
Computer Communications 35 (2012) 129–140
Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
Improving the performance of passive network monitoring applications
with memory locality enhancements

Antonis Papadogiannakis a,⇑, Giorgos Vasiliadis a, Demetres Antoniades a, Michalis Polychronakis b,
Evangelos P. Markatos a

a Institute of Computer Science, Foundation for Research and Technology – Hellas, P.O. Box 1385, Heraklion, GR-711-10, Greece
b Computer Science Department, Columbia University, New York, USA

a r t i c l e i n f o
Article history:
Received 5 December 2010
Received in revised form 4 August 2011
Accepted 6 August 2011
Available online 17 August 2011

Keywords:
Passive network monitoring
Intrusion detection systems
Locality buffering
Packet capturing
0140-3664/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.comcom.2011.08.003

⇑ Corresponding author. Tel.: +30 2810 391663; fax
E-mail addresses: papadog@ics.forth.gr (A. Papado

(G. Vasiliadis), danton@ics.forth.gr (D. Antoniade
(M. Polychronakis), markatos@ics.forth.gr (E.P. Marka
a b s t r a c t

Passive network monitoring is the basis for a multitude of systems that support the robust, efficient, and
secure operation of modern computer networks. Emerging network monitoring applications are more
demanding in terms of memory and CPU resources due to the increasingly complex analysis operations
that are performed on the inspected traffic. At the same time, as the traffic throughput in modern net-
work links increases, the CPU time that can be devoted for processing each network packet decreases.
This leads to a growing demand for more efficient passive network monitoring systems in which runtime
performance becomes a critical issue.

In this paper we present locality buffering, a novel approach for improving the runtime performance of a
large class of CPU and memory intensive passive monitoring applications, such as intrusion detection sys-
tems, traffic characterization applications, and NetFlow export probes. Using locality buffering, captured
packets are being reordered by clustering packets with the same port number before they are delivered to
the monitoring application. This results in improved code and data locality, and consequently, in an over-
all increase in the packet processing throughput and decrease in the packet loss rate. We have imple-
mented locality buffering within the widely used libpcap packet capturing library, which allows
existing monitoring applications to transparently benefit from the reordered packet stream without mod-
ifications. Our experimental evaluation shows that locality buffering improves significantly the perfor-
mance of popular applications, such as the Snort IDS, which exhibits a 21% increase in the packet
processing throughput and is able to handle 67% higher traffic rates without dropping any packets.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Along with the phenomenal growth of the Internet, the volume
and complexity of Internet traffic is constantly increasing, and faster
networks are constantly being deployed. Emerging highly distrib-
uted applications, such as media streaming, cloud computing, and
popular peer-to-peer file sharing systems, demand for increased
bandwidth. Moreover, the number of attacks against Internet-
connected systems continues to grow at alarming rates.

As networks grow larger and more complicated, effective pas-
sive network monitoring is becoming an essential operation for
understanding, managing, and improving the performance and
security of computer networks. Passive network monitoring is
getting increasingly important for a large set of Internet users
and service providers, such as ISPs, NRNs, computer and telecom-
ll rights reserved.

: +30 2810 391601.
giannakis), gvasil@ics.forth.gr
s), mikepo@cs.columbia.edu
tos).
munication scientists, security administrators, and managers of
high-performance computing infrastructures.

While passive monitoring has been traditionally used for
relatively simple network traffic measurement and analysis appli-
cations, or just for gathering packet traces that are analyzed
off-line, in recent years it has become vital for a wide class of more
CPU and memory intensive applications, such as network intrusion
detection systems (NIDS) [1], accurate traffic categorization [2],
and NetFlow export probes [3]. Many of these applications need
to inspect both the headers and the whole payloads of the captured
packets, a process widely known as deep packet inspection [4]. For
instance, measuring the distribution of traffic among different
applications has become a difficult task. Several recent applications
use dynamically allocated ports, and therefore, cannot be identified
based on a well known port number. Instead, protocol parsing and
several other heuristics, such as searching for an application-
specific string in the packets payload [2], are commonly used. Also,
intrusion detection systems such as Snort [1] and Bro [5] need to
be able to inspect the actual payload of network packets in order to
detect malware and intrusion attempts. Threats are identified

http://dx.doi.org/10.1016/j.comcom.2011.08.003
mailto:papadog@ics.forth.gr
mailto:gvasil@ics.forth.gr
mailto:danton@ics.forth.gr
mailto:mikepo@cs.columbia.edu
mailto:markatos@ics.forth.gr
http://dx.doi.org/10.1016/j.comcom.2011.08.003
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

130 A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140
using attack ‘‘signatures’’ that are evaluated by advanced pattern
matching algorithms.

The complex analysis operations of such demanding applica-
tions incur an increased number of CPU cycles spent on every cap-
tured packet. Consequently, this reduces the overall processing
throughput that the application can sustain without dropping
incoming packets. At the same time, as the speed of modern net-
work links increases, there is a growing demand for more efficient
packet processing using commodity hardware that is able to keep
up with higher traffic loads.

A common characteristic that is often found in passive monitor-
ing applications is that they usually perform different operations
on different types of packets. For example, a NIDS applies a certain
subset of attack signatures on packets with destination port 80, i.e.,
it applies the web-attack signatures on packets destined to web
servers, while a different set of signatures is applied on packet des-
tined to database servers, and so on. Furthermore, NetFlow probes,
traffic categorization, as well as TCP stream reassembly, which has
become a mandatory function of modern NIDS [6], all need to
maintain a large data structure that holds the active network flows
found in the monitored traffic at any given time. Thus, for packets
belonging to the same network flow, the process accesses the same
part of the data structure that corresponds to the particular flow.

In all above cases, we can identify a locality of executed instruc-
tions and data references for packets of the same type. In this paper,
we present a novel technique for improving packet processing per-
formance by taking advantage of this locality property which is
commonly exhibited by many different passive monitoring applica-
tions. In practice, the captured packet stream is a mix of interleaved
packets that correspond to hundreds or thousands of different
packet types, depending on the monitored link. Our approach,
called locality buffering, is based on reordering the packet stream
that is delivered to the monitoring application in a way that en-
hances the locality of the application’s code execution and data ac-
cess, improving the overall packet processing performance.

We have implemented locality buffering in libpcap [7], the
most widely used packet capturing library, which allows for
improving the performance of a wide range of passive monitoring
applications written on top of libpcap in a transparent way,
without the need to modify them. Our implementation combines
locality buffering with memory mapping, which optimizes the
performance of packet capturing by mapping the buffer in which
packets are stored by the kernel into user level memory.

Our experimental evaluation using real-world applications and
network traffic shows that locality buffering can significantly im-
prove packet processing throughput and reduce the packet loss
rate. For instance, the popular Snort IDS exhibits a 21% increase
in the packet processing throughput and is able to process 67%
higher traffic rates with no packet loss.

The rest of this paper is organized as follows: Section 2 outlines
several methods that can be used for improving packet capturing
performance. In Section 3 we describe the overall approach of
locality buffering, while in Section 4 we present in detail our
implementation of locality buffering within the libpcap packet
capturing library combined with memory mapping. Section 5 pre-
sents the experimental evaluation of our prototype implementa-
tion using three popular passive monitoring tools. Finally, Section
6 summarizes related work, Section 7 discusses limitations of our
approach and future work and Section 8 concludes the paper.
2. Background

Passive monitoring applications analyze network traffic by cap-
turing and examining individual packets passing through the mon-
itored link, which are then analyzed using various techniques, from
simple flow-level accounting, to fine-grained operations like deep
packet inspection. Popular passive network monitoring applica-
tions, such as intrusion detection systems, per-application traffic
categorization, and NetFlow export probes, are built on top of li-
braries for generic packet capturing. The most widely used library
for packet capturing is libpcap [7].

