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ABSTRACT
A promising method for the detection of previously unknown code
injection attacks is the identification of the shellcode that is part of
the attack vector using payload execution. Existing systems based
on this approach rely on the self-decrypting behavior of polymor-
phic code and can identify only that particular class of shellcode.
Plain, and more importantly,metamorphicshellcode do not carry
a decryption routine nor exhibit any self-modifications andthus
both evade existing detection systems. In this paper, we present
a comprehensive shellcode detection technique that uses a set of
runtime heuristics to identify the presence of shellcode inarbitrary
data streams. We have identified fundamental machine-leveloper-
ations that are inescapably performed by different shellcode types,
based on which we have designed heuristics that enable the detec-
tion of plain and metamorphic shellcode regardless of the use of
self-decryption. We have implemented our technique in Gene, a
code injection attack detection system based on passive network
monitoring. Our experimental evaluation and real-world deploy-
ment show that Gene can effectively detect a large and diverse set
of shellcode samples that are currently missed by existing detec-
tors, while so far it has not generated any false positives.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software

General Terms
Security
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1. INTRODUCTION
Code injection attacks have become one of the primary meth-

ods of malware spreading. In a typical code injection attack, the
attacker sends a malicious input that exploits a memory corrup-
tion vulnerability in a program running on the victim’s computer.
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The injected code, known asshellcode, carries out the first stage of
the attack, which usually involves the download and execution of a
malware binary on the compromised host.

Once sophisticated tricks of the most skilled virus authors, ad-
vanced evasion techniques like code obfuscation and polymorphism
are now the norm in most instances of malicious code [19]. The
wide availability of ready-to-use shellcode constructionand obfus-
cation toolkits and the discovery rate of new vulnerabilities have
rendered exploit or vulnerability specific detection techniques in-
effective [31]. A promising approach for the generic detection of
code injection attacks is to focus on the identification of the shell-
code that is indispensably part of the attack vector, a technique ini-
tially known as abstract payload execution [33]. Identifying the
presence of the shellcode itself allows for the detection ofprevi-
ously unknown attacks without caring about the particular exploita-
tion method used or the vulnerability being exploited.

Initial implementations of this approach attempt to identify the
presence of shellcode in network inputs using static code analy-
sis [33–35]. However, methods based on static analysis cannot ef-
fectively handle malicious code that employs advanced obfuscation
tricks such as indirect jumps and self-modifications. Dynamic code
analysis using emulation is not hindered by such obfuscations and
can detect even extensively obfuscated shellcode. This kind of “ac-
tual” payload execution has proved quite effective in practice [22]
and is being used in network-level and host-level systems for the
zero-day detection of both server-side and client-side code injec-
tion attacks [9,14,15,23,38].

A limitation of the above techniques is that they are confinedto
the detection of a particular class of polymorphic shellcode that ex-
hibits self-decrypting behavior. Although shellcode “packing” and
encryption are commonly used for evading signature-based detec-
tors, attackers can achieve the same or even higher level of eva-
siveness without the use of self-decrypting code, rendering above
systems ineffective. Besides code encryption, polymorphism can
instead be achieved by mutating the actual instructions of the shell-
code before launching the attack—a technique known asmetamor-
phism[32]. Metamorphism has been widely used by virus authors
and thus can trivially be applied for shellcode mutation. Surpris-
ingly, evenplain shellcode, i.e., shellcode that does not change
across different instances, is also not detected by existing payload
execution methods. Technically, a plain shellcode is no different
than any instance of metamorphic shellcode, since both do not carry
a decryption routine nor exhibit any self-modifications or dynamic
code generation. Consequently, an attack that uses a previously
unknown static analysis-resistant plain shellcode will manage to
evade existing detection systems.

In this paper, we present a comprehensive shellcode detection
technique based on payload execution. In contrast to previous ap-



Figure 1: Overview of the proposed shellcode detection archi-
tecture.

proaches that use a single detection algorithm for a particular class
of shellcode, our method relies on several runtime heuristics tai-
lored to the identification of different shellcode types. Wehave
designed four heuristics for the detection of plain and metamorphic
shellcode targeting Windows systems. Polymorphic shellcode is in
essence a self-decrypting version of a plain shellcode, andthus it
is also effectively detected, since the concealed plain shellcode is
revealed during execution. In fact, we also enable the detection of
polymorphic shellcode that uses SEH-based GetPC code, which is
currently not handled by existing polymorphic shellcode detectors.
Furthermore, instead of solely using a CPU emulator, our approach
couples the heuristics with an appropriate image of the complete
address space of a real process, enabling the correct execution of
shellcode that depends on certain kinds of host-level context.

