
PRIDE: Practical Intrusion Detection in
Resource Constrained Wireless Mesh Networks

Amin Hassanzadeh, Zhaoyan Xu, Radu Stoleru, Guofei Gu, and
Michalis Polychronakis*

Department of Computer Science and Engineering, Texas A&M University, USA
* Computer Science Department, Columbia University, USA

{amin, z0x0427, stoleru, guofei}@cse.tamu.edu, mikepo@cs.columbia.edu

Abstract. As interest in wireless mesh networks grows, security chal-
lenges, e.g., intrusion detection, become of paramount importance. Tra-
ditional solutions for intrusion detection assign full IDS responsibilities
to a few selected nodes. Recent results, however, have shown that a mesh
router cannot reliably perform full IDS functions because of limited re-
sources (i.e., processing power and memory). Cooperative IDS solutions,
targeting resource constrained wireless networks impose high communi-
cation overhead and detection latency. To address these challenges, we
propose PRIDE (PRactical Intrusion DEtection in resource constrained
wireless mesh networks), a non-cooperative real-time intrusion detection
scheme that optimally distributes IDS functions to nodes along traffic
paths, such that detection rate is maximized, while resource consump-
tion is below a given threshold. We formulate the optimal IDS function
distribution as an integer linear program and propose algorithms for solv-
ing it accurately and fast (i.e., practical). We evaluate the performance of
our proposed solution in a real-world, department-wide, mesh network.

Keywords: wireless mesh network, intrusion detection, resource con-
straints, integer linear programming, real-world implementation.

1 Introduction

Wireless Mesh Networks (WMN) are self-managing networks that provide In-
ternet, intranet, and other services to mobile and fixed clients using a multi-hop
multi-path wireless infrastructure consisting of mesh nodes [1, 2]. They have
emerged as a cost-effective broadband network technology for services in large
remote areas where no networking infrastructure is available, e.g., rural con-
nectivity in Zambia [3] and disaster response applications [4]. A wireless mesh
network can serve as the backbone communication infrastructure among WiFi
networks, ad hoc networks, sensor networks and the Internet [4]. It is impor-
tant to remark the lack of a vantage point for the network traffic, due to the
peer-to-peer nature of communication in WMN.

As the interest in WMN grows, security issues, especially intrusion detection,
become of paramount importance. Due to the decentralized nature of WMN, re-

2 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

searchers have proposed distributed solutions for network wide intrusion detec-
tion. Distributed solutions do not rely on a single vantage point (e.g., gateways in
traditional intrusion detection systems (IDS) in wired networks) as there always
could be internal traffic (e.g., between two hosts1) in WMN to be monitored.
The state-of-the-art distributed solutions can be categorized as: i) monitoring
node solutions; and ii) cooperative solutions. Monitoring node solutions [5,6] as-
sign the same set of IDS functions (i.e., detection rules) to monitoring nodes
(note: each monitoring node is responsible for a distinct part of the network).
These solutions, however, have high false negative rates. This is because some
IDS functions cannot be executed on monitoring nodes with limited resources
(e.g., processing power and memory). A recent work [7] investigates challenges
in applying off-the-shelf IDS (Snort and Bro) on mesh devices and proposes a
lightweight (i.e., customized) IDS for WMN. The proposed IDS requires less
memory and decreases the packet drop rate, when compared to off-the-shelf
IDS. These achievements, however, are at the price of detecting fewer types of
network attacks (smaller detection coverage), since most IDS functions are not
implemented. Cooperative solutions (e.g., hierarchical [8] or group-based [9] co-
operation) distribute IDS functions to multiple cooperative nodes, in order to
achieve higher detection rate and lower IDS load. These solutions, however, incur
high communication overhead and high latency in attack detection. This is be-
cause nodes have to exchange their local observations with other nodes running
different IDS functions. Considering the relatively high traffic rates in WMN,
caused by mesh clients and external hosts in WMN, the communication over-
head of cooperative IDS [9, 10] degrades the network performance and delays
intrusion response.

This research is motivated by the fact that neither monitoring nodes nor co-
operative IDS techniques can practically solve the intrusion detection problem
in WMN. As we will show in Section 2, the fact that WMN are resource con-
strained poses significant challenges for intrusion detection. Our idea is to use
the knowledge a security administrator has about the WMN traffic to distribute
IDS functions more efficiently. More precisely, a security administrator, knowing
the routing paths of the traffic in the WMN, would employ a traffic-aware frame-
work that optimally places IDS functions on the nodes along the routing paths.
The information about the busiest and most frequently used paths in the WMN
is obtained from routing algorithms (e.g., OLSR) and network monitoring tools
(e.g., tcpdump). Furthermore, it is observed [4] that when deploying WMN for
disaster response, the points of interest like physical locations of data sources
(e.g., Search & Rescue Robots) and destinations, e.g., Command and Control
Center, and consequently the traffic paths are always known.

A related idea for traffic-aware IDS deployments in wired networks was re-
cently proposed [11], where different IDS responsibilities (i.e., different portions
of network traffic) are assigned to each node along the traffic paths while en-
suring that no node is overloaded. However, that technique cannot be directly

1 A host inside the mesh is either a client or a local server (e.g., a local FTP server)
connected to the mesh routers.

Practical Intrusion Detection for Resource Constrained WMN 3

applied to WMN since it assumes that each node performs all IDS functions -
infeasible for resource constrained mesh devices. Our proposed solution has no
communication overhead, has no detection latency (i.e., it provides real-time in-
trusion detection, in contrast to cooperative IDS) and it has a higher detection
rate, when compared with monitoring node solutions. In our proposed solu-
tion, each node along a routing path, runs a distinct and customized IDS. This
customized IDS (technically a subset of IDS functions) allows resource conserva-
tion. The combination of distinct IDS along the path allows for a complete set
of IDS functions to be applied to the entire network traffic. Our main concern
in this paper is the reduction of RAM utilization as we will experimentally show
that it also improves the CPU utilization in regular traffic rates. More precisely,
our paper makes the following contributions: 1) demonstrates that distributing
IDS functions along routing paths increases the intrusion detection rate and de-
creases the average memory load; 2) formulates a novel IDS function distribution
problem, called Path Coverage Problem (PCP), with the objective to maximize
the detection rate while ensuring that nodes are not overloaded by IDS func-
tions; 3) presents PRIDE, a protocol implemented to solve PCP accurately and
fast, based on an Integer Linear Program (ILP); 4) presents results obtained
from a real prototype system implementation and an evaluation in a real-world,
department-wide, deployed WMN.

