However,
these dropped packets and affected streams may be important for
the monitoring application, as they may contain an attack or other
critical information. Even carefully provisioned systems that are
capable of handling full line-rate traffic can be overloaded, e.g.,
by a sophisticated attacker that sends adversarial traffic to exploit
an algorithmic complexity vulnerability and intentionally overload
the system [34,45]. Scap allows applications to (i) define different
priorities for different streams and (ii) configure threshold mecha-
nisms that give priority to new and small streams.

Scap provides a flexible and expressive Application Program-
ming Interface (API) that allows programmers to configure all as-
pects of the stream capture process, perform complex per-stream
processing, and gather per-flow statistics with a few lines of code.
Our design introduces two novel features: (i) it enables the early
discarding of uninteresting traffic, such as the tails of long-lived
connections that belong to large file transfers, and (ii) it offers more
control for tolerating packet loss under high load through stream
priorities and best-effort reassembly. Scap also avoids the overhead
of extra memory copies by optimally placing TCP segments into
stream-specific memory regions, and supports multi-core systems
and network adapters with receive-side scaling [22] for transparent
parallelization of stream processing.

We have evaluated Scap in a 10GbE environment using real traf-
fic and showed that it outperforms existing alternatives like Lib-
nids [2] and Snort’s stream reassembly [40] in a variety of sce-
narios. For instance, our results demonstrate that Scap can cap-
ture and deliver all streams with low CPU utilization for rates up
to 5.5 Gbit/s using a single core, while Libnids and Snort start
dropping packets at 2.5 Gbit/s due to increased CPU utilization
for stream reassembly at user level. A single-threaded Scap pat-
tern matching application can handle 33% higher traffic rates than
Snort and Libnids, and can process three times more traffic at 6
Gbit/s. When eight cores are used for parallel stream processing,
Scap can process 5.5 times higher rates with no packet loss.

The main contributions of this paper are:

1. We introduce the notion of stream capture, and present the
design, implementation, and evaluation of Scap , a stream-
oriented network traffic processing framework. Scap pro-
vides a flexible and expressive API that elevates streams to
first-class objects, and uses aggressive optimizations that al-
lows it to deliver transport-layer streams for two times higher
traffic rates than previous approaches.

2. We introduce subzero packet copy, a technique that takes ad-
vantage of filtering capabilities of commodity NICs to not
only avoid copying uninteresting packets (such as the long
tails of large flows) across different memory areas, but to
avoid bringing them in main memory altogether.

3. We introduce prioritized packet loss, a technique that enables
graceful adaptation to overload conditions by dropping pack-
ets of lower priority streams, and favoring packets that be-
long to recent and shorter streams.

2. DESIGN AND FEATURES
The design of Scap is driven by two key objectives: program-

ming expressiveness and runtime performance. In this section, we
introduce the main aspects of Scap across these two dimensions.

2.1 Subzero-Copy Packet Transfer
Several network monitoring applications [9, 26, 27, 33] are in-

terested in analyzing only the first bytes of each connection, espe-
cially under high traffic load. In this way, they analyze the more
useful (for them) part of each stream and discard a significant per-
centage of the total traffic [27]. For such applications, Scap has
incorporated the use of a cutoff threshold that truncates streams to
a user-specified size, and discards the rest of the stream (and the
respective packets) within the OS kernel or even the NIC, avoiding
unnecessary data transfers to user space. Applications can dynam-
ically adjust the cutoff size per stream, or set a different cutoff for
each stream direction, allowing for greater flexibility.

Besides a stream cutoff size, monitoring applications may be in-
terested in efficiently discarding other types of less interesting traf-
fic. Many applications often use a BPF filter [28] to define which
streams they want to process, while discarding the rest. In case
of an overload, applications may want to discard traffic from low
priority streams or define a stream overload cutoff [26, 33]. Also,
depending on the stream reassembly mode used by an application,
packets belonging to non-established TCP connections or duplicate
packets may be discarded. In all such cases, Scap can discard the
appropriate packets at an early stage within the kernel, while in
many cases packets can be discarded even earlier at the NIC.

To achieve this, Scap capitalizes on modern network interfaces
that provide filtering facilities directly in hardware. For example,
Intel’s 82599 10G interface [21] supports up to 8K perfect match
and 32K signature (hash-based) FlowDirector filters (FDIR). These
filters can be added and removed dynamically, within no more than
10 microseconds, and can match a packet’s source and destination
IP addresses, source and destination port numbers, protocol, and
a flexible 2-byte tuple anywhere within the first 64 bytes of the
packet. Packets that match an FDIR filter are directed to the hard-
ware queue specified by the filter. If this hardware queue is not used
by the system, the packets will be just dropped at the NIC layer, and
they will never be copied to the system’s main memory [13]. When
available, Scap uses FDIR filters to implement all above mentioned
cases of early packet discarding. Else, the uninteresting packets are
dropped within the OS kernel.

2.2 Prioritized Packet Loss
Scap introduces Prioritized Packet Loss (PPL) to enable the sys-

tem to invest its resources effectively during overload. This is
necessary because sudden traffic bursts or overload conditions may
force the packet capturing subsystem to fill up its buffers and ran-
domly drop packets in a haphazard manner. Even worse, attackers
may intentionally overload the monitoring system while an attack
is in progress so as to evade detection. Previous research in NIDSs
has shown that being able to handle different flows [16, 25, 34], or
different parts of each flow [26,33], in different ways can enable the
system to invest its resources more effectively and significantly im-
prove detection accuracy. PPL is a priority assignment technique
that enables user applications to define the priority of each stream
so that in case of overload, packets from low-priority streams are
the first ones to go. User applications can also define a threshold for
the maximum stream size under overload (overload_cutoff ). Then,
packets situated beyond this threshold are the ones to be dropped.

As long as the percentage of used memory is below a user-defined
threshold (called base_threshold), PPL drops no packets. When,



however, the used memory exceeds the base_threshold, PPL kicks
in: it first divides the memory above base_threshold into n (equal
to the number of used priorities) regions using n+1 equally spaced
watermarks (i.e., watermark0, watermark1, ..., watermarkn),
where watermark0 = base_threshold and watermarkn =
memory_size. When a packet belonging to a stream with the
ith priority level arrives, PPL checks the percentage of memory
used by Scap at that time. If it is above watermarki, the packet
is dropped. Otherwise, if the percentage of memory used is be-
tween watermarki and watermarki−1, PPL makes use of the
overload_cutoff, if it has been defined by the user. Then, if the
packet is located in its stream beyond the overload_cutoff byte, it
is dropped. In this way, high priority streams, as well as newly
created and short streams if an overload_cutoff is defined, will be
accommodated with higher probability.

2.3 Flexible Stream Reassembly
To support monitoring at the transport layer, Scap provides dif-

ferent modes of TCP stream reassembly. The two main objec-
tives of stream reassembly in Scap are: (i) to provide transport-
layer reassembled chunks in continuous memory regions, which
facilitates stream processing operations, and (ii) to perform pro-
tocol normalization [19, 51]. Scap currently supports two differ-
ent modes of TCP stream reassembly: SCAP_TCP_STRICT and
SCAP_TCP_FAST. In the strict mode, streams are reassembled
according to existing guidelines [14,51], offering protection against
evasion attempts based on IP/TCP fragmentation. In the fast mode,
streams are reassembled in a best-effort way, offering resilience
against packet loss caused in case of overloads. In this mode, Scap
follows the semantics of the strict mode as closely as possible, e.g.,
by handling TCP retransmissions, out-of-order packets, and over-
lapping segments. However, to accommodate for lost segments,
stream data is written without waiting for the correct next sequence
number to arrive. In that case, Scap sets a flag to report that errors
occurred during the reassembly of a particular chunk.