We have implemented the above technique in Gene, a network-
level detector that scans all client-initiated streams forcode injec-
tion attacks against network services. Gene is based on passive
network monitoring, which offers the benefits of easy large-scale
deployment and protection of multiple hosts using a single sen-
sor, while it allows us to test the effectiveness of our technique
in real-world environments. Nevertheless, although Gene operates
at the network level, its core inspection engine can analyzearbi-
trary data coming from any source. This allows our approach to be
readily embedded in existing systems that employ emulation-based
detection in other domains, e.g., for the detection of malicious web-
sites [15] or in browser add-ons for the detection of drive-by down-
load attacks [14].

Our evaluation with publicly available shellcode samples and
shellcode construction toolkits, shows that Gene can effectively de-
tect many different shellcode instances without prior knowledge
about each particular implementation. At the same time, after ex-
tensive testing of the runtime heuristics using a large and diverse set
of generated and real data, in addition to a five-month deployment
in production networks, Gene has not generated any false positives.

2. ARCHITECTURE
The proposed shellcode detection system is built around a CPU

emulator that executes valid instruction sequences found in the in-
spected input. An overview of our approach is illustrated inFig. 1.
Each input is mapped to an arbitrary location in the virtual address
space of a supposed process, and a new execution begins from each
and every byte of the input, since the position of the first instruc-
tion of the shellcode is unknown and can be easily obfuscated. The
detection engine is based on multiple heuristics that matchruntime
patterns inherent in different types of shellcode. During execution,
the system checks several conditions that should all be satisfied
in order for a heuristic to match some shellcode. Moreover, new

Abbreviation Matching Shellcode Behavior

PEB kernel32.dll base address resolution

BACKWD kernel32.dll base address resolution

SEH Memory scanning / SEH-based GetPC code
SYSCALL Memory scanning

Table 1: Overview of the shellcode detection heuristics used in
Gene.

heuristics can easily be added due to the extensible nature of the
system.

Existing polymorphic shellcode detection methods focus onthe
identification of self-decrypting behavior, which can be simulated
without any host-level information [23]. For example, accesses to
addresses other than the memory area of the shellcode itselfare
ignored. However, shellcode is meant to be injected into a running
process and it usually accesses certain parts of the process’ address
space, e.g., for retrieving and calling API functions. In contrast to
previous approaches, the emulator used in our system is equipped
with a fully blown virtual memory subsystem that handles alluser-
level memory accesses and enables the initialization of memory
pages with arbitrary content. This allows us to populate thevirtual
address space of the supposed process with an image of the mapped
pages of a process taken from a real system.

The purpose of this functionality is twofold: First, it enables
the construction of heuristics that check for memory accesses to
process-specific data structures. Although the heuristicspresented
in this paper target Windows shellcode, and thus the addressspace
image used in conjunction with these heuristics is taken from a
Windows process, some other heuristic can use a different mem-
ory image, e.g., taken from a Linux process. Second, this allows to
some extent the correct execution of non-self-contained shellcode
that may perform accesses to known memory locations for evasion
purposes [10]. We discuss this issue further in Sec. 6.

3. RUNTIME HEURISTICS
Each heuristic used in Gene is composed of a sequence of con-

ditions that shouldall be satisfiedin order during the execution of
malicious code. Table 1 gives an overview of the four heuristics
presented in this section. The heuristics focus on the identification
of the first actions of different shellcode types, accordingto their
functionality, regardless of any self-decrypting behavior.

3.1 Resolving kernel32.dll
The typical end goal of the shellcode is to give the attacker full

control of the victim system. This usually involves just a few sim-
ple operations, such as downloading and executing a malwarebi-
nary on the compromised host. These operations require interac-
tion with the OS through the system call interface, or in caseof
Microsoft Windows, through the user-level Windows API.