2 Motivation and Background

The research presented in this paper is motivated by the challenges we faced
when attempted to deploy a common off-the-shelf IDS with a full configura-
tion (i.e., configured to detect the largest set of attacks) on existing WMN
router hardware. When loading Snort with its full configuration on a Netgear
WNDR3700 router, the router crashes because the RAM is not sufficiently large.
In the remaining part of this section we describe the hardware capabilities of our
mesh routers, background information on Snort, and experimental results that
illustrate how Snort configuration (note: this is equivalent with trading off in-
trusion detection capabilities) impacts memory load of the router.

The Netgear WNDR3700 router has an Atheros AR7161 processor running at
680MHz, 64MB RAM, 8MB flash memory. It has two wireless cards with Atheros
AR9223-bgn and Atheros AR9220-an chipsets, working on 2.4GHz and 5GHz,
respectively. The operating system on the router is the most recent release of
OpenWrt (i.e., Backfire 10.03.1), a Linux distribution for embedded networking
devices, with kernel version 2.6.32.10. We emphasize that our mesh hardware
is more powerful (in terms of processing and memory resources) than devices
used in some existing real world deployments [2,3]. Although in this research we
focus mainly on Netgear WNDR3700 router hardware, later in this section we
present our experience and results with more sophisticated and expensive mesh
hardware, e.g., Meshlium Xtreme which has a 500MHz CPU, 256MB RAM,
8/16/32GB disk memory and WiFi, Zigbee, and GPRS wireless interfaces.

4 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

The router runs Snort, an off-the-shelf intrusion detection system. Snort’s de-
tection engine is based on thousands of detection rules (categorized in multiple
rule files, corresponding to known network threats) and several preprocessors.
All files are listed in “snort.conf”, a global configuration file. Upon activating
each rule file in “snort.conf” and running Snort, all detection rules present in
the rule file are loaded in memory and are used for packet investigation. A full
Snort configuration activates all preprocessors and rule files. A customized con-
figuration activates only some preprocessors and rule files (i.e., IDS functions),
thus, the network traffic is analyzed by fewer detection functions.

The intrusion detection in Snort is performed by packet-level rule matching.
Each packet is preprocessed, following preprocessing directives for extracting
possible plain-text content. The preprocessed packet is then inspected by Snort
detection rules, to expose whether it is an intrusion attempt or not. Preprocessors
parse network packets and provide abstract data for some high-level detection
rules in the rule files. It is important to note that a rule file that contains high-
level detection rules has preprocessor dependency. This dependency means that
the rule file cannot be activated (i.e., Snort generates an error message and
stops) unless all the preprocessors required by its rules (usually one or two
preprocessors) are also activated.

To understand how different Snort configurations impact the memory load
on the Netgear WNDR3700 and Meshlium Xtreme, we performed several exper-
iments. Running Snort causes two types of memory loads to the router: 1) static,
the initial load imposed by packet capturing modules, preprocessors, detection
rules, etc. when Snort is loaded; 2) dynamic, the variable load imposed by state-
ful preprocessors (e.g., Stream5) which is a function of the traffic load and some
configuration parameters.

 0

 20

 40

 60

 80

 100

Snort(S)

S+str5

S+dos

S+4Pre

S+20Sm
l

S+StrH
tt

SpyC
onf

SpyBack

T
o
ta

l
M

e
m

o
ry

 L
o
a
d
 (

%
)

Fig. 1. Effect of Snort configuration
on the memory load.

We first investigate the static memory
load of Snort on the routers when no net-
work traffic is applied. We have observed
that a typical memory load on a Netgear
WNDR3700 router is ∼30% and on the
Meshlium Xtreme router it is∼60%. This ac-
counts for OS firmware and various services
(OLSR, DHCP, etc.). Without preprocessors
or rule files active, loading Snort on Netgear
WNDR3700 increases memory load to 43%
(“Snort(S)” in Figure 1). Memory load in-
creases to 46% if preprocessor Stream5 is
activated (“S+str5” in Figure 1), and to 48% if preprocessors “http-inspect”,
“smtp” and “ftp-telnet” are also activated (“S+4Pre” in Figure 1).

The memory load of a rule file is a function of the number of detection rules
in it and the pattern matching algorithm Snort uses (e.g., Aho-Corasick). For
example, using “ac-bnfa-nq” search method, “dos.rules” which has 20 detec-
tion rules and requires the Stream5 preprocessor, increases memory load to 47%
(“S+dos” in Figure 1). A very large file such as “spyware-put” (“SpyConf” in

Practical Intrusion Detection for Resource Constrained WMN 5

Figure 1) which contains ∼1,000 rule files increases the RAM load to 70%. The
memory load caused by activating a set of rule files also depends on their sizes.
For example, activating 20 small rule files (i.e., 10 rules per file on average) and
the Stream5 preprocessor (which the rules require) increases memory load to
49%. Activating two large rule files, “spyware-put.rules” and “backdoor.rules”
(“SpyBack” in Figure 1) increases memory load to 98%. We have experimen-
tally verified that adding a few small rule files on top of “spyware-put.rules”
and “backdoor.rules” causes the router to crash. We have observed a similarly
overloaded operation for the Meshlium Xtreme router, where a full configura-
tion Snort increases the memory load to 98.5%, leaving almost no room for
processes/services beyond stock deployment. We also emphasize here the rapid
increase in the number of Snort rule files (i.e., currently about 70 files) and their
sizes as functions of the number of threats. Some rules might not be needed in a
particular setting, but conversely, that setting might require many more rules of
some other kind (e.g., custom signatures for suspicious or blacklisted domains,
which can increase significantly).