2.1. Packet capturing in Linux

We briefly describe the path that packets take from the wire un-
til they are delivered to the user application for processing. All
packets captured by the network card are stored in memory by
the kernel. In Linux [8], this is achieved by issuing an interrupt
for each packet or an interrupt for a batch of packets [9,10]. Then,
the kernel hands the packets over to every socket that matches the
specified BPF filter [11]. In case that a socket buffer becomes full,
the next incoming packets will be dropped from this socket. Thus,
the size of the socket buffer affects the tolerance of a passive mon-
itoring application in short-term traffic or processing bursts. Final-
ly, each packet is copied to memory accessible by the user-level
application.

The main performance issues in the packet reception process in
Linux that affect the packet capturing and processing throughput
are the following:

� High interrupt service overhead (per packet cost): Even a fast pro-
cessor is overwhelmed by constantly servicing interrupts at
high packet arrival rates, having no time to process the packets
(receive livelock) [9]. NAPI [10] combines polling with interrupts
to solve this problem.
� Kernel-to-user-space context switching (per packet cost): It takes

place when a packet crosses the kernel-to-user-space border,
i.e., calling a system call for each packet reception. Thus, the
user level packet processing will start several milliseconds later.
Using a memory mapped buffer between kernel and user space
for storing packets solves this problem efficiently, since packets
are accessible directly from user space without calling any sys-
tem calls.
� Data copy and memory allocation costs (per byte cost): Copying

the packet data from NIC to kernel memory and from kernel-
level to user-level memory consumes a significant amount of
CPU time. Zero-copy approaches [12–14] have been proposed
to reduce such costs.

Braun et al. [15] and Schneider et al. [16] compare the perfor-
mance of several packet capturing solutions on different operating
systems using the same hardware platforms and provide guide-
lines for system configuration to achieve optimal performance.

2.2. Using memory mapping between kernel and user-level
applications

In order to avoid kernel-to-user-space context switches and
packet copies from kernel to user space for each captured packet,
a memory-mapped ring buffer shared between kernel and user
space is used to store the captured packets. The general principle
of memory-mapping is to allow access from both kernel and user
space to the same memory segment. The user level applications
are then able to read the packets directly from the ring buffer,
avoiding context switching to the kernel.

The ring buffer plays the same role as the socket buffer that we
described earlier. The kernel is capable of inserting packets cap-
tured by the network interface into the ring buffer, while the user
is able to read them directly from there. In order to prevent race
conditions between the two different processes, an extra header
is placed in front of each packet to ensure atomicity while reading

A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140 131
and writing packets into the buffer. Whenever the processing of a
packet is over, it is marked as read using this header, and the posi-
tion in which the packet is stored is considered by the kernel as
empty. The kernel uses an end pointer that points to the first avail-
able position to store the next arrived packet, while the user-level
application uses a start pointer that points to the first non-read
packet. These two pointers guarantee the proper operation of the
circular buffer: The kernel simply iterates through the circular buf-
fer, storing newly arrived packets on empty positions and blocks
whenever the end pointer reaches the last empty position, while
the user application processes every packet in sequence as long
as there are available packets in the buffer. The main advantage
of the memory mapped circular buffer is that it avoids the context
switches from kernel to user level for copying each packet. The lat-
est versions of Linux kernel and libpcap support this memory
mapping functionality, through the PACKET_MMAP option that is
available in the PACKET socket interface.

Packets are still being copied from the DMA memory allocated
by the device driver to the memory mapped ring buffer through
a software interrupt handler. This copy leads to a performance deg-
radation, so zero copy techniques [13,14,17–19] have been pro-
posed to avoid it. These approaches can avoid this data copy by
sharing a memory buffer between all the different network stack
layers within kernel and between kernel and user space.
2.3. Using specialized hardware

Another possible solution to accelerate packet capturing is to
use specialized hardware optimized for high-speed packet capture.
For instance, DAG monitoring cards [20] are capable of full packet
capture at high speeds. Contrary to commodity network adapters, a
DAG card is capable of retrieving and mapping network packets to
user space through a zero-copy interface, which avoids costly inter-
rupt processing. It can also stamp each packet with a high precision
timestamp. A large static circular buffer, which is memory-mapped
to user-space, is used to hold arriving packets and avoid costly
packet copies. User applications can directly access this buffer
without the invocation of the operating system kernel.

When using DAG cards, the performance problems occurred in
Linux packet capturing can be eliminated, but at a price that is pro-
hibitively high for many organizations. On the other hand, com-
modity hardware is always preferable and much easier to find
and deploy for network monitoring. In addition, specialized hard-
ware alone may not be enough for advanced monitoring tasks at
high network speeds, e.g., intrusion detection.
3. Locality buffering

The starting point of our work is the observation that several
widely used passive network monitoring applications, such as
intrusion detection systems, perform almost identical operations
for a certain class of packets. At the same time, different packet
classes result to the execution of different code paths, and to data
accesses to different memory locations. Such packet classes include
the packets of a particular network flow, i.e., packets with the same
protocol, source and destination IP addresses, and source and des-
tination port numbers, or even wider classes such as all packets of
the same application-level protocol, e.g., all HTTP, FTP, or BitTor-
rent packets.

Consider for example a NIDS like Snort [1]. Each arriving packet
is first decoded according to its Layer 2–4 protocols, then it passes
through several preprocessors, which perform various types of pro-
cessing according to the packet type, and finally it is delivered to
the main inspection engine, which checks the packet protocol
headers and payload against a set of attack signatures. According
to the packet type, different preprocessors may be triggered. For
instance, IP packets go through the IP defragmentation preproces-
sor, which merges fragmented IP packets, TCP packets go through
the TCP stream reassembly preprocessor, which reconstructs the
bi-directional application level network stream, while HTTP pack-
ets go through the HTTP preprocessor, which decodes and normal-
izes HTTP protocol fields. Similarly, the inspection engine will
check each packet only against a subset of the available attack sig-
natures, according to its type. Thus, packets destined to a Web ser-
ver will be checked against the subset of signatures tailored to Web
attacks, FTP packets will be checked against FTP attack signatures,
and so on.

When processing a newly arrived packet, the code of the corre-
sponding preprocessors, the subset of applied signatures, and all
other accessed data structures will be fetched into the CPU cache.
Since packets of many different types will likely be highly inter-
leaved in the monitored traffic mix, different data structures and
code will be constantly alternating in the cache, resulting to cache
misses and reduced performance. The same effect occurs in other
monitoring applications, such as NetFlow collectors or traffic clas-
sification applications, in which arriving packets are classified
according to the network flow in which they belong to, which re-
sults to updates in a corresponding entry of a hash table. If many
concurrent flows are active in the monitored link, their packets will
arrive interleaved, and thus different portions of the hash table will
be constantly being transferred in and out of the cache, resulting to
poor performance.

The above observations motivated us to explore whether
changing the order in which packets are delivered from the OS to
the monitoring application improves packet processing perfor-
mance. Specifically, we speculated that rearranging the captured
traffic stream so that packets of the same class are delivered to
the application in ‘‘batches’’ would improve the locality of code
and data accesses, and thus reduce the overall cache miss ratio.
This rearrangement can be conceptually achieved by buffering
arriving packets into separate ‘‘buckets’’, one for each packet class,
and dispatching each bucket at once, either whenever it gets full, or
after some predefined timeout since the arrival of the first packet
in the bucket. For instance, if we assume that packets with the
same destination port number correspond to the same class, then
interleaved packets destined to different network services will be
rearranged so that packets destined to the same network service
are delivered back-to-back to the monitoring application, as de-
picted in Fig. 1.