Scap uses target-based stream reassembly to implement different
TCP reassembly policies according to different operating systems.
Scap applications can set a different reassembly policy per each
stream. This is motivated by previous work, which has shown that
stream reassembly performed in a NIDS may not be accurate [38].
For instance, the reconstructed data stream may differ from the ac-
tual data stream observed by the destination. This is due to the
different TCP reassembly policies implemented by different oper-
ating systems, e.g., when handling overlapping segments. Thus, an
attacker can exploit such differences to evade detection. Shankar
and Paxson [42] developed an active mapping solution to determine
what reassembly policy a NIDS should follow for each stream.
Similarly to Scap, Snort uses target-based stream reassembly [32]
to define the reassembly policy per host or subnet.

Scap also supports UDP: a UDP stream consists of the concate-
nation of the payloads of the arriving packets of the respective UDP
flow. For other protocols without sequenced delivery, Scap return
each packet for processing without reassembly.

2.4 Parallel Processing and Locality
Scap has inherent support for multi-core systems, hiding from

the programmer the complexity of creating and managing multiple
processes or threads. This is achieved by transparently creating
a number of worker threads for user-level stream processing (typ-
ically) equal to the number of the available cores. Using affinity
calls, the mapping of threads to CPU cores is practically one-to-
one. Scap also dedicates a kernel thread on each core for handling
packet reception and stream reassembly. The kernel and worker

threads running on the same core process the same streams. As
each stream is assigned to only one kernel and worker thread, all
processing of a particular stream is done on the same core, reduc-
ing, in this way, context switches, cache misses [15, 37], and inter-
thread synchronization operations. The kernel and worker threads
on each core communicate through shared memory and events: a
new event for a stream is created by the kernel thread and is han-
dled by the worker thread using a user-defined callback function
for stream processing.

To balance the network traffic load across multiple NIC queues
and cores, Scap uses both static hash-based approaches, such as
Receive Side Scaling (RSS) [22], and dynamic load balancing ap-
proaches, such as flow director filters (FDIR) [21]. This provides
resiliency to short-term load imbalance that could adversely affect
application performance. First, Scap detects a load imbalance when
one of the cores is assigned a portion of the total streams larger than
a threshold. Then, subsequent streams assigned by RSS to this core
are re-directed with an FDIR to the core that handles the lowest
number of streams at the time.

2.5 Performance Optimizations
In case that multiple applications running on the same host moni-

tor the same traffic, Scap provides all of them with a shared copy of
each stream. Thus, the stream reassembly operation is performed
only once within the kernel, instead of multiple times for each user-
level application. If applications have different configurations, e.g.,
for stream size cutoff or BPF filters, the capture system takes a best
effort approach to satisfy all requirements. For instance, it sets the
largest among the cutoff sizes for all streams, and keeps streams
that match at least one of the filters, marking the applications that
should receive each stream and their cutoff.

Performing stream reassembly in the kernel also offers signif-
icant advantages in terms of cache locality. Existing user-level
TCP stream reassembly implementations receive packets of dif-
ferent flows highly interleaved, which results in poor cache local-
ity [35]. In contrast, Scap provides user-level applications with
reassembled streams instead of randomly interleaved packets, al-
lowing for improved memory locality and reduced cache misses.

3. SCAP API
The main functions of the Scap API are listed in Table 1.

3.1 Initialization
An Scap program begins with the creation of an Scap socket us-

ing scap_create(), which specifies the interface to be moni-
tored. Upon successful creation, the returned scap_t descriptor
is used for all subsequent configuration operations. These include
setting a BPF filter [28] to receive a subset of the traffic, cutoff val-
ues for different stream classes or stream directions, the number of
worker threads for balancing stream processing among the avail-
able cores, the chunk size, the overlap size between subsequent
chunks, and an optional timeout for delivering the next chunk for
processing. The overlap argument is used when some of the last
bytes of the previous chunk are also needed in the beginning of the
next chunk, e.g., for matching a pattern that might span consecutive
chunks. The flush_timeout parameter can be used to deliver
for processing a chunk smaller than the chunk size when this time-
out passes, in case the user needs to ensure timely processing.

3.2 Stream Processing
Scap allows programmers to write and register callback func-

tions for three different types of events: stream creation, the avail-
ability of new stream data, and stream termination. Each callback



Scap Function Prototype Description

scap_t *scap_create(const char *device, int memory_size, Creates an Scap socket

int reassembly_mode, int need_pkts)

int scap_set_filter(scap_t *sc, char *bpf_filter) Applies a BPF filter to an Scap socket

int scap_set_cutoff(scap_t *sc, int cutoff) Changes the default stream cutoff value

int scap_add_cutoff_direction(scap_t *sc, int cutoff, int direction) Sets a different cutoff value for each direction

int scap_add_cutoff_class(scap_t *sc, int cutoff, char* bpf_filter) Sets a different cutoff value for a subset of the traffic

int scap_set_worker_threads(scap_t *sc, int thread_num) Sets the number of threads for stream processing

int scap_set_parameter(scap_t *sc, int parameter, int value) Changes defaults: inactivity_timeout, chunk_size,

overlap_size, flush_timeout, base_threshold, overload_cutoff

int scap_dispatch_creation(scap_t *sc, Registers a callback routine for handling stream

void (*handler)(stream_t *sd)) creation events

int scap_dispatch_data(scap_t *sc, Registers a callback routine for processing newly

void (*handler)(stream_t *sd)) arriving stream data

int scap_dispatch_termination(scap_t *sc, Registers a callback routine for handling stream

void (*handler)(stream_t *sd)) termination events

int scap_start_capture(scap_t *sc) Begins stream processing

void scap_discard_stream(scap_t *sc, stream_t *sd) Discards the rest of a stream’s traffic

int scap_set_stream_cutoff(scap_t *sc, stream_t sd, int cutoff) Sets the cutoff value of a stream

int scap_set_stream_priority(scap_t *sc, stream_t *sd, int priority) Sets the priority of a stream

int scap_set_stream_parameter(scap_t *sc, stream_t *sd, Sets a stream’s parameter: inactivity_timeout, chunk_size,

int parameter, int value) overlap_size, flush_timeout, reassembly_mode

int scap_keep_stream_chunk(scap_t *sc, stream_t *sd) Keeps the last chunk of a stream in memory

char *scap_next_stream_packet(stream_t *sd, struct scap_pkthdr *h) Returns the next packet of a stream

int scap_get_stats(scap_t *sc, scap_stats_t *stats) Reads overall statistics for all streams seen so far

void scap_close(scap_t *sc) Closes an Scap socket

Table 1: The main functions of the Scap API.

function takes as a single argument a stream_t descriptor sd,
which corresponds to the stream that triggered the event. This de-
scriptor provides access to detailed information about the stream,
such as the stream’s IP addresses, port numbers, protocol, and di-
rection, as well as useful statistics such as byte and packet counters
for all, dropped, discarded, and captured packets, and the times-
tamps of the first and last packet of the stream. Among the rest
of the fields, the sd->status field indicates whether the stream
is active or closed (by TCP FIN/RST or by inactivity timeout), or
if its stream cutoff has been exceeded, and the sd->error field
indicates stream reassembly errors, such as incomplete TCP hand-
shake or invalid sequence numbers. There is also a pointer to the
stream_t in the opposite direction, and stream’s properties like
cutoff, priority, and chunk size.