Dynamic memory load, imposed by Stream5 when tracking traffic sessions,
is the other considerable type of Snort memory load since almost all rule files
require this preprocessor. Two configuration parameters of Stream5, “max tcp”
and “memcap”, specify the maximum simultaneous TCP sessions it tracks (sim-
ilarly, “max udp”, “max icmp”, and “max ip”) and the maximum buffer size
for TCP packet storage, respectively. We have experimentally observed that the
value of “max tcp” affects both dynamic and static memory loads. When using
the Snort version available on the OpenWrt development tree, the default con-
figuration has max tcp=8192. Choosing max tcp=100,000, imposes ∼10% more
static load than default “S+Str5” to the routers. Moreover, this value allows
more simultaneous TCP sessions to be inspected which also imposes larger dy-
namic memory load and may cause the router to crash at high traffic rates (note:
we observed that for max tcp≥150,000 the router crashes if a simple HTTP re-
quest is sent using the Linux “wget” tool). Throughout this paper, we use the
default setting, i.e., max tcp=8192, and consider the maximum dynamic load
this setting imposes on the router. Hence, the total memory load of Stream5
is assumed to be its static load plus its maximum allowable dynamic load. We
note that although hardware improves, the fundamental challenge for a resource-
limited node to handle ever-increasing network traffic still remains.

 0

 20

 40

 60

 80

 100

1000 2000 5000 10000

C
P

U
 L

o
a
d
 (

%
)

Background Traffic (pps)

S+dos
SpyBack

Fig. 2. Effect of Snort configuration
on the CPU load.

In addition to RAM, processing power
(CPU) is also limited on current mesh hard-
ware. Consequently, investigating the im-
pact of Snort IDS on this limited resource
might seem worthwhile. Experimentally we
have found that network traffic, actually,
has a much larger influence on CPU uti-
lization than executing Snort IDS functions.
Our experimental results are depicted in Fig-
ure 2 where we enabled “tcp track” and

6 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

“icmp track” in Stream5 and used “hping3”
to generate TCP and ICMP traffic. As shown, for an extremely high traffic rate,
both lightweight and heavy Snort configurations impose more than 95% CPU
utilization. Similar with our result, it was shown [7] that even a lightweight IDS
exhausted the CPU when traffic rate was extremely high. However, as shown in
Figure 2, “S+dos”, a lightweight IDS configuration, imposes less processing load
than “SpyBack”, a heavyweight IDS configuration, when the traffic rate is not
high. Consequently, we aim at reducing the memory utilization as we have ex-
perimentally observed that it also improves the CPU utilization in regular traffic
rates (as shown in Figure 2).

3 System and Security models

The system we are considering in this paper is as specified by the IEEE 802.11s
WLAN Mesh Standard [1]. The system consists of: i) mesh access points (AP)
connecting mesh clients (from now on we will refer to them as “clients”) to the
mesh network; ii) a wireless mesh backbone; and iii) a gateway, connecting the
mesh network to the Internet. The network traffic is either external, i.e., between
clients and external hosts (external to the mesh), or internal, i.e., between two
hosts inside the mesh network. Our system also requires the presence of a base
station – a computer which periodically and securely collects, via a middleware,
information about mesh nodes: processing/memory loads, traffic information,
etc. Based on these information, the base station assigns IDS functions to nodes.

The IDS we are considering in this paper is Snort. We chose Snort because it
is a mainstream off-the-shelf IDS that consumes less resources than other IDS,
e.g., Bro (as it was shown recently [7]). Moreover, Snort is readily available for
our mesh hardware, as part of the OpenWrt development tree. To the best of
our knowledge, there is no port of Bro to the mesh hardware we have available.
Assigning a Snort IDS function to a node is equivalent to activating a rule file in
the Snort configuration file on that node. Activating a rule file imposes a specific
amount of memory load to the device, thus, a limited number of rule files can be
activated when running Snort on the device. We use the default search method
of Snort, i.e., “ac-bnfa-nq”, as we experimentally observed that it consumes the
minimum memory among all low memory search methods, e.g., “lowmem.”

We consider multi-hop attacks where the attacker and the target are con-
nected to the mesh network at different APs. Thus, the attack traffic (malicious
packet(s)) is routed across multiple nodes. The attacker can be either insider or
outsider. An insider attacker is a client, connected to a mesh AP, running attacks
against a target (a router or host) several hops away. An outsider attacker is an
external host attacking a router or a host in the mesh network.

4 Problem Formulation

In this section, we formulate the optimal distribution of IDS functions as an
optimization problem and propose a method to solve it. We use Figure 3 to

Practical Intrusion Detection for Resource Constrained WMN 7

support our formulation. Although Snort is our target IDS (and present a for-
mulation that uses Snort terminology), we believe that other IDS (e.g., Bro) can
be analyzed similarly, if their internals and functionality are publicly available.

e5
e8

e4

e6

e1
e2 e3

e7

v1 p1

f7
f2

f1

f6

f5

f3
f4

f6
f7

f2

f3

f5
f4

p2v2

v3

v9

v5

v4

v8
v7

v6

c1

c2

c2

c1

c1
c1

c2

c1

c1
c2

c2

Fig. 3. An example graph for a WMN, consisting of
9 nodes, 8 links, and two paths (p1 and p2). The
nodes run different configurations of Snort, e.g., node
v5 runs Snort functions f3, f4 and f5, which require
preprocessors c1 and c2.