Choosing the destination port number as a class identifier
strikes a good balance between the number of required buckets
and the achieved locality for commonly used network monitoring
applications. Indeed, choosing a more fine-grained classification
scheme, such as a combination of the destination IP address and
port number, would require a tremendous amount of buckets,
and would probably just add overhead, since most of the applica-
tions of interest to this work perform (5-tuple) flow-based classifi-
cation. At the same time, packets destined to the same port usually
correspond to the same application-level protocol, so they will
trigger the same Snort signatures and preprocessors, or will belong
to the same or ‘‘neighboring’’ entries in a network flow hash table.

However, sorting the packets by destination port only would
completely separate the two directions of each bi-directional flow,
i.e., client requests from server responses. This would increase sig-
nificantly the distance between request and response packets, and
in case of TCP flows, the distance between SYN and a SYN/ACK
packets. For traffic processing operations that require to inspect
both directions of a connection, this would add a significant delay,
and eventually decrease memory locality, due to the separation of
each bi-directional flow in two parts. Moreover, TCP reassembly
would suffer from extreme buffering until the reception of pending

FTPWeb p2p Web p2p Packet Capturing
Library using LB ApplicationFTP Web Web p2p p2p

Fig. 1. The effect of locality buffering on the incoming packet stream.

Table 1
Snort’s performance using a sorted trace.

Performance metric Original trace Sorted trace Improvement (%)

Throughput (Mbit/s) 473.97 596.15 25.78
Cache misses (per packet) 11.06 1.33 87.98
CPU cycles (per packet) 31,418.91 24,657.98 21.52

132 A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140
ACK packets, or even discard the entire flow. For example, this
could happen in case that ACKs are not received within a timeout
period, or a packet is received before the SYN packet, i.e., before the
TCP connection establishment. Furthermore, splitting the two
directions of a flow would alter the order in which the packets
are delivered to the application. This could cause problems to
applications that expect the captured packets to be delivered with
monotonically increasing timestamps.

Based on the above, we need a sorting scheme that will be able
to keep the packets of both directions of a flow together, in the
same order, and at the same time maintain the benefits of packet
sorting based on destination port: good locality and lightweight
implementation. Our choice is based on the observation that the
server port number, which commonly characterizes the class of
the flow, is usually lower than the client port number, which is
usually a high port number randomly chosen by the OS. Also, both
directions of a flow have the same pair of port numbers, in just re-
verse order. Packets in server-to-client direction have the server’s
port as source port number. Hence, in most cases, choosing the
smaller port between the source and destination port numbers of
each packet will give us the server’s port in both directions. In case
of known services, low ports are almost always used. In case of
peer-to-peer traffic or other applications that may use high ser-
ver-side port numbers, connections between peers are established
using high ports only. However, sorting based on any of these two
ports has the same effect to the locality of the application’s mem-
ory accesses. Sorting always based on the smaller among the two
port numbers ensures that packets from both directions will be
clustered together, and their relative order will always be main-
tained. Thus, our choice is to sort the packets according to the
smaller between the source and destination ports.
3.1. Feasibility estimation

To get an estimation of the feasibility and the magnitude of
improvement that locality buffering can offer, we performed a pre-
liminary experiment whereby we sorted off-line the packets of a
network trace based on the lowest between the source and desti-
nation port numbers, and fed it to a passive monitoring applica-
tion. This corresponds to applying locality buffering using
buckets of infinite size. Details about the trace and the experimen-
tal environment are discussed in Section 5. We ran Snort v2.9 [1]
using both the sorted and the original trace, and measured the pro-
cessing throughput (trace size divided by user time), L2 cache
misses, and CPU cycles of the application. Snort was configured
with all the default preprocessors enabled as specified in its default
configuration file and used the latest official rule set [21] contain-
ing 19,009 rules. The Aho–Corasick algorithm was used for pattern
matching [22]. The L2 cache misses and CPU clock cycles were
measured using the PAPI library [23], which utilizes the hardware
performance counters.

Table 1 summarizes the results of this experiment (each mea-
surement was repeated 100 times, and we report the average val-
ues). We observe that sorting results to a significant improvement
of more than 25% in Snort’s packet processing throughput, L2 cache
misses are reduced by more than 8 times, and 21% less CPU cycles
are consumed.

From the above experiment, we see that there is a significant
potential of improvement in packet processing throughput using
locality buffering. However, in practice, rearranging the packets
of a continuous packet stream can only be done in short intervals,
since we cannot indefinitely wait to gather an arbitrarily large
number of packets of the same class before delivering them to
the monitoring application—the captured packets have to be even-
tually delivered to the application within a short time interval (in
our implementation, in the orders of milliseconds). Note that
slightly relaxing the in-order delivery of the captured packets re-
sults to a delay between capturing the packet, and actually deliver-
ing it to the monitoring application. However, such a sub-second
delay does not actually affect the correct operation of the monitor-
ing applications that we consider in this work (delivering an alert
or reporting a flow record a few milliseconds later is totally accept-
able). Furthermore, packet timestamps are computed before local-
ity buffering, and are not altered in any way, so any inter-packet
time dependencies remain intact.
4. Implementation within libpcap

We have chosen to implement locality buffering within libp-

cap, the most widely used packet capturing library, which is the
basis for a multitude of passive monitoring applications. Typically,
applications read the captured packets through a call such as
pcap_next or pcap_loop, one at a time, in the same order as they
arrive to the network interface. By incorporating locality buffering
within libpcap, monitoring applications continue to operate as
before, taking advantage of locality buffering in a transparent
way, without the need to alter their code or link them with extra
libraries. Indeed, the only difference is that consecutive calls to
pcap_next or similar functions will most of the time return pack-
ets with the same destination or source port number, depending on
the availability and the time constraints, instead of highly inter-
leaved packets with different port numbers.

4.1. Periodic packet stream sorting

In libpcap, whenever the application attempts to read a new
packet, e.g., through a call to pcap_next, the library reads a packet
from kernel and delivers it to the application. Using pcap_loop,
the application registers a callback function for packet processing
that is called once per each captured packet read from kernel by
libpcap. In case that memory mapping is not supported, the
packet is copied through a recv call from kernel space to user
space in a small buffer equal to the maximum packet size, and then
pcap_next returns a pointer to the beginning of the new packet or
the callback function registered by pcap_loop is called. With
memory mapping, the next packet stored by kernel in the shared
ring buffer is returned to application or processed by the callback
function. If no packets are stored, poll is called to wait for the next
packet reception.

A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140 133
So far, we have conceptually described locality buffering as a set
of buckets, with packets having the same source or destination
port ending up into the same bucket. One straightforward imple-
mentation of this approach would be to actually maintain a sepa-
rate buffer for each bucket, and copy each arriving packet to its
corresponding buffer. However, this has the drawback that an ex-
tra copy is required for storing each packet to the corresponding
bucket, right after it has been fetched from the kernel.

In order to avoid additional packet copy operations, which incur
significant overhead, we have chosen an alternative approach. We
distinguish between two different phases: the packet gathering
phase, and the packet delivery phase. In the case without memory
mapping, we have modified the single-packet-sized buffer of
libpcap to hold a large number of packets instead of just one.
During the packet gathering phase, newly arrived packets are writ-
ten sequentially into the buffer by increasing the buffer offset in
the recv call until the buffer is full or a certain timeout has ex-
pired. For libpcap implementation with memory mapping sup-
port, the shared buffer is split into two parts. The first part of the
buffer is used for gathering packets in the gathering phase, and
the second part for delivering packets based on the imposed sort-
ing. The gathering phase lasts either till the buffer used for packet
gathering gets full or till a timeout period expires.

Instead of arranging the packets into different buckets, which
requires an extra copy operation for each packet, we maintain an
index structure that specifies the order in which the packets in
the buffer will be delivered to the application during the delivering
phase, as illustrated in Fig. 2. The index consists of a table with
64 K entries, one for each port number. Each entry in the table
points to the beginning of a linked list that holds references to
all packets within the buffer with the particular port number. In
the packet delivery phase, the packets are delivered to the applica-
tion ordered according to their smaller port by traversing each list
sequentially, starting from the first non-empty port number entry.
In this way we achieve the desired packet sorting, while, at the
same time, all packets remain in place, at the initial memory loca-
tion in which they were written, avoiding extra costly copy opera-
tions. In the following, we discuss the two phases in more detail.