The stream processing callback can access the last chunk’s data
and its size through the sd->data and sd->data_len fields.
In case no more data is needed, scap_discard_stream()
can notify the Scap core to stop collecting data for this stream.
Chunks can be efficiently merged with following ones using scap_
keep_chunk(). In the next invocation, the callback will receive
a larger chunk consisting of both the previous and the new one. Us-
ing the stream descriptor, the application is able to set the stream’s
priority, cutoff, and other parameters like stream’s chunk size, over-
lap size, flush timeout, and reassembly mode.

In case they are needed by an application, individual packets can
be delivered using scap_next_stream_packet(). Packet
delivery is based on the chunk’s data and metadata kept by Scap’s
packet capture subsystem for each packet. Based on this metadata,
even reordered, duplicate, or packets with overlapping sequence
numbers can be delivered in the same order as captured. This al-
lows Scap to support packet-based processing along with stream-
based processing, e.g., to allow the detection of TCP attacks such
as ACK splitting [41]. In Section 6.5.3 we show that packet de-
livery does not affect the performance of Scap-based applications.
The only difference between Scap’s packet delivery and packet-

based capturing systems is that packets from the same stream are
processed together, due to the chunk-based delivery. As an added
benefit, such flow-based packet reordering has been found to sig-
nificantly improve cache locality [35].

The stream’s processing time and the total number of processed
chunks are available through the sd->processing_time and
sd->chunks fields. This enables the identification of streams
that are processed with very slow rates and delay the application,
e.g., due to algorithmic complexity attacks [34, 45]. Upon the de-
tection of such a stream, the application can handle it appropriately,
e.g., by discarding it or reducing its priority, to ensure that this ad-
versarial traffic will not affect the application’s correct operation.

3.3 Use Cases
We now show two simple applications written with Scap.

3.3.1 Flow-Based Statistics Export

The following listing shows the code of an Scap application for
gathering and exporting per-flow statistics. Scap already gathers
these statistics and stores them in the stream_t structure of each
stream, so there is no need to receive any stream data. Thus, the
stream cutoff can be set to zero, to efficiently discard all data. All
the required statistics for each stream can be retrieved upon stream
termination by registering a callback function.

1 scap_t *sc = scap_create("eth0", SCAP_DEFAULT,

2 SCAP_TCP_FAST, 0);

3 scap_set_cutoff(sc, 0);

4 scap_dispatch_termination(sc, stream_close);

5 scap_start_capture(sc);

6

7 void stream_close(stream_t *sd) {

8 export(sd->hdr.src_ip, sd->hdr.dst_ip,

9 sd->hdr.src_port, sd->hdr.dst_port,

10 sd->stats.bytes, sd->stats.pkts,

11 sd->stats.start, sd->stats.end);

12 }
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Figure 1: Overview of Scap’s architecture.

In line 1 we create a new Scap socket for capturing streams from
the eth0 interface. Then, we set the stream cutoff to zero (line 3)
for discarding all stream data, we set the stream_close() as
a callback function to be called upon stream termination (line 4),
and finally we start the capturing process (line 5). The stream_
close() function (lines 7–12) exports the statistics of the stream
through the sd descriptor that is passed as its argument.

3.3.2 Pattern Matching

The following listing shows the few lines of code that are re-
quired using Scap for an application that searches for a set of known
patterns in the captured reassembled TCP streams.

1 scap_t *sc = scap_create("eth0", 512M,

2 SCAP_TCP_FAST, 0);

3 scap_set_worker_threads(sc, 8);

4 scap_dispatch_data(sc, stream_process);

5 scap_start_capture(sc);

6

7 void stream_process(stream_t *sd) {

8 search(patterns, sd->data, sd->len, MatchFound);

9 }

We begin by creating an Scap socket without setting a cutoff,
so that all traffic is captured and processed (lines 1–2). Then, we
configure Scap with eight worker threads, each pinned to a sin-
gle CPU core (assuming a machine with eight cores), to speed up
pattern matching with parallel stream processing. Finally, we regis-
ter stream_process() as the callback function for processing
stream chunks (line 4) and start the capturing process (line 5). The
search() function looks for the set of known patterns within
sd->len bytes starting from the sd->data pointer, and calls
the MatchFound() function in case of a match.

4. ARCHITECTURE
This section describes the architecture of the Scap monitoring

framework for stream-oriented traffic capturing and processing.

4.1 Kernel-level and User-level Support
Scap consists of two main components: a loadable kernel mod-

ule and a user-level API stub, as shown in Figure 1. Applications
communicate through the Scap API stub with the kernel module to
configure the capture process and receive monitoring data. Config-
uration parameters are passed to the kernel through the Scap socket
interface. Accesses to stream_t records, events, and actual
stream data are handled through shared memory. For user-level
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Figure 2: The operation of the Scap kernel module.

stream processing, the stub receives events from the kernel module
and calls the respective callback function for each event.

The overall operation of the Scap kernel module is depicted in
Figure 2. Its core is a software interrupt handler that receives pack-
ets from the network device. For each packet, it locates the re-
spective stream_t record through a hash table and updates all
relevant fields (stream_t handling). If a packet belongs to a
new stream, a new stream_t record is created and added into
the hash table. Then, it extracts the actual data from each TCP
segment, by removing the protocol headers, and stores it in the ap-
propriate memory page, depending on the stream in which it be-
longs (memory management). Whenever a new stream is created
or terminated, or a sufficient amount of data has been gathered, the
kernel module generates a respective event and enqueues it to an
event queue (event creation).

4.2 Parallel Packet and Stream Processing
To scale performance, Scap uses all available cores in the system.

To efficiently utilize multi-core architectures, modern network in-
terfaces can distribute incoming packets into multiple hardware re-
ceive queues. To balance the network traffic load across the avail-
able queues and cores, Scap uses both RSS [22], which uses a hash
function based on the packets’ 5-tuple, and dynamic load balanc-
ing, using flow director filters [21], to deal with short-term load im-
balance. To map the two different streams of each bi-directional
TCP connection to the same core, we modify the RSS seeds as pro-
posed by Woo and Park [52].

Each core runs a separate instance of the NIC driver and Scap
kernel module to handle interrupts and packets from the respective
hardware queue. Thus, each Scap instance running on each core
will receive a different subset of network streams, as shown in Fig-
ure 1. Consequently, the stream reassembly process is distributed
across all the available cores. To match the level of parallelism
provided by the Scap kernel module, the Scap’s user-level stub cre-
ates as many worker threads as the available cores, hiding from
the programmer the complexity of creating and managing multiple
processes or threads. Each worker thread processes the streams de-
livered to its core by its kernel-level counterpart. This collocation
of user-level and kernel-level threads that work on the same data
maximizes locality of reference and cache affinity, reducing, in this
way, context switches, cache misses [15, 37], and inter-thread syn-
chronization. Each worker thread polls a separate event queue for
events created by the kernel Scap thread running on the same core,
and calls the respective callback function registered by the applica-
tion to process each event.