We denote the number of
nodes and number of links
in the wireless mesh net-
work by N and Q, respec-
tively. Considering the in-
formation collected from the
nodes, we denote the num-
ber of nodes and links ac-
tively contributing in traf-
fic routing by n (n ≤ N)
and q (q ≤ Q), respectively.
Thus, we model the wireless
mesh network (i.e., after re-
moving idle nodes/links) as
a reduced graph G = {V,E}, where V is the set of nodes {v1, v2, · · · , vn}, and E
is the set of links {e1, e2, · · · , eq}. An example of a reduced graph, in Figure 3,
V = {v1, v2, ..., v9} and E = {e1, e2, ..., e8}.

We denote the set of routing paths for the network traffic by P = {p1, p2, · · · , pl},
where Pi = {vj | vj is located in pi} and Pi ⊆ V . In Figure 3 two paths are
present: p1 and p2. Additionally, we denote by matrix Tl×n the mapping be-
tween nodes and paths, i.e., tij = 1 iff node j is located on path i. For the
example shown in Figure 3, the matrix T is as follows:

T =

[
1 1 1 1 1 0 0 0 0
0 0 1 0 0 1 1 1 1

]
.

We denote the set of IDS functions by F = {fk | fk is a set of detection rules}
with size K (i.e., |F| = K). We denote the set of IDS preprocessors by C =
{cr |∃ fk ∈ F that requires cr} of size R (i.e., |C| = R). For the example in
Figure 3, F = {f1, f2, ..., f7} and C = {c1, c2}. The dependency between IDS
functions and preprocessors is stored in matrix DK×R where dkr = 1 means that
activation of function fk requires the activation of preprocessor cr.

Let w : {F , C} −→ [0, 1] be a cost function that assigns memory load wf
k

and wc
r to IDS function fk and IDS preprocessor cr, respectively. Consequently,

vectors W f = [wf
1 , w

f
2 , · · · , w

f
K] and W c = [wc

1, w
c
2, · · · , wc

R] represent memory
loads for the IDS functions in F and for the IDS preprocessors in C, respectively
(we remark that wc

Stream5 in Snort is the summation of its static load and its
maximum dynamic load). We denote by B = [b1, b2, ..., bn] the base memory
load (i.e., without IDS functions loaded) of all nodes. Finally, we use vector Λ =
[λ1, λ2, · · · , λn] (i.e., Memory Threshold) to represent the maximum allowable
memory load after IDS functions are loaded. Memory threshold is an important
parameter. It is typically set by a network administrator based on the number
of active services in the mesh network and the memory space they require.

8 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

Definition 1 An IDS Function Distribution, A = {(vj ,Fj , Cj)| vj ∈ V, Fj ⊆
F , and Cj ⊆ C}, is a placement of IDS functions in the network, such that node
vj only executes IDS functions Fj and their corresponding preprocessors Cj.

For example, the IDS Function Distribution in Figure 3 is:
A = {(v1, {f2, f7}, {c1, c2}), (v2, {f6}, {c2}), (v9, {f6, f7}, {c2})}.

We represent an IDS Function Distribution by matrices Xn×K and Zn×R,
corresponding to IDS functions and preprocessors active on each node, respec-
tively. For X, xjk = 1 iff IDS function fk is activated on node vj . For Z, zjr = 1
iff preprocessor cr is activated on node vj . Matrix Z for the network in Figure 3
is (we omit matrix X due to space constraints):

ZT =

[
1 0 1 0 1 1 1 1 0
1 1 0 0 1 0 0 1 1

]
.

Considering the above mathematical formalism, the dependencies between
IDS functions and preprocessors can now be represented more compactly as:

zjr =

{
1 if (X · D)jr ≥ 1
0 if (X · D)jr = 0

(1)

Equation 1 indicates that preprocessor cr must be activated on node vj if
there exists at least an IDS function fk requiring cr, assigned to it. It is important
to note that zjr = min {1 , ΣK

k=1xjkdkr} and zjr ∈ {0, 1}.
After the IDS Function Distribution, the total memory load for node vj

becomes Lj = bj + Σcr∈Cjw
c
r + Σfk∈Fjw

f
k , where wc

r ∈ W c and wf
k ∈ W f . It is

important to mention that an IDS Function Distribution in which Lj > λj , i.e.,
the load Lj is greater than threshold λj , for any node vj , is deemed infeasible.

From a network security administrator point of view, we aim for an IDS
Function Distribution where all IDS functions are activated on each path. This
means that the entire network traffic will be investigated by all IDS functions
(albeit at different times), eliminating the possibility of false negatives.

Definition 2 For a given path pi and its corresponding set of nodes Pi, Cov-
erage Ratio (CR) is defined as CRi = |Ui|/K, where Ui =

∪
vj∈Pi

Fj is the
set of IDS functions assigned to nodes along the path. Path pi is called covered
if CRi = 1 (Ui = F), i.e., for ∀fk ∈ F , ∃ vj assigned by Fj such that fk ∈ Fj.

Considering the effect of IDS Function Distribution on the memory load of
each node and the desired distribution of IDS functions to the nodes, in order to
achieve higher intrusion detection rate, we define Path Coverage Problem (PCP)
as follows:

Definition 3 Path Coverage Problem (PCP)
Given G = {V,E}, a set of paths P in WMN, the dependency matrix D, and
vectors W f and W c, find a distribution A = {(vj ,Fj , Cj)| vj ∈ V and Fj ⊆
Fand Cj ⊆ C}, such that 1

l

∑
pi∈P CRi is maximized and Lj ≤ λj ∀vj ∈ V .

PCP is an optimization problem which has the objective of maximizing the
average coverage ratio while guaranteeing that memory loads on nodes are be-
low a memory threshold. Although a lower memory threshold λj allows more
additional processes to execute on node vj , it makes solving PCP more difficult.