In the beginning of each packet gathering phase the indexing ta-
ble is zeroed using memset(). For each arriving packet, we perform
a simple protocol decoding for determining whether it is a TCP or
UDP packet, and consequently extract its source and destination
dst port
0
1

…

21

…

80

…

65536

dst port:
21

dst port:
80

dst port:
2217

Pack

Indexing Structure

Fig. 2. Using an indexing table with a linked list for each port, the packets
port numbers. Then, a new reference for the packet is added to
the corresponding linked list. For non-TCP or non-UDP packets, a
reference is added into a separate list. The information that we
keep for every packet in each node of the linked lists includes
the packet’s length, the precise timestamp of the time when the
packet was captured, and a pointer to the actual packet data in
the buffer.

Instead of dynamically allocating memory for new nodes in the
linked lists, which would be an overkill, we pre-allocate a large en-
ough number of spare nodes, equal to the maximum number of
packets that can be stored in the buffer. Whenever a new reference
has to be added in a linked list, a spare node is picked. Also, for fast
insertion of new nodes at the end of the list, we keep a table with
64 K pointers to the tail of each list.

The overhead of this indexing process is negligible. We mea-
sured it using a simple analysis application, which just receives
packets in user space and then discards them, resulting to less than
6% overhead for any traffic rate. This is because most of the CPU
time in this application is spent for capturing packets and delivering
them to user space. The overhead of finding the port numbers and
adding a node to our data structure for each packet is negligible
compared to packet capturing and other per-packet overheads.
The overhead of making zero (through a memset() call) the index-
ing table is also negligible, since we make it once for a large group of
packets. In this measurement we used a simple analysis application
which does not benefit from improved cache memory locality. For
real world applications this overhead is even smaller, and as we ob-
serve in our experimental evaluation (Section 5) the benefits from
memory locality enhancements outreach by far this overhead.

The system continues to gather packets until the buffer be-
comes full or a certain timeout has elapsed. The timeout ensures
that if packets arrive with a low rate, the application will not wait
too long for receiving the next batch of packets. The buffer size and
the timeout are two significant parameters of our approach, since
they influence the number of sorted packets that can be delivered
to the application in each batch. Both timeout and buffer size can
be defined by the application. Depending on the per-packet pro-
cessing complexity of each application, the buffer size determines
the benefit in its performance. In Section 5 we examine the effect
that the number of packets in each batch has on the overall perfor-
mance using three different passive monitoring applications. The
timeout parameter is mostly related to the network’s workload.
 dst port:
80

dst port:
2217

dst port:
21

dst port:
80

et Buffer

are delivered to the application sorted by their smaller port number.

134 A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140
Upon the end of the packet gathering phase, packets can be
delivered to the application following the order imposed by the
indexing structure. For that purpose, we keep a pointer to the list
node of the most recently delivered packet. Starting from the
beginning of the index table, whenever the application requests a
new packet, e.g., through pcap_next, we return the packet pointed
either by the next node in the list, or, if we have reached the end of
the list, by the first node of the next non-empty list. The latter hap-
pens when all the packets of the same port have been delivered
(i.e., the bucket has been emptied), so conceptually the system con-
tinues with the next non-empty group.

4.2. Using a separate thread for packet gathering

In case that memory mapping is not supported in the system, a
single buffer will be used for both packet gathering and delivery. A
drawback of the above implementation is that during the packet
gathering phase, the CPU remains idle most of the time, since no
packets are delivered to the application for processing in the mean-
while. Reversely, during the processing of the packets that were
captured in the previous packet gathering period, no packets are
stored in the buffer. In case that the kernel’s socket buffer is small
and the processing time for the current batch of packets is in-
creased, it is possible that a significant number of packets may
get lost by the application in case of high traffic load.

Although in practice this effect does not degrade performance
when short timeouts are used, we can improve further the perfor-
mance of locality buffering in this case by employing a separate
thread for the packet gathering phase, combined with the usage
of two buffers instead of a single one. The separate packet gather-
ing thread receives the packets from the kernel and stores them to
the write buffer, and also updates its index. In parallel, the applica-
tion receives packets for processing from the main thread of libp-
cap, which returns the already sorted packets of the second read
buffer. Each buffer has its own indexing table.

Upon the completion of both the packet gathering phase, i.e.,
after the timeout expires or when the write buffer becomes full,
and the parallel packet delivery phase, the two buffers are swapped.
The write buffer, which now is full of packets, turns to a read buffer,
while the now empty read buffer becomes a write buffer. The whole
swapping process is as simple as swapping two pointers, while
semaphore operations ensure the thread-safe exchange of the two
buffers.

4.3. Combine locality buffering and memory mapping

A step beyond is to combine locality buffering with memory
mapping to further increase the performance of each individual
technique. While memory mapping improves the performance of
packet capturing, locality buffering aims to improve the perfor-
mance of the user application that processes the captured packets.

As we described in Section 2.2, the buffer where the network
packets are stored in libpcap with memory mapping support is
accessible from both the kernel and libpcap library. The packets
are stored sequentially into this buffer by the kernel as they arrive,
while the libpcap library allows a monitoring application to pro-
cess them by returning a pointer to the next packet through
pcap_next or calling the callback function registered through
pcap_loop for each packet that arrives.

In case the buffer is empty, libpcap blocks, calling poll, wait-
ing for new packets to arrive.

After finishing with the processing of each packet, through the
callback function or when the next pcap_next is called, libpcap
marks the packet as read so that the kernel can later overwrite the
packet with a new one. Otherwise, if a packet is marked as unread,
the kernel is not allowed to copy a new packet into this position of
the buffer. In this way, any possible data corruption that could hap-
pen by the parallel execution of the two processes (kernel and
monitoring application) is avoided.

The implementation of locality buffering in the memory
mapped version of libpcap does not require to maintain a sepa-
rate buffer for sorting the arriving packets, since we have direct ac-
cess to the shared memory mapped buffer in which they are
stored. To deliver the packets sorted based on the source or desti-
nation port number to the application, we process a small portion
of the shared buffer each time as a batch: instead of executing the
handler function every time a new packet is pushed into the buffer,
we wait until a certain amount of packets has been gathered or a
certain amount of time has been elapsed. The batch of packets is
then ordered based on the smaller of source and destination port
numbers.

The sorting of the packets is performed as described in Section
4.1. The same indexing structure, as depicted in Fig. 2, was built to
support the sorting. The structure contains pointers directly to the
packets on the shared buffer. Then, the handler function is applied
iteratively on each indexed packet based on the order imposed by
the indexing structure. After the completion of the handler func-
tion, the packet is marked for deletion as before in order to avoid
any race conditions between the kernel process and the user-level
library.

A possible weakness of not using an extra buffer, as described in
Section 4.2, is that if the batch of the packets is large in comparison
to the shared buffer, a significant number of packets may get lost
during the sorting phase in case of high traffic load. However, as
discussed in Section 5, the fraction of the packets that we need
to sort is very small compared to the size of the shared buffer.
Therefore, it does not affect the insertion of new packets in the
meanwhile.