5. IMPLEMENTATION
We now give more details on the implementation of the Scap

monitoring framework.

5.1 Scap Kernel Module
The Scap kernel module implements a new network protocol for

receiving packets from network devices, and a new socket class,
PF_SCAP, for communication between the Scap stub and the ker-
nel module. Packets are transferred to memory through DMA, and
the driver schedules them for processing within the software inter-
rupt handler—the Scap’s protocol handler in our case.

5.2 Fast TCP Reassembly
For each packet, the Scap kernel module finds and updates its re-

spective stream_t record, or creates a new one. For fast lookup,
we use a hash table by randomly choosing a hash function dur-
ing initialization. Based on the transport-layer protocol headers,
Scap extracts the packet’s data and writes them directly to the cur-
rent memory offset indicated in the stream_t record. Packets
belonging to streams that exceed their cutoff value, as well as du-
plicate or overlapping TCP segments, are discarded immediately
without unnecessarily spending further CPU and memory resources
for them. Streams can expire explicitly (e.g., via TCP FIN/RST),
or implicitly, due to an inactivity timeout. For the latter, Scap
maintains an access list with the active streams sorted by their last
access time. Upon packet reception, the respective stream_t
record is simply placed at the beginning of the access list, to keep
it sorted. Periodically, starting from the end of the list, the kernel
module compares the last access time of each stream with the cur-
rent time, and expires all streams for which no packet was received
within the specified period by creating stream termination events.

5.3 Memory Management
Reassembled streams are stored in a large memory buffer allo-

cated by the kernel module and mapped in user level by the Scap
stub. For each stream, a contiguous memory block is allocated
(by our own memory allocator) according to the stream’s chunk
size. When this block fills up, the chunk is delivered for process-
ing (by creating a respective event) and a new block is allocated
for the next chunk. The Scap stub has access to this block through
memory mapping, so an offset is enough for locating each stored
chunk. To avoid dynamic allocation overhead, a large number of
stream_t records are pre-allocated during initialization, and are
memory-mapped by the Scap stub. More records are allocated dy-
namically as needed. Thus, the number of streams that can be
tracked concurrently is not limited by Scap.

5.4 Event Creation
A new event is triggered on stream creation, stream termination,

and whenever stream data is available for processing. A data event
can be triggered for one of the following reasons: (i) a memory
chunk fills up, (ii) a flush timeout is passed, (iii) a cutoff value is
exceeded, or (iv) a stream is terminated. When a stream’s cutoff
threshold is reached, Scap creates a final data processing event for
its last chunk. However, its stream_t record remains in the hash
table and in the access list, so that monitoring continues throughout
its whole lifetime. This is required for gathering flow statistics and
generating the appropriate termination event.

To avoid contention when the Scap kernel module runs in paral-
lel across several cores, each core inserts events in a separate queue.
When a new event is added into a queue, thesk_data_ready()
function is called to wake up the corresponding worker thread,
which calls poll() whenever its event queue is empty. Along

with each event, the Scap stub receives and forwards to the user-
level application a pointer to the respective stream_t record. To
avoid race conditions between the Scap kernel module and the ap-
plication, Scap maintains a second instance of each stream_t
record. The first copy is updated within the kernel, while the sec-
ond is read by the user-level application. The kernel module up-
dates the necessary fields of the second stream_t instance right
before a new event for this stream is enqueued.

5.5 Hardware Filters
Packets taking part in the TCP three-way handshake are always

captured. When the cutoff threshold is triggered for a stream, Scap
adds dynamically the necessary FDIR filters to drop at the NIC
layer all subsequent packets belonging to this stream. Note that al-
though packets are dropped before they reach main memory, Scap
needs to know when a stream ends. For this reason, we add filters
to drop only packets that contain actual data segments (or TCP ac-
knowledgements), and still allow Scap to receive TCP RST or FIN
packets that may terminate a stream.

This is achieved using the flexible 2-byte tuple option of FDIR
filters. We have modified the NIC driver to allow for matching the
offset, reserved, and TCP flags 2-byte tuple in the TCP header. Us-
ing this option, we add two filters for each stream: the first matches
and drops TCP packets for which only the ACK flag is set, and the
second matches and drops TCP packets for which only the ACK
and PSH flags are set. The rest of the filter fields are based on each
stream’s 5-tuple. Thus, only TCP packets with RST or FIN flag
will be forwarded to Scap kernel module for stream termination.

Streams may also be terminated based on an inactivity timeout.
For this reason Scap associates a timeout with each filter, and keeps
a list with all filters sorted by their timeout values. Thus, an FDIR
filter is removed (i) when a TCP RST or FIN packet arrives for
a given stream, or (ii) when the timeout associated with a filter
expires. Note that in the second case the stream may still be active,
so if a packet of this stream arrives upon the removal of its filter,
Scap will immediately re-install the filter. This is because the cutoff
of this stream has exceeded and the stream is still active. To handle
long running streams, re-installed filters get a timeout twice as large
as before. In this way, long-running flows will only be evicted a
logarithmic number of times from NIC’s filters. If there is no space
left on the NIC to accommodate a new filter, a filter with a small
timeout is evicted, as it does not correspond to a long-lived stream.

Scap needs to provide accurate flow statistics upon the termina-
tion of streams that had exceeded their cutoff, even if most of their
packets were discarded at the NIC. Unfortunately, existing NICs
provide only aggregate statistics for packets across all filters—not
per each filter. However, Scap is able to estimate accurate per-flow
statistics, such as flow size and flow duration, based on the TCP
sequence numbers of the RST/FIN packets. Also, by removing the
NIC filters when their timeout expires, Scap receives packets from
these streams periodically and updates their statistics.

Our implementation is based on the Intel 82599 NIC [21], which
supports RSS and flow director filters. Similarly to this card, most
modern 10GbE NICs such as Solarflare [46], SMC [44], Chel-
sio [10], and Myricom [30], also support RSS and filtering capa-
bilities, so Scap can be effectively used with these NICs as well.

5.6 Handling Multiple Applications
Multiple applications can use Scap concurrently on the same ma-

chine. Given that monitoring applications require only read ac-
cess to the stream data, there is room for stream sharing to avoid
multiple copies and improve overall performance. To this end, all
Scap sockets share a single memory buffer for stream data and
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Figure 3: Performance comparison of flow-based statistics export for YAF, Libnids, and Scap, for varying traffic rates.

stream_t records. As applications have different requirements,
Scap tries to combine and generalize all requirements at kernel
level, and apply application-specific configurations at user level.

5.7 Packet Delivery
An application may be interested in receiving both reassembled

streams, as well as their individual packets, e.g., to detect TCP-level
attacks [41]. Scap supports the delivery of the original packets as
captured from the network, if an application indicates that it needs
them. Then, Scap internally uses another memory-mapped buffer
that contains records for each packet of a stream. Each record con-
tains a packet header with the timestamp and capture length, and a
pointer to the original packet payload in the stream.