Practical Intrusion Detection for Resource Constrained WMN 9

Max.
1

l
(1T · T)(X · 1) (2)

s.t.: BT + Z ·W cT + X ·W fT ≤ ΛT (3)

(T · X)ik ≤ 1 ,∀i, k (4)

zjr ≥ (X · D)jr
K

,∀j, r (5)

zjr ≤ (X · D)jr ,∀j, r (6)

xjk, zjr ∈ {0, 1} , ∀j, k, r (7)

We formulate PCP as an
Integer Linear Program (ILP)
that can be solved by an ILP
solver. The objective function
is maximizing the average cov-
erage ratio of all paths. Ad-
ditionally, preprocessor depen-
dency and memory threshold
are considered as ILP con-
straints. To better understand
the mathematical formulation of the objective function, one can expand the ob-
jective function as 1

lΣ
l
i=1Σ

n
j=1Σ

K
k=1tijxjk where tij = 1 means node vj is located

on path pi and xjk = 1 means node vj is assigned by function fk. In other words,
the average CR has to be maximized. Constraint 3 limits the memory load on ev-
ery node vj , i.e., Σ

R
r=1zjrw

c
r +ΣK

k=1xjkw
f
k , to be less than its memory threshold

λj . Most importantly, (to ensure that we can formulate PCP as a linear pro-
gram), this constraint computes the total memory load as the sum of individual
memory loads of preprocessors and rule files. Obviously, one needs to investi-
gate if this linearity assumption always holds (we will discuss this in the next
section). Constraint 4 ensures that only one copy of each function is assigned to
the nodes along each path. Constraints 5 and 6 ensure that if an IDS function is
assigned to a node, its required preprocessors are also assigned to the node. As
presented in Equation 1, zjr = 1 if at least one of the IDS functions assigned to
node vj requires preprocessor cr, otherwise zjr = 0. The maximum number of
functions that require a specific preprocessor is at most K. Hence, Constraint 5
ensures that 0 < zjr ≤ 1 if there is a function assigned to node vj that requires
preprocessor cr. On the other hand, if none of the functions assigned to node
vj requires preprocessor cr, then Constraint 6 enforces zjr to be zero. Taking
into account Constraint 7, i.e., zjr has to be either 0 or 1, Constraint 5 enforces
zjr = 1 if preprocessor r is required on node j, otherwise, Constraint 6 enforces
zjr = 0.

5 PRIDE: Challenges and Solutions

Considering the aforementioned ILP formulation for PCP, we investigated two
major challenges that impact the accuracy and time complexity of a solution.
First, we experimentally observed that the total memory load of multiple Snort
rule files is generally linear (i.e., it is equal to the sum of their individual memory
loads), but not always (e.g., for some small rule files and certain rule types).
This influences the accuracy of our proposed model for calculating the total
memory load on each node (i.e., Challenge 1). Next, one can observe that the
complexity of ILP depends on the number of paths in the network, the path
lengths, the number of IDS functions, the number of preprocessors, and the
memory threshold. For example, considering the number of Snort preprocessors
(i.e., more than 20) and the number of Snort rule files (i.e., more than 60),

10 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

for single path pi, the number of ILP constraints grows to more than 1400 ×
|Pi|, where |Pi| is the path length. Additionally, a lower memory threshold λj

increases the number of infeasible solutions, thus requiring more iterations for
the ILP solver. Hence, the ILP performance degrades as network size increases or
memory threshold decreases (i.e., Challenge 2). In this section, we investigate the
aforementioned challenges and propose techniques to overcome them. Finally, we
present PRIDE protocol that distributes IDS functions to the nodes accurately
and fast (i.e., practical).

Experimentally, we observed that when activating multiple small rule files
(i.e., containing at most 50 detection rules), Snort memory load is much less than
the sum of individual memory loads. However, we observed that when multiple
large rule files (i.e., containing more than 250 detection rules) were activated,
the memory load is closer to the sum of the rule file’s individual memory loads.
When a rule file is activated, depending on: 1) the number of detection rules it
has; 2) the preprocessors it activates (if already not activated); and 3) the Snort
search method, a different amount of memory load will be imposed to the node.
In order to show how the aforementioned three factors impact our assumption
about memory load linearity (i.e., constraint 3), we performed extensive experi-
ments (omitted here due to space constraints) on the Snort memory consumption
modeling in the absence of preprocessors. As the result, we observed a linear be-
havior when adding blocks of 250 rules to the set of active rules irrespective of
rule order and search method. We use this finding to address the non-linearity
of memory load for the variable-size rule files (i.e., Challenge 1) in the following
subsections.

5.1 Rule Files Modularization

To reduce the complexity of the problem the ILP solver faces (i.e., Challenge
2), we propose to reduce the number of individual preprocessors and IDS func-
tions, which would result in a decrease in the number of constraints in ILP. Our
proposal is to group multiple IDS functions together and consider them as a
single function. From here on, we refer to each group of rule files as a “detecting
module” and use the term “group” for a group of preprocessors. If a detecting
module is assigned to a node, all rule files in that module will be activated. We
experimentally observed that grouping rule files not only reduces the problem
complexity (Challenge 2), but also decreases the variance in memory load es-
timation (Challenge 1). When several small rule files are grouped in a single
detecting module, it acts as a larger rule file (same as a block of 250 rules),
and the estimated memory load is more accurate. In addition, considering the
preprocessor dependency mentioned in Section 4, an efficient rule file grouping
reduces the number of preprocessor dependencies. For example, if two rule files
require the same preprocessor(s), they can be grouped in the same detecting
module. Similarly, multiple preprocessors required for the same rule files, can be
grouped together. Hence, when activating a new detecting module, the load im-
posed by rules’ data structure dominates the load imposed by the new activated

Practical Intrusion Detection for Resource Constrained WMN 11

preprocessor (that can be ignored). This is very similar to the behavior observed
in memory consumption modeling experiments in the absence of preprocessors.