In case of memory mapping, a separate thread for the packet
gathering phase is not required. New incoming packets are cap-
tured and stored into the shared buffer by the kernel in parallel
with the packet delivery and processing phase, since kernel and
user level application (including the libpcap library) are two dif-
ferent processes. Packets that have been previously stored in buffer
by kernel are sorted in batches during the gathering phase and
then each sorted batch of packets are delivered one-by-one to
the application for further processing.
5. Experimental evaluation

5.1. Experimental environment

Our experimental environment consists of two PCs intercon-
nected through a 10 Gbit switch. The first PC is used for traffic gen-
eration, which is achieved by replaying real network traffic traces
at different rates using tcpreplay [24]. The traffic generation PC
is equipped with two dual-core Intel Xeon 2.66 GHz CPU with
4 MB L2 cache, 6 GB RAM, and a 10 Gbit network interface (SMC
10G adapter with XFP). This setup allowed us to replay traffic
traces with speeds up to 2 Gbit/s. Achieving larger speeds was
not possible using large network traces because usually the trace
could not be effectively cached in main memory.

By rewriting the source and destination MAC addresses in all
packets, the generated traffic is sent to the second PC, the passive
monitoring sensor, which captures the traffic and processes it
using different monitoring applications. The passive monitoring
sensor is equipped with two quad-core Intel Xeon 2.00 GHz CPUs
with 6 MB L2 cache, 6 GB RAM, and a 10 Gbit network interface
(SMC 10G adapter with XFP). The size of memory mapped buffer
was set to 60,000 frames in all cases, in order to minimize packet
drops due to short packet bursts. Indeed, we observe that when

Locality Buffer size (# packets)

0 5000 10000 15000 20000 25000 30000

C
PU

 c
lo

ck
 c

yc
le

s
(p

er
 p

ac
ke

t)

0

5000

10000

15000

20000

pcap
pcap+LB

Fig. 3. Snort’s CPU cycles as a function of the buffer size for 250 Mbit/s traffic.

Locality Buffer size (# packets)
0 5000 10000 15000 20000 25000 30000

L2
 c

ac
he

 m
is

se
s

(p
er

 p
ac

ke
t)

0

5

10

15

20

pcap
pcap+LB

Fig. 4. Snort’s L2 cache misses as a function of the buffer size for 250 Mbit/s traffic.

Locality Buffer size (# packets)
0 5000 10000 15000 20000 25000 30000

D
ro

pp
ed

 P
ac

ke
ts

 (%
)

0

20

40

60

80

100

pcap
pcap+LB

Fig. 5. Snort’s packet loss ratio as a function of the buffer size for 2 Gbit/s traffic.

A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140 135
packets are dropped by kernel, in higher traffic rates, the CPU uti-
lization in the passive monitoring sensor is always 100%. Thus, in
our experiments, packets are lost due to the high CPU load. Both
PCs run 64bit Ubuntu Linux (kernel version 2.6.32).

For the evaluation we use a one-hour full payload trace cap-
tured at the access link that connects an educational network with
thousands of hosts to the Internet. The trace contains 58,714,906
packets, corresponding to 1,493,032 different flows, totalling more
than 40 GB in size. To achieve high speeds, up tp 2 Gbit/s, we split
the trace into a few smaller parts, which can be effectively cached
in the 6 GB main memory, and we replay each part of the trace for
10 times in each experiment.

We measure the performance of the monitoring applications on
top of the original version of libpcap-1.1.1 and our mofidied
version with locality buffering. The latter combines locality buffer-
ing with the memory mapping. For each setting, we measure the L2
cache misses and the CPU clock cycles by reading the CPU perfor-
mance counters through the PAPI library [23]. Another important
metric we measure is the percentage of packets being dropped
by libpcap, which is occurred when replaying traffic in high rates
due to high CPU utilization.

Traffic generation begins after the application has been initi-
ated. The application is terminated immediately after capturing
the last packet of the replayed trace. All measurements were re-
peated 10 times and we report the average values. We focus mostly
on the discussion of our experiments using Snort IDS, which is the
most resource-intensive among the tested applications. However,
we also briefly report on our experiences with Appmon and Fprobe
monitoring applications.

5.2. Snort

As in the experiments of Section 3.1, we ran Snort v2.9 using its
default configuration, in which all the default preprocessors were
enabled, and we used the latest official rule set [21] containing
19,009 rules. Initially, we examine the effect that the size of the
buffer in which the packets are sorted has on the overall applica-
tion performance. We vary the size of the buffer from 100 to
32,000 packets while replaying the network trace at a constant rate
of 250 Mbit/s. We send traffic at several rates, but we first present
results from constant 250 Mbit/s since no packets were dropped at
this rate, to examine the effect of buffer size on CPU cycles spent
and L2 cache misses when no packets are lost. We do not use
any timeout in these experiments for packet gathering. As long
as we send traffic at constant rate, the buffer size determines
how long the packet gathering phase will last. Respectively, a time-
out value corresponds to a specific buffer size.

Figs. 3 and 4 show the per-packet CPU cycles and L2 cache
misses respectively when Snort processes the replayed traffic using
the original and modified versions of libpcap. Both libpcap ver-
sions use the memory mapping support, with the same size for the
shared packet buffer (60,000 frames) for fairness. Fig. 5 presents
the percentage of the packets that are being dropped by Snort
when replaying the traffic at 2 Gbit/s, for each different version
of libpcap.

We observe that increasing the size of the buffer results to few-
er cache misses, fewer clock cycles, less dropped packets, and gen-
erally to an overall performance improvement for the locality
buffering implementations. This is because using a larger packet
buffer offers better possibilities for effective packet sorting, and
thus to better memory locality. However, increasing the size from
8,000 to 32,000 packets gives only a slight improvement. Based on
this result, we consider 8,000 packets as an optimum buffer size in
our experiments. When sending traffic in a constant rate of
250 Mbit/s, with no timeout specified, 8,000 packets as buffer size
roughly correspond to an 128 millisecond period at average.

Traffic Rate (Mbit/sec)
0 400 800 1200 1600 2000

C
PU

 U
til

iz
at

io
n

(%
)

0

20

40

60

80

100

pcap
pcap+LB

Fig. 7. CPU utilization in the passive monitoring sensor when running Snort, as a
function of the traffic speed for an 8,000-packet locality buffer.

136 A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140
We can also notice that using locality buffering we achieve a
significant reduction in L2 cache misses from 13.4 per packet to
4.1, when using a 8,000-packet buffer, which is an improvement
of 3.3 times against Snort with the original libpcap library. There-
fore, Snort’s user time and clock cycles are significantly reduced
using locality buffering, making it faster by more than 20%. More-
over, when replaying the traffic at 2 Gbit/s, the packet loss ratio is
reduced by 33%. Thus, Snort with locality buffering and memory
mapped libpcap performs significantly better than using the ori-
ginal libpcap with memory mapping support. When replaying
the trace at low traffic rates, with no packet loss, Snort outputs
the same set of alerts with and without locality buffering, so the
packet reordering does not affect the correct operation of Snort’s
detection process.

We repeated the experiment by replaying the trace in different
rates ranging from 100 to 2,000 Mbit/s and in every case we ob-
served a similar behavior. In all rates, 8,000 packets was found to
be the optimum buffer size. Using this buffer size, locality buffering
results in all rates to a significant reduction in Snort’s cache misses
and CPU cycles, similar to the improvement observed for 250 Mbit/
s traffic against the original libpcap. The optimum buffer size de-
pends mainly on the nature of traffic in the monitored network and
on the network monitoring application’s processing.

An important metric for evaluating the performance of our
implementations is the percentage of the packets that are being
dropped in high traffic rates by the kernel due to high CPU load,
and the maximum processing throughput that Snort can sustain
without dropping packets. In Fig. 6 we plot the average percentage
of packets that are being lost while replaying the trace with speeds
ranging from 100 to 2,000 Mbit/s, with a step of 100 Mbit/s. The
2,000 Mbit/s limitation is due to caching the trace file parts from
disk to main memory in the traffic generator machine, in order
to generate real network traffic. We used a 8,000-packet locality
buffer, which was found to be the optimal size for Snort when
replaying our trace file at any rate.