5.8 API Stub
The Scap API stub uses setsockopt() to pass parameters to

the kernel module for handling API calls. When scap_start_
capture() is called, each worker thread runs an event-dispatch
loop that polls its corresponding event queue, reads the next avail-
able event, and executes the registered callback function for the
event (if any). The event queues contain stream_t objects, which
have an event field and a pointer to the next stream_t object
in the event queue. If this pointer is NULL, then there is no event
in the queue, and the stub calls poll() to wait for future events.

6. EXPERIMENTAL EVALUATION
We experimentally evaluate the performance of Scap, compar-

ing it to other stream reassembly libraries, for common monitoring
tasks, such as flow statistics export and pattern matching, while re-
playing a trace of real network traffic at different rates.

6.1 Experimental Environment

The hardware.
We use a testbed comprising two PCs interconnected through

a 10 GbE switch. The first, equipped with two dual-core Intel
Xeon 2.66 GHz CPUs with 4MB L2 cache, 4GB RAM, and an
Intel 82599EB 10GbE NIC, is used for traffic generation. The sec-
ond, used as a monitoring sensor, is equipped with two quad-core
Intel Xeon 2.00 GHz CPUs with 6MB L2 cache, 4GB RAM, and
an Intel 82599EB 10GbE NIC used for stream capture. Both PCs
run 64-bit Ubuntu Linux (kernel version 2.6.32).

The trace.
To evaluate stream reassembly implementations with real traffic,

we replay a one-hour long full-payload trace captured at the ac-
cess link that connects to the Internet a University campus with
thousands of hosts. The trace contains 58,714,906 packets and

1,493,032 flows, totaling more than 46GB, 95.4% of which is TCP
traffic. To achieve high replay rates (up to 6 Gbit/s) we split the
trace in smaller parts of 1GB that fit into main memory, and replay
each part 10 times while the next part is being loaded in memory.

The parameters.
We compare the following systems: (i) Scap, (ii) Libnids v1.24 [2],

(iii) YAF v2.1.1 [20], a Libpcap-based flow export tool, and (iv)
the Stream5 preprocessor of Snort v2.8.3.2 [40]. YAF, Libnids and
Snort rely on Libpcap [29], which uses the PF_PACKET socket for
packet capture on Linux. Similarly to Scap’s kernel module, the
PF_PACKET kernel module runs as a software interrupt handler
that stores incoming packets to a memory-mapped buffer, shared
with Libpcap’s user-level stub. In our experiments, the size of this
buffer is set to 512MB, and the buffer size for reassembled streams
is set to 1GB for Scap, Libnids, and Snort. We use a chunk size of
16KB, the SCAP_TCP_FAST reassembly mode, and an inactivity
timeout of 10 seconds. The majority of TCP streams terminate ex-
plicitly with TCP FIN or RST packet, but we also use an inactivity
timeout to expire UDP and TCP flows that do not close normally.
As we replay the trace at much higher rates than its actual capture
rate, an inactivity timeout of 10 seconds is a reasonable choice.

6.2 Flow-Based Statistics Export: Drop Any-
thing Not Needed

In our first experiment we evaluate the performance of Scap for
exporting flow statistics, comparing with YAF and with a Libnids-
based program that receives reassembled flows. By setting the
stream cutoff value to zero, Scap discards all stream data after up-
dating stream statistics. When Scap is configured to use the FDIR
filters, the NIC discards all packets of a flow after TCP connection
establishment, except from the TCP FIN/RST packets, which are
used by Scap for flow termination. Although Scap can use all eight
available cores, for a fair comparison, we configure it to use a single
worker thread, as YAF and Libnids are single-threaded. However,
for all tools, interrupt handling for packet processing in the kernel
takes advantage of all cores, utilizing NIC’s multiple queues.

Figures 3(a), 3(b), and 3(c) present the percentage of dropped
packets, the average CPU utilization of the monitoring application
on a single core, and the software interrupt load while varying the
traffic rate from 250 Mbit/s to 6 Gbit/s. We see that Libnids starts
losing packets when the traffic rate exceeds 2 Gbit/s. The reason
can be seen in Figures 3(b) and 3(c), where the total CPU utilization
of Libnids exceeds 90% at 2.5 Gbit/s. YAF performs slightly better
than Libnids, but when the traffic reaches 4 Gbit/s, it also drives
CPU utilization to 100% and starts losing packets as well. This
is because both YAF and Libnids receive all packets in user space
and then drop them, as the packets themselves are not needed.
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Figure 4: Performance comparison of stream delivery for Snort, Libnids, and Scap, for varying traffic rates.
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Figure 5: Performance comparison of Snort, Libnids, and Scap, for a varying number of concurrent streams.

Scap processes all packets even at 6 Gbit/s load. As shown in
Figure 3(b), the CPU utilization of the Scap application is always
less than 10%, as it practically does not do any work at all. All the
work has already been done by Scap’s kernel module. One would
expect the overhead of this module (shown in Figure 3(c)) to be
relatively high. Fortunately, however, the software interrupt load
of Scap is even lower compared to YAF and Libnids, even when
FDIR filters are not used, because Scap does not copy the incom-
ing packets around: as soon as a packet arrives, the kernel module
accesses only the needed information from its headers, updates the
respective stream_t, and just drops it. In contrast, Libnids and YAF
receive all packets to user space, resulting in much higher overhead.
YAF performs better than Libnids because it receives only the first
96 bytes of each packet and it does not perform stream reassembly.

When Scap uses FDIR filters to discard the majority of the pack-
ets at NIC layer it achieves even better performance. Figure 3(c)
shows that the software interrupt load is significantly lower with
FDIR filters: as little as 2% for 6 Gbit/s. Indeed, Scap with FDIR
brings into main memory as little as 3% of the total packets—just
the packets involved in TCP session creation and termination.

6.3 Delivering Streams to User Level: The Cost
of an Extra Memory Copy

In this experiment, we explore the performance of Scap, Snort,
and Libnids when delivering reassembled streams without any fur-
ther processing. The Scap application receives all data from all
streams with no cutoff, and runs as a single thread. Snort is con-
figured with only the Stream5 preprocessor enabled, without any
rules. Figure 4(a) shows the percentage of dropped packets as a
function of the traffic rate. Scap delivers all steams without any
packet loss for rates up to 5.5 Gbit/s. On the other hand, Libnids
starts dropping packets at 2.5 Gbit/s (drop rate: 1.4%) and Snort
at 2.75 Gbit/s (drop rate: 0.7%). Thus, Scap is able to deliver re-
assembled streams to the monitoring applications for more than two
times higher traffic rates. When the input traffic reaches 6 Gbit/s,
Libnids drops 81.2% and Snort 79.5% of the total packets received.

The reason for this performance difference lies in the extra mem-
ory copy operations needed for stream reassembly at user level.
When a packet arrives for Libnids and Snort, the kernel writes it
in the next available location in a common ring buffer. When per-
forming stream reassembly, Libnids and Snort may have to copy

each packet’s payload from the ring buffer to a memory buffer al-
located specifically for this packet’s stream. Scap avoids this extra
copy operation because the kernel module copies the packet’s data
not to a common buffer, but directly to a memory buffer allocated
specifically for this packet’s stream. Figure 4(b) shows that the
CPU utilization of the Scap user-level application is considerably
lower than the utilization of Libnids and Snort, which at 3 Gbit/s
exceeds 90%, saturating the processor. In contrast, the CPU utiliza-
tion for the Scap application is less then 60% even for speeds up to
6 Gbit/s, as the user application does very little work: all the stream
reassembly is performed in the kernel module, which increases the
software interrupt load, as can be seen in Figure 4(c).