Grouping rule files together, however, has a disadvantage when the mem-
ory threshold set by the system administrator is very low. For low memory
thresholds, we cannot assign larger modules to nodes, which results in low cov-
erage/detection ratio. Consequently, despite the positive aspects of grouping
small rule files together, memory threshold forces us to avoid large detecting
modules. Unfortunately, there already exist large detecting modules. For exam-
ple, the memory space required by the “backdoor” rule file is twice the memory
space required by a detecting module with 25 small rule files. This illustrates the
need to also split extremely large rule files into some smaller ones (i.e., creating
several detecting modules out of a large rule file).

We thus define “modularization” as the procedure that, for a given set of
IDS functions (e.g., Snort rule files), i) groups small IDS functions together in
order to reduce the problem complexity and load estimation error, and ii) splits
large IDS functions into several smaller functions so that they can be activated
with low memory thresholds.

Rule File Splitting: When splitting a rule file, we consider the dependency
between detection rules and the dependency between preprocessors and detection
rules. This is to ensure that two dependent rules along with all of their essential
preprocessing directives are included in the same split rule file. In order to split a
rule file into several detecting modules, we first pre-parse each detection rule and
specify its preprocessing dependency in advance (e.g., Stream5 preprocessor for
HTTP-relevant rule files). We summarize all these preprocessing dependencies
before splitting the rule files. In addition, rule dependency is expressed by the
options’ keywords, e.g., “flowbits.” To meet the rule dependency requirements,
we parse each detection rule and specify whether the rule contains such keywords
or not, if it does, it must be relevant. For example, the “flowbits” options can
help us maintain the stateful check in a set of Snort detection rules. When some
keys are set by “flowbits” in a detection rule, every other detection rule which
does not set the “flowbits,” is dependent on that detection rule. Thus, using
these two types of dependency, we split large rule files properly.

In addition, rule dependency is expressed by the options’ keywords, e.g.,
“flowbits.” To meet the rule dependency requirements, we parse each detection
rule and specify whether the rule contains such keywords or not, if it does, it must
be relevant. For example, the “flowbits” options can help us maintain the stateful
check in a set of Snort detection rules. When some keys are set by “flowbits”
in a detection rule, every other detection rule which does not set the “flowbits,”
is dependent on that detection rule. Similarly, the keyword “rev:VALUE” in a
detection rule, that identifies revisions of Snort rules, denotes that it is related
to a detection rule whose “sid” is “VALUE.” Thus, using these two types of
dependency, we split large rule files properly.

Proposed Modularizations: We propose three modularizations with dif-
ferent numbers of detecting modules and different sizes. We then compare the
execution time of the solver, i.e., Matlab ILP solver, for each modularization.

12 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

In the first modularization, the entire set of Snort rule files is classified into 23
detecting modules where 6 different groups of preprocessors are required. The
average memory load of the 23 detecting modules is 3.98% and the standard de-
viation is 1.68%. The second modularization consists of 12 detecting modules of
average memory load 6.76% and standard deviation 2.31%, while the third mod-
ularization has only 6 detecting modules of average memory load 15.06% and
standard deviation 1.88%. The second and the third modularizations require
three groups of preprocessors.

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

Path Length (hops)

 6 Mod. 3 Prp.
12 Mod. 3 Prp.
23 Mod. 6 Prp.

Fig. 4. Effect of modulariza-
tions on ILP execution time.

Figure 4 shows the execution time of the
ILP solver when solving the problem for differ-
ent lengths of a single path. As depicted, 12-
module and 6-module configurations are much
faster than 23-module configuration, especially
for longer paths (i.e., more complex problems).
With these two modularizations, the ILP solver
finds the optimal solution in less than 2 sec, which
is very fast, thus practical in real deployments. The longer execution time for
6-module configuration, comparing to 12-module configuration, is because of its
larger detecting modules that increase the number of infeasible solutions for
a given memory threshold (increasing the solver’s execution time). We use 6-
module and 12-module configurations in our system evaluations.

5.2 PRIDE Protocol

Algorithm 1 PRIDE IDS
Function Distribution
1: Data Collection(V,E,N,Q)
2: Relaxation(V,E, n, q)
3: Path Extract(V,E, P)
4: P = P
5: g = 0
6: while ∃ pi ∈ P do
7: g + +
8: Sg = {pi}
9: P = P\{pi}
10: while ∃ pj ∈ Q and
11:

∪
pk∈Sg

(Pj ∩ Pk) ̸= ∅ do

12: Sg = Sg ∪ {pj}
13: P = P\{pj}
14: end while
15: end while
16: for ∀Sg do
17: Vg = {vj |vj ∈ Pi and pi ∈ Sg}
18: for ∀Vg do ILP(Vg, P)

Given a modularization chosen for the IDS
configuration, PRIDE periodically collects the
local information from the nodes, removes idle
nodes from the network, i.e., those not con-
tributing in the traffic routing, and optimally
distributes IDS functions to the nodes along
traffic paths. If the reduced graph is discon-
nected, each graph component is considered
as a sub-problem and solved separately. Algo-
rithm 1 presents PRIDE protocol.

Given the set of nodes, the protocol first
collects information from nodes and then pro-
duces the reduced sets V and E by removing
idle nodes/links. Next, the set of active rout-
ing paths P is extracted in Line 3. Given P ,
the Algorithm creates the set P of unvisited
paths, and then defines variable g as the num-
ber of sub-problems. For every unvisited path pi in set P, the Algorithm first
creates a new sub-problem Sg and marks it as a visited path. The Algorithm
then searches P to find any unvisited path pj which is connected (Two paths
are connected if they are in the same component of the reduced graph) to at
least one path in the current Sg. If so, the corresponding path pj will be added

Practical Intrusion Detection for Resource Constrained WMN 13

to the current sub-problem Sg and removed from P. When no more paths in P
can be added to the current Sg, the Algorithm increases g and creates a new
sub-problem. This process repeats until there is no unvisited path in P. Next,
for every sub-problem Sg, the Algorithm creates the corresponding set Vg as the
set of nodes located on the paths of component Sg. Finally, the Algorithm runs
ILP on the nodes and paths of each sub-problem Sg.