Using the unmodified libpcap with memory mapping, Snort
cannot process all packets in rates higher than 600 Mbit/s, so a sig-
nificant percentage of packets is being lost. On the other hand,
using locality buffering the packet processing time is accelerated
and the system is able to process more packets in the same time
interval. As shown in Fig. 6, using locality buffering Snort becomes
much more resistant in packet loss, and starts to lose packets at
1 Gbit/s instead of 600 Mbit/s. Moreover, at 2 Gbit/s, our imple-
mentation drops 33% less packets than the original libpcap.

Fig. 7 shows Snort’s CPU utilization as a function of the traffic
rate, for rates varying from 100 Mbit/s to 2 Gbit/s, with a
Traffic Rate (Mbit/sec)
0 400 800 1200 1600 2000

D
ro

pp
ed

 P
ac

ke
ts

 (%
)

0

10

20

30

40

50

60

70

80

90

pcap
pcap+LB

Fig. 6. Packet loss ratio of the passive monitoring sensor when running Snort, as a
function of the traffic speed for an 8,000-packet locality buffer.
100 Mbit/s step, and a locality buffer size of 8,000 packets. We ob-
serve that for low speeds, locality buffering reduces the number of
CPU cycles spent for packet processing due to the improved mem-
ory locality. For instance, for 500 Mbit/s, Snort’s CPU utilization
with locality buffering is reduced by 20%. The CPU utilization when
Snort does not use locality buffering exceeds 90% for rates higher
than 600 Mbit/s, and reaches up to 98.3% for 1 Gbit/s. On the other
hand, using locality buffering, Snort’s CPU utilization exceeds 90%
for rates higher than 1 Gbit/s, and reaches about 97% for 1.5 Gbit/
s rate. We also observe that packet loss events occur due to high
CPU utilization, when it approaches 100%. Without locality buffer-
ing, 92.7% CPU utilization for 700 Mbit/s results to 1.4% packet loss
rate, while 98% utilization for 1.1 Gbit/s results to 47.2% packet
loss.

In Fig. 8 we plot the average percentage of dropped packets
while replaying traffic with normal timing behavior, instead of
sending traffic with a constant rate. We replay the traffic of our
trace based on it’s normal traffic patterns when the trace was cap-
tured, using the multiplier option of tcpreplay [24] tool. Thus, we
are able to replay the trace at the speed that it was recorded, which
is 88 Mbit/s on average, or at a multiple of this speed. In this exper-
iment we examine the performance of Snort using the original and
our modified libpcap in case of normal traffic patterns with pack-
et bursts, instead of constant traffic rates. We send the trace using
multiples from 1 up to 16, and we plot the percentage of dropped
Multiple of real trace’s speed
0 2 4 6 8 10 12 14 16

D
ro

pp
ed

 P
ac

ke
ts

 (%
)

0

10

20

30

40

50

60

70

80

pcap
pcap+LB

Fig. 8. Packet loss ratio of the passive monitoring sensor when running Snort, as a
function of the actual trace’s speed multiple, with an 8,000-packet locality buffer
and 100 ms timeout.

L2
 c

ac
he

 m
is

se
s

(p
er

 p
ac

ke
t)

2

4

6

8

10

12

14

pcap
pcap+LB

A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140 137
packets as a function of this multiplication factor. We use 8,000
packets as buffer size and 100 ms timeout.

We observe that locality buffering reduces the percentage of
dropped packets in higher traffic rates, when using larger multipli-
cation factors. Snort with locality buffering starts dropping packets
when sending traffic eight times faster than the actual speed of the
trace, while Snort with the original libpcap drops packets from
four times faster speed. When replaying traffic 16 times faster than
the recorded speed, which results to 1,408 Mbit/s on average, Snort
with locality buffering drops 34% less packets.

Since both versions of libpcap use a ring buffer for storing
packets with the same size, they are resistant to packet bursts at
a similar factor. However, libpcap with locality buffering is faster,
due the improved memory locality, and so it is more resistant to
packet drops in cases of overloads and traffic bursts.
Locality Buffer size (# packets)
0 5000 10000 15000 20000 25000 30000

0

Fig. 10. Appmon’s L2 cache misses as a function of the buffer size for 500 Mbit/s
traffic.
5.3. Appmon

Appmon [2] is a passive network monitoring application for
accurate per-application traffic identification and categorization.
It uses deep-packet inspection and packet filtering for attributing
flows to the applications that generate them. We ran Appmon on
top of our modified version of libpcap to examine its perfor-
mance using different buffer sizes that vary from 100 to 32,000
packets, and compare with the original libpcap. Fig. 9 presents
the Appmon’s CPU cycles and Fig. 10 the L2 cache misses measured
while replaying the trace at a constant rate of 500 Mbit/s. At this
rate no packet loss was occurred.

The results show that Appmon’s performance can be improved
using the locality buffering implementation, reducing the CPU cy-
cles by about 16% compared to Appmon using the original libp-
cap. Cache misses are reduced by up to 31% for 32,000 packets
buffer size and 28% for 16,000 packets. We notice that in case of
Appmon the optimum buffer size is around 16,000 packets, while
in Snort 8,000 packets size is enough to optimize the performance.
This happens because Appmon is not so CPU-intensive as Snort, so
it requires a larger amount of packets to be sorted in order to
achieve a significant performance improvement.

We ran Appmon with traffic rates varying from 250 to
2,000 Mbit/s, observing similar results. Since Appmon does less
processing than snort, less packets are dropped in high rates. The
output of Appmon remains identical in all cases, which means that
the periodic packet stream sorting does not affect the correct oper-
ation of Appmon’s classification process.
Locality Buffer size (# packets)
0 5000 10000 15000 20000 25000 30000

C
PU

 c
lo

ck
 c

yc
le

s
(p

er
 p

ac
ke

t)

0

2000

4000

6000

8000

10000

pcap
pcap+LB

Fig. 9. Appmon’s CPU cycles as a function of the buffer size for 500 Mbit/s traffic.
5.4. Fprobe

Fprobe [3] is a passive monitoring application that collects
traffic statistics for each active flow and exports the corresponding
NetFlow records. We ran Fprobe with the original and our modified
version of libpcap and performed the same measurements as
with Appmon.

Fig. 11 plots the CPU cycles and Fig. 12 the L2 cache misses of
the Fprobe variants for buffer sizes from 100 up to 32,000 packets,
while replaying the trace at a rate of 500 Mbit/s.

We notice a speedup of about 11% in Fprobe when locality buf-
fering is enabled, for 4,000 packets buffer size, while cache misses
are reduced by 19%. The buffer size that optimizes the overall per-
formance of Fprobe in this setup is around 4,000 packets. No pack-
et loss occurred for Fprobe at all traffic rates. Fprobe is even less
CPU-intensive than Appmon and Snort since it performs only a
few operations per packet. The time spent in kernel for packet cap-
turing is significantly larger than the time spent in user space.
Thus, Fprobe benefits less from the locality buffering enhance-
ments. For passive monitoring applications in general, the perfor-
mance improvement due to locality buffering increases as the
Locality Buffer size (# packets)
0 5000 10000 15000 20000 25000 30000

C
PU

 c
lo

ck
 c

yc
le

s
(p

er
 p

ac
ke

t)

0

500

1000

1500

2000

2500

3000

pcap
pcap+LB

Fig. 11. Fprobe’s CPU cycles as a function of the buffer size for 500 Mbit/s traffic.

Locality Buffer size (# packets)

0 5000 10000 15000 20000 25000 30000

L2
 c

ac
he

 m
is

se
s

(p
er

 p
ac

ke
t)

0

1

2

3

4 pcap
pcap+LB

Fig. 12. Fprobe’s L2 cache misses as a function of the buffer size for 500 Mbit/s
traffic.