6.4 Concurrent Streams
An attacker could try to saturate the flow table of a stream re-

assembly library by creating a large number of established TCP
flows, so that a subsequent malicious flow cannot be stored. In this
experiment, we evaluate the ability of Scap, Libnids, and Snort to
handle such cases while increasing the number of concurrent TCP
streams up to 10 million. Each stream consists of 100 packets
with the maximum TCP payload, and streams are multiplexed so
that the desirable number of concurrent streams is achieved. For
each case, we create a respective packet trace and then replay it
at a constant rate of 1 Gbit/s, as we want to evaluate the effect of
concurrent streams without increasing the traffic rate. As in the pre-
vious experiment, the application uses a single thread and receives
all streams at user level, without performing any further processing.

Figure 5 shows that Scap scales well with the number of concur-
rent streams: as we see in Figure 5(a), no stream is lost even for
10 million concurrent TCP streams. Also, Figures 5(b) and 5(c)
show that the CPU utilization and software interrupt load of Scap
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Figure 6: Performance comparison of pattern matching for Snort, Libnids, and Scap, for varying traffic rates.

slightly increase with the number of concurrent streams, as the traf-
fic rate remains constant. On the other hand, Snort and Libnids can-
not handle more than one million concurrent streams, even though
they can handle 1 Gbit/s traffic with less than 60% CPU utiliza-
tion. This is due to internal limits that these libraries have for the
number of flows they can store in their data structures. In contrast,
Scap does not have to set such limits because it uses a dynamic
memory management approach: when more memory is needed for
storing stream_t records, Scap allocates dynamically the nec-
essary memory pools to capture all streams. In case an attacker
tries to overwhelm the Scap flow table, Scap will use all the avail-
able memory for stream_t records. When there is no more free
memory, Scap’s policy is to always store newer streams by remov-
ing from the flow table the older ones, i.e., streams with the highest
inactivity time based on the access list.

6.5 Pattern Matching
In the following experiments, we measure the performance of

Scap with an application that receives all streams and searches for a
set of patterns. We do not apply any cutoff so that all traffic is deliv-
ered to the application, and a single worker thread is used. Pattern
matching is performed using the Aho-Corasik algorithm [5]. We
extracted 2,120 strings based on the content field of the “web
attack” rules from the official VRT Snort rule set [4], and use them
as our patterns. These strings resulted in 223,514 matches in our
trace. We compare Scap with Snort and Libnids using the same
string matching algorithm and set of patterns in all three cases. To
ensure a fair comparison, Snort is configured only with the Stream5
preprocessor enabled, using a separate Snort rule for each of the
2,120 patterns, applied to all traffic, so that all tools end up us-
ing the same automaton. The Scap and Libnids programs load the
2,120 patterns from a file, build the respective DFA, and start re-
ceiving streams. We use the same chunk size of 16KB for all tools.

Figure 6(a) shows the percentage of dropped packets for each ap-
plication as a function of the traffic rate. We see that Snort and Lib-
nids process traffic rates of up to 750 Mbit/s without dropping any
packets, while Scap processes up to 1 Gbit/s traffic with no packet
loss with one worker thread. The main reasons for the improved
performance of Scap are the improved cache locality when group-
ing multiple packets into their respective transport-layer streams,
and the reduced memory copies during stream reassembly.

Moreover, Scap drops significantly fewer packets than Snort and
Libnids, e.g., at 6 Gbit/s it processes three times more traffic. This
behavior has a positive effect on the number of matches. As shown
in Figure 6(b), under the high load of 6 Gbit/s, Snort and Libnids
match less than 10% of the patterns, while Scap matches five times
as many: 50.34%. Although the percentage of missed matches
for Snort and Libnids is proportional to the percentage of dropped
packets, the accuracy of the Scap application is affected less from
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high packet loss rates. This is because Scap under overload tends
to retain more packets towards the beginning of each stream. As
we use patterns from web attack signatures, they are usually found
within the first few bytes of HTTP requests or responses. Also,
Scap tries to deliver contiguous chunks, which improves the detec-
tion abilities compared to delivery of chunks with random holes.

6.5.1 Favoring Recent and Short Streams

We turn our attention now to see how dropped packets affect the
different stream reassembly approaches followed by Scap, Libnids,
and Snort. While Libnids and Snort drop packets randomly under
overload, Scap is able to (i) assign more memory to new or small
streams, (ii) cut the long tails of large streams, and (iii) deliver more
streams intact when the available memory is limited. Moreover, the
Scap kernel module always receives and processes all important
protocol packets during the TCP handshake. In contrast, when a
packet capture library drops these packets due to overload, the user-
level stream reassembly library will not be able to reassemble the
respective streams. Indeed, Figure 6(c) shows that the percentage
of lost streams in Snort and Libnids is proportional to the packet
loss rate. In contrast, Scap loses significantly less streams than the
corresponding packet loss ratio. Even for 81.2% packet loss at 6
Gbit/s, only 14% of the total streams are lost.

6.5.2 Locality

Let’s now turn our attention to see how different choices made
by different tools impact locality of reference and, in the end, de-
termine application performance. For the previous experiment, we
also measure the number of L2 cache misses as a function of the
traffic rate (Figure 7), using the processor’s performance coun-
ters [3]. We see that when the input traffic is about 0.25 Gbit/s,
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Figure 8: Performance comparison of Snort, Libnids, and Scap, for varying stream size cutoff values at 4 Gbit/s rate.

Snort experiences about 25 misses per packet, Libnids about 21,
while Scap experiences half of them: just 10.2 misses per packet.
We have to underline that at this low traffic rate none of the three
tools misses any packets, and we know that none of the tools is
stressed, so they all operate in their comfort zone. The reason that
Lidnids and Snort have twice as many cache misses as Scap can
be traced to the better locality of reference of the Scap approach.
By reassembling packets into streams from the moment they arrive,
packets are not copied around: consecutive segments are stored to-
gether, and are consumed together. On the contrary, Libnids and
Snort perform packet reassembly too late: the segments have been
stored in (practically) random locations all over the main memory.

6.5.3 Packet Delivery

To evaluate the packet delivery performance of Scap, we ran the
same application when Scap was configured with packet support,
and pattern matching was performed on the delivered packet pay-
loads. The results are shown in Figure 6 as well. We see that the
performance of Scap remains the same when the pattern match-
ing application operates on each packet, i.e., the percentages of
dropped packets and lost streams do not change. We just observe a
slight decrease in the number of successful matches, which is due
to missed matches for patterns spanning the payloads of multiple
successive packets.