6 System Implementation and Evaluation

In this section, we evaluate the performance of PRIDE in a department-wide
mesh network. Our mesh network consists of 10 Netgear WNDR3700 routers de-
ployed in a 50×30m2 rectangular area (Note: comparing with other testbeds, Dis-
tressNet [4] 8 nodes, SMesh [2] 14 nodes, PRIDE uses an average size testbed.).
The routers use OLSR as the routing protocol and provide mesh connections on
their 5GHz wireless interfaces and network access for the clients on the 2.4GHz
wireless interfaces. PRIDE periodically (i.e., 5 minutes in the current setup)
collects nodes/traffic information and runs ILP. This interval can be optimally
chosen by administrator in dynamic networks. We use bintprog function in Mat-
lab as the ILP solver.

We evaluate the intrusion detection rate (coverage ratio) and average memory
load of nodes. The parameters that we vary are the Path Length (PL) and
memory threshold (λ). The attack traffic we use is based on Rule 2 Attack tool,
as explained in [12]. In all our experiments, the memory thresholds of all nodes
are equal and some of the preprocessors (e.g., perfmonitor) are not used as they
are not activated by default or not required by rule files. Since the maximum path
length in our mesh network is 4 hops, we consider 2-hop, 3-hop and 4-hop paths.
The initial memory load on the routers is ∼ 30% (as caused by DHCP, OLSR,
and other services). We vary the Snort memory threshold from 30% to 60% (i.e.,
60% ≤ λ ≤ 90%). Since implementing the related traffic-aware solution [11]
on the mesh devices is infeasible (the routers crash), we compare PRIDE with
monitoring node solutions ([5,6]). We implement a monitoring node solution [5]
to which we refer as “MonSol”. A monitoring node loads detecting modules up
to a given memory threshold based on the default order of rule files in Snort
configuration file. If a monitoring node monitors at least one link of a given
path, the entire path is considered as monitored.

6.1 Proof-of-Concept Experiment

When assigning IDS functions to multiple nodes on a path, each node can de-
tect only a subset of attacks depending on the detecting modules it executes. As
a proof-of-concept experiment, we show that distributing two IDS functions to
two nodes generates exactly the same alerts as if both detecting modules were
assigned to a single node (e.g., MonSol). For that purpose, we used two routers
and one laptop connected wireless to each router (one laptop was the attacker

14 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(a)

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

A
v
e
ra

g
e
 M

e
m

o
ry

 L
o
a
d
 (

%
)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(b)

 0

 5

(%

)

PRIDE (PL=2)

 0

 5

PRIDE (PL=3)

 0

 5

D

if
fe

re
n
c
e
 i
n
 M

e
m

o
ry

 L
o
a
d

PRIDE (PL=4)

 0

 5

60 65 70 75 80 85 90
λ (%)

Mon.Sol.

(c)

Fig. 5. 6-module configuration: effect of λ and PL on a) Detection rate. b) Average
estimated memory load. c) The difference between estimated and actual memory load.

and the other was the target). We ran a customized Snort on each router (mon-
itoring the mesh traffic) ensuring that every Snort rule file is activated on at
least one of the routers. We then generated two R2A exploits such that their
corresponding rule files, e.g., “dos.rules” and “exploit.rules”, were activated on
routers 1 and 2, respectively. When running attacks, the Snort on node 1 gener-
ated 4 alerts, while the one on node 2 generated 10 alerts (real-time detection,
unlike cooperative IDS). We repeated the experiment where only node 1 was
running Snort and both rule files were activated on node 1 (many other rule
files were deactivated due to memory constraint). In this experiment, node 1
generated exactly the same 14 alerts upon launching the same exploits. Hence,
we have shown that PRIDE can distribute IDS functions to nodes along a path
such that network packets are inspected by all IDS functions.

6.2 Effects of Memory Threshold and Path Length

Given the network paths in our test-bed mesh network, we evaluate the intrusion
detection rate of PRIDE and the average memory load on nodes, using 6-module
and 12-module configurations. For each modularization, we change λ and PL as
our evaluation parameters to see their effects on PRIDE performance. Given a
λ, we show PRIDE can achieve higher detection rate than MonSol.

Figure 5 shows the effect of memory threshold and path length on intrusion
detection rate and average memory load on the nodes when using the 6-module
configuration. As depicted in Figure 5(a), maximum detection rate for MonSol
is 50% which occurs when λ = 90%. However, PRIDE can achieve 100% detec-
tion rate even in a lower memory threshold (e.g., at λ = 80% for PL = 4 and
PL = 3). This is because more than one node is assigned with IDS functions and
packets are inspected by more detecting modules. In this modularization, for a
low memory threshold (e.g., λ = 60%), only module 3 can be activated on the
nodes, and thus, PRIDE cannot achieve a higher detection rate than MonSol.
Figure 5(b) depicts the average estimated memory load on the nodes for dif-
ferent memory thresholds. It can be observed that PRIDE usually requires less
memory load than MonSol, especially for the longer paths, since the modules
are distributed to multiple nodes. We also compare the estimated memory loads
and the actual memory loads of the two configurations in all of the experiments,
i.e., different memory thresholds and path lengths. Figure 5(c) shows the differ-

Practical Intrusion Detection for Resource Constrained WMN 15

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(a)

 0

 20

 40

 60

 80

 100

 60 65 70 75 80 85 90

A
v
e
ra

g
e
 M

e
m

o
ry

 L
o
a
d
 (

%
)

λ (%)

PRIDE (PL=2)
PRIDE (PL=3)
PRIDE (PL=4)

Mon.Sol.