138 A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140
time spent in user space increases, and also depends on memory
access patterns. Similar results were observed for all rates of the
replayed traffic.
6. Related work

The concept of locality buffering for improving passive network
monitoring applications, and, in particular, intrusion detection and
prevention systems, was first introduced by Xinidis et al. [25], as
part of a load balancing traffic splitter for multiple network intru-
sion detection sensors that operate in parallel. In this work, the
load balancer splits the traffic to multiple intrusion detection sen-
sors, so that similar packets (e.g., packets destined to the same
port) are processed by the same sensor. However, in this approach
the splitter uses a limited number of locality buffers and copies
each packet to the appropriate buffer based on hashing on its des-
tination port number. Our approach differs in two major aspects.
First, we have implemented locality buffering within a packet cap-
turing library, instead of a separate network element. To the best of
our knowledge, our prototype implementation within the libpcap
library is the first attempt for providing memory locality enhance-
ments for accelerating packet processing in a generic and transpar-
ent way for existing passive monitoring applications. Second, the
major improvement of our approach is that packets are not actu-
ally copied into separate locality buffers. Instead, we maintain a
separate index which allows for scaling the number of locality buf-
fers up to 64 K.

Locality enhancing techniques for improving server perfor-
mance have been widely studied. For instance, Markatos et al.
[26] present techniques for improving request locality on a Web
cache, which results to significant improvements in the file system
performance.

Braun et al. [15] and Schneider et al. [27] compare the perfor-
mance of packet capturing libraries on different operating systems
using the same hardware platforms and provide guidelines for sys-
tem configuration to achieve optimal performance. Several re-
search efforts [12–14,17] have focused on improving the
performance of packet capturing through kernel and library mod-
ifications. These approaches reduce the time spent in kernel and
the number of memory copies required for delivering each packet
to the application. In contrast, our locality buffering approach aims
to improve the packet processing performance of the monitoring
application itself, by exploiting the inherent locality of the
in-memory workload of the application. Moreover, such ap-
proaches can be integrated with our locality buffering technique
to achieve the maximum possible improvement in CPU-intensive
passive monitoring applications running in commodity hardware.

Schneider et al. [16] show that commodity hardware and soft-
ware may be able to capture traffic for rates up to 1 Gbit/s, mainly
due to limitations with buses bandwidth and CPU load. To cope
with this limitation, the authors propose a monitoring architecture
for higher speed interfaces by splitting the traffic across a set of
nodes with lower speed interfaces, using a feature of current Ether-
net switches. The detailed configuration for load balancing is left
for the application. Vallentin et al. [28] present a NIDS cluster
based on commodity PCs. Some front-end nodes are responsible
to distribute the traffic across the cluster’s back-end nodes. Several
traffic distribution schemes are discussed, focused on minimizing
the communication between the sensors and keeping them simple
enough to be implemented effectively in the front-end nodes.
Hashing a flow identifier is proposed as the right choice. A local-
ity-aware approach in such architectures would cluster similar
flows to the same node, by sorting and splitting packets based on
source and destination port numbers, to improve memory locality
and cache usage in each individual node.

Fusco and Deri [29] utilize the RSS feature of modern NICs [30],
which split the network traffic in multiple RX queues, usually
equal to the number of CPU cores, to parallelize packet capturing
using all CPU cores. Moreover, packets are copied directly from
each hardware queue to a corresponding ring buffer, which is ex-
posed in user-level as a virtual network interface. Thus, applica-
tions can easily and efficiently split the load to multiple threads
or processes without contention. The load distribution in the sev-
eral queues is based on a hash function, so it’s not optimized in
terms of memory locality and L2 cache usage. A locality-aware load
distribution algorithm, like our approach, would split packets in
queues based on their source and destination port numbers. Thus,
both directions of each flow as well as similar flows would fall to
the same queue and would be processed by the same thread and
same CPU core. Locality-aware and flow-based load balancing ap-
proaches could be combined to handle cases where most of the
flows have a common port number, so that these flows can be
splitted to more than one CPU cores.

Sommer et al. [31] utilize multicore processors to pararrelize
event-based network prevention systems, using multiple event
queues that collect together semantically related events for in-
order execution. Since the events are related, keeping them within
a single queue localizes memory access to shared state by the same
thread. On the other hand, our approach clusters together similar
packets, i.e., packets belonging to the same or similar flow, with
the same or close port numbers.
7. Discussion

We consider two main limitations of our locality buffering ap-
proach. The first limitation is that the packet reordering we impose
results in non-monotonic increasing timestamps among different
flows (it guarantees monotonic increasing timestamps only per
each bi-directional flow). Therefore, applications that require this
property, e.g., for connection timeout issues, may have problems
when dealing with non-monotonic increasing timestamps. Such
applications should either be modified to handle this issue, other-
wise they cannot use our approach.

The second limitation of our approach is that our generic imple-
mentation within libpcap, which sorts packets based on source or
destination port numbers, may not be suitable for applications that
require a custom packet sorting or scheduling approach, e.g., based
on application’s semantics. Monitoring applications may perform

A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140 139
similar processing for packets with specific port numbers, which
cannot be known to the packet capturing library. Such applications
should not use our modified libpcap version, but instead imple-
ment a custom scheduling scheme for packet processing order.
Our implementation’s goal, is to improve transparently the perfor-
mance of a large class of existing applications, where the packet
processing tasks depend mainly on the packets port numbers.

In particular, locality buffering technique is intended for appli-
cations which perform similar processing and similar memory
accesses for the same class of packets, e.g., for packets of the same
flow or packets belonging to the same higher level protocol or
application. For instance, signature-based intrusion detection sys-
tems can benefit from locality buffering, due to different set of sig-
natures matched against different classes of packets. Other types of
monitoring applications may not gain the same performance
improvement from locality buffering.

Finally, recent trends impose the use of multiple CPU cores per
processor, instead of building and using faster processors. Thus,
applications should utilize all the available CPU cores to take full
advantage of modern hardware and improve their performance.
Although L2 cache memory becomes larger in newest processors,
more processor cores tend to access the shared L2 cache, so locality
enhancements can still benefit the overall performance. Our ap-
proach can be extended to exploit memory locality enhancements
for improving the performance of multithreaded applications run-
ning in multicore processors. Improving memory locality for each
thread, which usually runs on a single core, is an important factor
that can significantly improve packet processing performance.
Each thread should process similar packets to improve its memory
access locality, similarly to our approach, which is intended for sin-
gle-threaded applications.

Applications usually choose to split packets to multiple threads
(one thread per core) based on flow identifiers. A generic locality-
aware approach for efficient packet splitting to multiple threads, in
order to optimize cache usage in each CPU core, should sort pack-
ets based on their port numbers and then divide them to the multi-
ple threads. This will lead to improved code and data locality in
each CPU core, similarly to our locality buffering approach. How-
ever, in some applications the best splitting of packets to multiple
threads can be done only by the application itself, based on custom
application’s semantics, e.g., custom sets of ports with similar pro-
cessing. In these cases, a generic library for improved memory
locality cannot be used.
8. Conclusion

In this paper, we present a technique for improving the packet
processing performance in a wide range of passive network moni-
toring applications by enhancing the locality of code and data
accesses. Our approach is based on reordering the captured packets
before delivering them to the monitoring application by grouping
together packets with the same source or destination port number.
This results to improved locality in application code and data
accesses, and consequently to an overall increase in the packet pro-
cessing throughput and to a significant decrease in the packet loss
rate.

To maximize improvements in processing throughput, we com-
bine locality buffering with memory mapping, an existing tech-
nique in libpcap that optimizes the performance of packet
capturing. By mapping a buffer into shared memory, this technique
reduces the time spent in context switching for delivering packets
from kernel to user space.

We describe in detail the design and implementation of locality
buffering within libpcap. Our experimental evaluation using
three representative passive monitoring applications shows that
all applications gain a significant performance improvement when
using the locality buffering implementations, while the system can
keep up with higher traffic speeds without dropping packets. Spe-
cifically, locality buffering results to a 25% increase in the process-
ing throughput of the Snort IDS and allows it to process two times
higher traffic rates without packet drops.