6.6 Cutoff Points: Discarding Less Interest-
ing Packets Before It Is Too Late

Several network monitoring applications need to receive only the
initial part of each flow [26, 33]. Other systems, such as Time Ma-
chine [27], elevate the ability to store only the beginning of each
flow into one of their fundamental properties. In this experiment,
we set out to explore the effectiveness of Libnids, Snort, and Scap
when implementing cutoff points. For Snort, we modified Stream5
to discard packets from streams that exceed a given cutoff value.
Similarly, when the size of a stream reaches the cutoff value, Lib-
nids stops the collection of data for this stream. In Scap, we just
call the scap_set_cutoff() function in program’s preamble
using the desirable cutoff. We also compare Scap with and with-
out using FDIR filters. The applications search for the same set of
patterns as in the previous experiment.

Figures 8(a), 8(b), and 8(c) show the packet loss, CPU utiliza-
tion, and software interrupt load as a function of the cutoff for a
fixed traffic rate of 4 Gbit/s. Interestingly, even for a zero cutoff
size, i.e., when all data of each flow is discarded, both Snort and
Libnids experience as much as 40% packet loss, as shown in the
left part of Figure 8(a). This is because Snort and Libnids first
bring all packets to user space, and then discard the bytes they do
not need. Indeed, Figures 8(b) and 8(c) show that the total CPU uti-

lization of Libnids and Snort is always close to 100% at this traffic
rate irrespectively of the cutoff point.

In contrast, for cutoff points smaller than 1MB, Scap has no
packet loss and very small CPU utilization. For instance, when
Scap uses a 10KB cutoff, the CPU load is reduced from 97% to
just 21.9%, as 97.6% of the total traffic is efficiently discarded. At
the same time, 83.6% of the matches are still found, and no stream
is lost. This outcome demonstrates how the stream cutoff, when im-
plemented efficiently, can improve performance by cutting the long
tails of large flows, and allows applications to keep monitoring the
first bytes of each stream at high speeds. When the cutoff point in-
creases beyond 1MB, CPU utilization reaches saturation and even
Scap starts dropping packets. Enhancing Scap with hardware filters
reduces the software interrupt load, and thus reduces the packet loss
for cutoff values larger than 1MB.

6.7 Stream Priorities: Less Interesting Pack-
ets Are The First Ones To Go

To experimentally evaluate the effectiveness of Prioritized Packet
Loss (PPL), we ran the same pattern matching application using a
single worker thread while setting two priority classes. As an ex-
ample, we set a higher priority to all streams with source or desti-
nation port 80, which correspond to 8.4% of the total packets in our
trace. The rest of the streams have the same (low) priority. Figure 9
shows the percentage of dropped packets for high-priority and low-
priority streams as a function of the traffic rate. When the traffic
rate exceeds 1 Gbit/s, the single-threaded pattern matching appli-
cation cannot process all incoming traffic, resulting in a fraction of
dropped packets that increases with higher traffic rates. However,
we see that no high-priority packet is dropped for traffic rates up
to 5.5 Gbit/s, while a significant number of low-priority packets
are dropped at these rates—up to 85.7% at 5.5 Gbit/s. At the traffic
rate of 6 Gbit/s, we see a small packet loss of 2.3% for high-priority
packets out of the total 81.5% of dropped packets.

6.8 Using Multiple CPU Cores
In all previous experiments the Scap application ran on a sin-

gle thread, to allow for a fair comparison with Snort and Libnids,
which are single-threaded. However, Scap is naturally parallel and
can easily use a larger number of cores. In this experiment, we ex-
plore how Scap scales with the number of cores. We use the same
pattern matching application as previously, without any cutoff, and
configure it to use from one up to eight worker threads. Our system
has eight cores, and each worker thread is pinned to one core.

Figure 10(a) shows the packet loss rate as a function of the num-
ber of worker threads, for three different traffic rates. When using
a single thread, Scap processes about 1 Gbit/s of traffic without
packet loss. When using seven threads, Scap processes all traffic
at 4 Gbit/s with no packet loss. Figure 10(b) shows the maximum
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Figure 10: Performance of an Scap pattern matching application for a varying num-

ber of worker threads.

loss-free rate achieved by the application as a function of the num-
ber of threads. We see that performance improves linearly with the
number of threads, starting at about 1 Gbit/s for one worker thread
and going all the way to 5.5 Gbit/s for eight threads.

The reason that we do not see a speedup of eight when using
eight worker threads is the following: even though we restrict the
user application to run on a limited number of cores, equal to the
number of worker threads, the operating system kernel runs always
on all the available cores of the processor. Therefore, when Scap
creates less than eight worker threads, it is only the user-level ap-
plication that runs on these cores. The underlying operating system
and Scap kernel module runs on all cores.

7. ANALYSIS
In this section, we analyze the performance of Prioritized Packet

Loss (PPL) under heavy load, aiming to explore at what point PPL
should start dropping low-priority packets so that high priority ones
do not have to be dropped. For simplicity lets assume that we have
two priorities: low and high. We defineN to be (memory_size−
base_threshold)/2. If the used memory exceeds N , then PPL
will start dropping low priority packets. Given that N is finite, we
would like to explore what is the probability that N will fill up
and we will have to drop high-priority packets. To calculate this
probability we need to make a few more assumptions. Assume that
high-priority packet arrivals follow a Poisson distribution with a
rate of λ, and that queued packets are consumed by the user level
application. We assume that the service times for packets follow an
exponential distribution with parameter µ. Then, the whole system
can be modeled as an M/M/1/N queue. The probability that all
the memory will fill up is:

Pfull =
1− ρ

1− ρN+1
ρN (1)

where ρ = λ/µ. Due to the PASTA property of the Poisson pro-
cesses, this is exactly the probability of packet loss: Ploss = Pfull.

Figure 11 plots the packet loss probability for high-priority pack-
ets as a function of N . We see that a memory size of a few tens
of packet slots are enough to reduce the probability that a high-
priority packet is lost to 10−8. We note, however, that the speed
with which the probability is reduced depends on ρ: the fraction
of the high-priority packets over all traffic which can be served by
the full capacity of the system. We see that when ρ is 0.1, that
is, when only 10% of the packets are high-priority ones, then less
than 10 slots are more than enough to guarantee that there will be
practically no packet loss. When ρ is 0.5 (i.e., 50% of the traffic
is high-priority), then a little more than 20 packet slots are enough,
while when ρ is 0.9, then about 150 packet slots are enough.

The analysis can be extended to more priority levels as well. As-
sume, for example, that we have three priority levels: low,medium,
and high, that N = (memory_size − base_threshold)/3, that
medium-priority packet arrivals follow a Poisson distribution with
a rate of λ1, and that high-priority packet arrivals follow a Pois-
son distribution with a rate of λ2. As previously, assume that the
service times for packets follow an exponential distribution with
parameter µ. Then, the system can be described as a Markov chain
with 2N nodes:
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The packet loss probability for high-priority packets is:

Ploss = ρN1 ρN2 p0 (2)

where ρ1 = (λ1 + λ2)/µ, ρ2 = λ2/µ, and

p0 = 1/(
1− ρN+1

1

1− ρ1
+ ρ

N/3
1

1− ρN+1

2

1− ρ2
)

The packet loss probability for medium-priority packets remains:

Ploss =
1− ρ1

1− ρ1N+1
ρ1

N
(3)

Figure 12 plots the packet loss probability for high-priority and
medium-priority packets as a function of N. We assume that ρ1 =
ρ2 = 0.3. We see that a few tens of packet slots are enough to re-
duce the packet loss probability for both high-priority and medium-
priority packets to practically zero. Thus, we believe that PPL
provides an effective mechanism for preventing uncontrolled loss
of important packets in network monitoring systems.