(b)

 0

 5

(%

)

PRIDE (PL=2)

 0

 5

PRIDE (PL=3)

 0

 5

D

if
fe

re
n
c
e
 i
n
 M

e
m

o
ry

 L
o
a
d

PRIDE (PL=4)

 0

 5

60 65 70 75 80 85 90
λ (%)

Mon.Sol.

(c)

Fig. 6. 12-module configuration: effect of λ and PL on a) Detection rate. b) Average
estimated memory load. c)The difference between estimated and actual memory load.

ence between estimated memory load and actual load measured on the routers
when using 6-module configuration. One can see that the difference is below
∼5%, thus giving confidence in our ILP formulation and memory consumption
modeling. The results for the same evaluations performed on the 12-module
configuration are shown in Figure 6. As depicted in Figure 6(a), the intrusion
detection rate for the 12-module configuration is higher than the detection rate
for the 6-module configuration (for the same memory threshold). This is because
the size of the detecting modules in the 12-module configuration is smaller than
for the 6-module configuration, which allows more modules to fit in the small
free memory spaces. In contrast with the 6-module configuration, where at low
memory thresholds the detection rate was similar to MonSol, in the 12-module
configuration the detection rate at 60% (a low memory threshold) is higher than
for MonSol. This is because more modules are activated on the nodes even at
this low memory threshold. The average estimated memory loads for this mod-
ularization are shown in Figure 6(b). Similar to the 6-module configuration, it
is observed that the 12-module configuration usually impose less memory load
than MonSol solution for the longer paths. It is worth mentioning that the es-
timated values for the 12-module configuration, as shown in 6(c), are closer to
the real values than the 6-module configuration because the modules are roughly
the same size as 250-rule blocks.

 0

 10

 20

 30

 40

 50

 60

 70

 60 65 70 75 80 85 90

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

λ (%)

 6M, PL=3
 6M, PL=4
12M, PL=3
12M, PL=4

Fig. 7. ILP solver execution time for
different problems and parameters.

Figure 7 shows the ILP solver execu-
tion time for PL = 3 and PL = 4, and for
each modularization. As depicted, the exe-
cution time of the algorithm ranges from a
few seconds to tens of seconds, thus mak-
ing it practical for real world deployments.
As shown, the lower the memory threshold
is, the longer the execution time is. This is
because lower memory thresholds increase
the number of infeasible solutions and the
solver requires more iterations to obtain
feasible and optimal solutions. As shown in Figure 7, the execution time in-
creases with the path length as well. As mentioned in Section 5, this is because
the number of ILP constraints (i.e., the problem complexity) is a direct function
of path length.

16 A. Hassanzadeh, Z. Xu, R. Stoleru, G. Gu, and M. Polychronakis

7 Conclusions

In this paper, we have shown that intrusion detection in WMN requires signifi-
cant resources, and traditional solutions are not practical for WMN. To address
these challenges, we propose a solution for an optimal distribution of IDS func-
tions. We formulate the optimal IDS function distribution as an integer linear
program and propose algorithms for solving it accurately and fast. Our solution
maximizes intrusion detection rate, while maintaining the memory load below a
threshold set by network administrators. We have investigated the performance
of our proposed solution in a real-world, department-wide, deployed WMN.

Acknowledgement

This work is based in part on work supported by Naval Surface Warfare Center,
Grant No. N00164-11-1-2007.

References

1. G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, and
B. Walke, “IEEE 802.11s: the WLAN mesh standard,” Wireless Commun., 2010.

2. Y. Amir, C. Danilov, R. Musăloiu-Elefteri, and N. Rivera, “The SMesh wireless
mesh network,” ACM Transactions on Computer Systems, September 2008.

3. J. Backens, G. Mweemba, and G. Van Stam, “A rural implementation of a 52 node
mixed wireless mesh network in Macha, Zambia,” EInfrastructures and EServices
on Developing Countries, pp. 32 – 39, 2010.

4. H. Chenji, A. Hassanzadeh, M. Won, Y. Li, W. Zhang, X. Yang, R. Stoleru, and
G. Zhou, “A wireless sensor, adhoc and delay tolerant network system for disaster
response,” LENSS-09-02, Tech. Rep., 2011.

5. A. Hassanzadeh, R. Stoleru, and B. Shihada, “Energy efficient monitoring for in-
trusion detection in battery-powered wireless mesh networks,” in ADHOC-NOW,
2011.

6. D.-H. Shin, S. Bagchi, and C.-C. Wang, “Distributed online channel assignment to-
ward optimal monitoring in multi-channel wireless networks.” in IEEE INFOCOM,
2012.

7. F. Hugelshofer, P. Smith, D. Hutchison, and N. J. Race, “OpenLIDS: a lightweight
intrusion detection system for wireless mesh networks,” in MobiCom, 2009.

8. A. Hassanzadeh and R. Stoleru, “Towards optimal monitoring in cooperative ids
for resource constrained wireless networks,” in IEEE ICCCN, 2011.

9. I. Krontiris, Z. Benenson, T. Giannetsos, F. C. Freiling, and T. Dimitriou, “Cooper-
ative intrusion detection in wireless sensor networks,” in Wireless Sensor Networks.
Springer-Verlag, 2009.

10. A. Hassanzadeh and R. Stoleru, “On the optimality of cooperative intrusion de-
tection for resource constrained wireless networks,” Computers & Security, 2013.

11. V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter, “Network-wide deploy-
ment of intrusion detection and prevention systems,” in ACM CoNEXT, 2010.

12. A. Hassanzadeh, Z. Xu, R. Stoleru, and G. Gu, “Practical intrusion detection in
resource constrained wireless mesh networks,” Texas A&M University 2012-7-1,
Tech. Rep., 2012.