Using the original libpcap implementation, the Snort sensor
starts to drop packets when the monitored traffic speed reaches
600 Mbit/s, while using locality buffering, packet loss is exhibited
beyond 1 Gbit/s. Fprobe, a NetFlow export probe, and Appmon,
an accurate traffic classification application, also exhibit significant
throughput improvements, up to 12% and 18% respectively,
although they do not perform as CPU-intensive processing as Snort.

Overall, we believe that implementing locality buffering within
libpcap is an attractive performance optimization, since it offers
significant performance improvements to a wide range of passive
monitoring applications, while at the same time its operation is
completely transparent, without the need to modify existing appli-
cations. Our implementation of locality buffering in the memory
mapped version of libpcap offers even better performance, since
it combines optimizations in both the packet capturing and packet
processing phases.
Acknowledgments

This work was supported in part by the FP7-PEOPLE-2009-IOF
project MALCODE and the FP7 project SysSec, funded by the
European Commission under Grant Agreements Nos. 254116 and
257007. We thank the anonymous reviewers for their valuable
feedback on earlier versions of this paper. Antonis Papadogiannakis,
Giorgos Vasiliadis, Demetres Antoniades, and Evangelos Markatos
are also with the University of Crete.
References

[1] M. Roesch, Snort: Lightweight intrusion detection for networks, in:
Proceedings of the USENIX Systems Administration Conference (LISA), 1999.

[2] D. Antoniades, M. Polychronakis, S. Antonatos, E.P. Markatos, S. Ubik, A. Oslebo,
Appmon: an application for accurate per application traffic characterization,
in: Proceedings of the IST Broadband Europe Conference, 2006.

[3] Fprobe: Netflow probes, <http://fprobe.sourceforge.net/>.
[4] M. Grossglauser, J. Rexford, Passive traffic measurement for IP operations, in:

The Internet as a Large-Scale Complex System, 2005, pp. 91–120.
[5] V. Paxson, Bro: A system for detecting network intruders in real-time, in:

Proceedings of the 7th USENIX Security Symposium, 1998.
[6] M. Handley, V. Paxson, C. Kreibich, Network intrusion detection: evasion,

traffic normalization, and end-to-end protocol semantics, in: Proceedings of
the 10th USENIX Security Symposium, 2001.

[7] S. McCanne, C. Leres, V. Jacobson, libpcap, lawrence Berkeley Laboratory,
Berkeley, CA. (software available from <http://www.tcpdump.org/>).

[8] G. Insolvibile, Inside the linux packet filter, Linux Journal 94 (2002).
[9] J.C. Mogul, K.K. Ramakrishnan, Eliminating receive livelock in an interrupt-

driven kernel, ACM Transactions on Computer Systems 15 (3) (1997) 217–252.
[10] J.H. Salim, R. Olsson, A. Kuznetsov, Beyond softnet, in: ALS ’01: Proceedings of

the 5th Annual Conference on Linux Showcase & Conference, 2001.
[11] S. McCanne, V. Jacobson, The BSD Packet Filter: A new architecture for user-

level packet capture, in: Proceedings of the Winter 1993 USENIX Conference,
1993, pp. 259–270.

[12] L. Deri, Improving passive packet capture:beyond device polling, in:
Proceedings of the 4th International System Administration and Network
Engineering Conference (SANE), 2004.

[13] L. Deri, ncap: Wire-speed packet capture and transmission, in: Proceedings of
the IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services
(E2EMON), 2005.

[14] A. Biswas, P. Sinha, On improving performance of network intrusion detection
systems by efficient packet capturing, in: Proceedings of the 10th IEEE/IFIP
Network Operations and Management Symposium (NOMS), Vancouver,
Canada, 2006.

[15] L. Braun, A. Didebulidze, N. Kammenhuber, G. Carle, Comparing and improving
current packet capturing solutions based on commodity hardware, in:
Proceedings of the 10th Annual Conference on Internet Measurement (IMC),
2010, pp. 206–217.

[16] F. Schneider, J. Wallerich, A. Feldmann, Packet capture in 10-gigabit ethernet
environments using contemporary commodity hardware, in: Proceedings of

http://fprobe.sourceforge.net/
http://www.tcpdump.org/

140 A. Papadogiannakis et al. / Computer Communications 35 (2012) 129–140
the 8th International Conference on Passive and Active network Measurement
(PAM), 2007, pp. 207–217.

[17] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, G. Portokalidis, FFPF: fairly fast
packet filters, in: Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation (OSDI), 2004.

[18] R. Watson, C. Peron, Zero-Copy BPF Buffers, FreeBSD Developer Summit.
[19] A. Fiveg, Ringmap capturing stack for high performance packet capturing in

FreeBSD, FreeBSD Developer Summit.
[20] Dag ethernet network monitoring cards, Endace measurement systems,

<http://www.endace.com/>.
[21] Sourcefire vulnerability research team (vrt), <http://www.snort.org/vrt/>.
[22] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic

search, Communications of the ACM 18 (1975) 333–340.
[23] Performance application programming interface, <http://icl.cs.utk.edu/papi/>.
[24] Tcpreplay, <http://tcpreplay.synfin.net/trac/>.
[25] K. Xinidis, I. Charitakis, S. Antonatos, K.G. Anagnostakis, E.P. Markatos, An

active splitter architecture for intrusion detection and prevention, IEEE
Transactions on Dependable and Secure Computing 03 (1) (2006) 31–44.
[26] E.P. Markatos, D.N. Pnevmatikatos, M.D. Flouris, M.G.H. Katevenis, Web-
conscious storage management for web proxies, IEEE/ACM Transactions on
Networking 10 (6) (2002) 735–748.

[27] F. Schneider, J. Wallerich, Performance evaluation of packet capturing systems
for high-speed networks, in: Proceedings of the 2005 ACM Conference on
Emerging Network Experiment and Technology (CoNEXT), 2005, pp. 284–285.

[28] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, B. Tierney, The NIDS cluster:
Scalable, stateful network intrusion detection on commodity hardware, in:
Proceedings of the 10th International Symposium on Recent Advances in
Intrusion Detection (RAID), 2007, pp. 107–126.

[29] F. Fusco, L. Deri, High speed network traffic analysis with commodity multi-
core systems, in: Proceedings of the 10th annual conference on Internet
measurement (IMC), 2010, pp. 218–224.

[30] Intel Server Adapters, Receive side scaling on Intel Network Adapters, <http://
www.intel.com/support/network/adapter/pro100/sb/cs-027574.htm>.

[31] R. Sommer, V. Paxson, N. Weaver, An architecture for exploiting multi-core
processors to parallelize network intrusion prevention, Concurrency and
Computation: Practice and Experience 21 (10) (2009) 1255–1279.

http://www.endace.com/
http://www.snort.org/vrt/
http://icl.cs.utk.edu/papi/
http://tcpreplay.synfin.net/trac/
http://www.intel.com/support/network/adapter/pro100/sb/cs-027574.htm
http://www.intel.com/support/network/adapter/pro100/sb/cs-027574.htm

	Improving the performance of passive network monitoring applications with memory locality enhancements
	1 Introduction
	2 Background
	2.1 Packet capturing in Linux
	2.2 Using memory mapping between kernel and user-level applications
	2.3 Using specialized hardware

	3 Locality buffering
	3.1 Feasibility estimation

	4 Implementation within libpcap
	4.1 Periodic packet stream sorting
	4.2 Using a separate thread for packet gathering
	4.3 Combine locality buffering and memory mapping

	5 Experimental evaluation
	5.1 Experimental environment
	5.2 Snort
	5.3 Appmon
	5.4 Fprobe

	6 Related work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