8. RELATED WORK
In this section we review prior work related to Scap.

8.1 Improving Packet Capture
Several techniques have been proposed to reduce the kernel over-

head and the number of memory copies for delivering packets to
the application [8, 11, 31, 39]. Scap can also use such techniques
to improve its performance. The main difference, however, is that
all these approaches operate at the network layer. Thus, monitoring
applications that require transport-layer streams should implement
stream reassembly, or use a separate user-level library, resulting
in reduced performance and increased application complexity. In
contrast, Scap operates at the transport layer and directly assembles
incoming packets to streams in the kernel, offering the opportunity
for a wide variety of performance optimizations and many features.
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Papadogiannakis et al. [35] show that memory access locality
in passive network monitoring applications can be improved when
reordering the packet stream based on source and destination port
numbers. Scap also improves memory access locality and cache
usage in a similar manner when grouping packets into streams.

8.2 Taking Advantage of Multi-core Systems
Fusco and Deri [17] utilize the receive-side scaling feature of

modern NICs in conjunction with multi-core systems to improve
packet capture performance. Sommer et al. [47] take advantage of
multi-core processors to parallelize event-based intrusion preven-
tion systems using multiple event queues that collect semantically
related events for in-order execution. Storing related events in a
single queue localizes memory access to shared state by the same
thread. Pesterev et al. [37] improve TCP connection locality in
multicore servers using the flow director filters to optimally bal-
ance the TCP packets among the available cores. We view these
works as orthogonal to Scap: such advances in multi-core systems
can be easily used by Scap.

8.3 Packet Filtering
Dynamic packet filtering reduces the cost of adding and remov-

ing filters at runtime [12,49,53]. Deri et al. [13] propose to use the
flow director filters for common filtering needs. Other approaches
allow applications to move simple tasks to the kernel packet filter to
improve performance [6,8,23]. Scap suggests a relatively different
approach: applications empowered with a Stream abstraction can
communicate their stream-oriented filtering and processing needs
to the underlying kernel module at runtime through the Scap API,
to achieve lower complexity and better performance. For instance,
Scap is able to filter packets within the kernel or at the NIC layer
based on a flow size cutoff limit, allowing to set dynamically dif-
ferent cutoff values per-stream, while the existing packet filtering
systems are not able to support a similar functionality.

8.4 TCP Stream Reassembly
Libnids [2] is a user-level library on top of Libpcap for TCP

stream reassembly based on the emulation of a Linux network stack.
Similarly, the Stream5 [32] preprocessor, part of Snort NIDS [40],
performs TCP stream reassembly at user level, emulating the net-
work stacks of various operating systems. Scap shares similar goals
with Libnids and Stream5. However, previous works treat TCP
stream reassembly as a necessity [50], mostly for the avoidance of
evasion attacks against intrusion detection systems [14,19,51]. On

the contrary, Scap views transport-layer streams as the fundamen-
tal abstraction that is exported to network monitoring applications,
and as the right vehicle to implement aggressive optimizations.

8.5 Per-flow Cutoff
The Time Machine network traffic recording system [27] ex-

ploits the heavy-tailed nature of Internet traffic to reduce the num-
ber of packets stored on disk for retrospective analysis, by applying
a per-flow cutoff. Limiting the size of flows can also improve the
performance of intrusion detection systems under load [26, 33], by
focusing detection on the beginning of each connection. Canini et
al. [9] propose a similar scheme for traffic classification, by sam-
pling more packets from the beginning of each flow. Scap shares
a similar approach with these works, but implements it within a
general framework for fast and efficient network traffic monitor-
ing, using the Stream abstraction to enable the implementation of
performance improvements at the most appropriate level. For in-
stance, Scap implements the per-flow cutoff inside the kernel or at
the NIC layer, while previous approaches have to implement it in
user space. As a result, they first receive all packets from kernel in
user space, and then discard those that are not needed.

8.6 Overload Control
Load shedding is proposed as a defense against overload attacks

in Bro [36], whereby the NIDS operator is responsible for defin-
ing a discarding strategy. Barlet-Ros et al. [7] also propose a load
shedding technique using an on-line prediction model for query re-
source requirements, so that the monitoring system sheds load un-
der conditions of excessive traffic using uniform packet and flow
sampling. Dreger et al. [16] deal with packet drops due to over-
loads in a NIDS using load levels, which are precompiled sets of
filters that correspond to different subsets of traffic enabled by the
NIDS depending on the workload.

8.7 Summary
To place our work in context, Figure 13 categorizes Scap and re-

lated works along two dimensions: the main abstraction provided
to applications, i.e., packet, set of packets, or stream, and the level
at which this abstraction is implemented, i.e., user or kernel level.
Traditional systems such as Libpcap [29] use the packet as basic
abstraction and are implemented in user level. More sophisticated
systems such as netmap [39], FLAME [6], and PF_RING [11] also
use the packet as basic abstraction, but are implemented in kernel
and deliver better performance. MAPI [48] and FFPF [8] use higher
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Figure 13: Categorization of network monitoring tools and sys-

tems that support commodity NICs.

level abstractions such as the set of packets. Libnids and Stream5
provide the transport-layer Stream as their basic abstraction, but
operate at user level and thus achieve poor performance and miss
several opportunities of efficiently implementing this abstraction.
We see Scap as the only system that provides a high-level abstrac-
tion, and at the same time implements it at the appropriate level,
enabling a wide range of performance optimizations and features.

9. CONCLUSION
In this paper, we have identified a gap in network traffic mon-

itoring: applications usually need to express their monitoring re-
quirements at a high level, using notions from the transport layer
or even higher, while most monitoring tools still operate at the net-
work layer. To bridge this gap, we have presented the design, im-
plementation, and evaluation of Scap, a network monitoring frame-
work that offers an expressive API and significant performance
improvements for applications that process traffic at the transport
layer and beyond. Scap gives the stream abstraction a first-class
status, and provides an OS subsystem for capturing transport-layer
streams while minimizing data copy operations by optimally plac-
ing network data into stream-specific memory regions.

The results of our experimental evaluation demonstrate that Scap
is able to deliver all streams for rates up to 5.5 Gbit/s using a single
core, two times higher than the other existing approaches. An Scap-
based application for pattern matching handles 33% higher traffic
rates and processes three times more traffic at 6 Gbit/s than Snort
and Libnids. Moreover, we observe that user-level implementa-
tions of per-flow cutoff just reduce the packet loss rate, while Scap’s
kernel-level implementation and subzero copy eliminate completely
packet loss for stream cutoff values of up to 1MB when perform-
ing pattern matching operations at 4 Gbit/s. This outcome demon-
strates that cutting the long tails of large flows can be extremely
beneficial when traffic is discarded at early stages, i.e., within the
kernel or even better at the NIC, in order to spend the minimum
possible number of CPU cycles for uninteresting packets. When
eight cores are used for parallel stream processing, Scap is able to
process 5.5 times higher traffic rates with no packet loss.

As networks are getting increasingly faster and network moni-
toring applications are getting more sophisticated, we believe that
approaches like Scap, which enable aggressive optimizations at
kernel-level or even at the NIC level, will become increasingly
more important in the future.
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