The Windows API is divided into several dynamic load libraries
(DLLs). In order to call an API function, the shellcode must first
find its absolute address in the address space of the process.This
can be achieved in a reliable way by searching for the Relative Vir-
tual Addresses (RVAs) of the function in the Export Directory Table
(EDT) of the DLL. The absolute Virtual Memory Address (VMA)
of the function can then be easily computed by adding the DLL’s
base address to the function’s RVA. In fact,kernel32.dll pro-
vides the quite convenient functionsLoadLibrary, which loads
the specified DLL into the address space of the calling process and
returns its base address, andGetProcAddress, which returns



1 xor eax, eax ; eax = 0
2 mov eax, fs:[eax+0x30] ; eax = PEB
3 mov eax, [eax+0x0C] ; eax = PEB.LoaderData
4 mov esi, [eax+0x1C] ; esi = InInitializationOrder

ModuleList.Flink
5 lodsd ; eax = 2nd list entry

(kernel32.dll)
6 mov eax, [eax+0x08] ; eax = LDR_MODULE.BaseAddress

Figure 2: A typical example of code that resolves the base ad-
dress of kernel32.dll through the PEB.

the address of an exported function from the specified DLL. Af-
ter resolving these two functions, any other function in anyDLL
can be loaded and used directly. However, custom function search-
ing using hashes is usually preferable in modern shellcode,since
GetProcAddress takes as argument the actual name of the func-
tion to be resolved, which increases the shellcode size considerably.

No matter which method is used, a common fundamental oper-
ation in all above cases is that the shellcode has to first locate the
base address ofkernel32.dll. Since this is an inherent opera-
tion that must be performed by any Windows shellcode that needs
to call a Windows API function, it is a perfect candidate for the
development of a generic shellcode detection heuristic.

3.1.1 Process Environment Block
Probably the most reliable and widely used technique for deter-

mining the base address ofkernel32.dll takes advantage of
the Process Environment Block (PEB), a user-level structure that
holds extensive process-specific information. Figure 2 shows a typ-
ical example of PEB-based code for resolvingkernel32.dll.
The shellcode first gets a pointer to the PEB (line 2) through the
Thread Information Block (TIB), which is always accessibleat a
zero offset from the segment specified by theFS register. A pointer
to the PEB exists 0x30 bytes into the TIB, as shown in Fig. 3. The
absolute memory address of the TIB and the PEB varies among
processes, and thus the only reliable way to get a handle to the PEB
is through theFS register, and specifically, by reading the pointer
located at addressFS:[0x30].

Condition P1. This fundamental constraint is the basis of our
first detection heuristic(PEB). If during the execution of some in-
put the following condition is true(P1): (i) the linear address of
FS:[0x30] is read, and (ii) the current or any previous instruc-
tion involved theFS register, then this input may correspond to a
shellcode that resolveskernel32.dll through the PEB.

The second predicate is necessary for two reasons. First, itis
useful for excluding random instructions in benign inputs that hap-
pen to read from the linear address ofFS:[0x30] without in-
volving theFS register. For example, ifFS:[0x30] corresponds
to address0x7FFDF030 (as shown in the example of Fig. 3), the
following code will correctly not match the above condition:

mov ebx, 0x7FFD0000
mov eax, [ebx+0xF030] ; eax = FS:[0x30]

On the other hand, the memory access toFS:[0x30] can be
made through an instruction that does not use theFS register di-
rectly. For example, an attacker could take advantage of other seg-
ment registers and replace the first two lines in Fig. 2 with:

mov ax, fs ; ax = fs
mov bx, es ; preserve es
mov es, ax ; es = fs
mov eax, es:[0x30] ; load FS:[0x30] to eax
mov es, bx ; restore es

The code loads the segment selector of theFS register toES (mov
between segment registers is not supported), reads the pointer to
the PEB, and then restores the original value of theES register.

The linear address of the TIB is also contained in the TIB itself
at the locationFS:[0x18], as shown in Fig. 3. Thus, another way
of reading the pointer to the PEB without using theFS register in
the same instruction is the following:

xor eax,eax ; eax = 0
xor eax,fs:[eax+0x18] ; eax = TIB address
mov eax,[eax+0x30] ; eax = PEB address

Note in the above example that other instructions besidesmov can
be used to indirectly read a memory address through theFS regis-
ter (xor in this case). No matter how obfuscated the code is, the
condition remains robust since it does not rely on the execution of
particular instructions.

Although condition P1 is quite restrictive, the possibility of en-
countering a random read fromFS:[0x30] during the execu-
tion of some benign input is not negligible. Thus, it is desirable
to strengthen the heuristic with more operations exhibitedby any
PEB-basedkernel32.dll resolution code.

Condition P2. Having a pointer to the PEB, the next step of the
shellcode is to obtain a pointer to thePEB_LDR_DATA structure
that holds the list of loaded modules (line 3 in Fig. 2). Such a
pointer exists 0xC bytes into the PEB, in theLoaderData field.
Since this is the only available reference to that data structure, the
shellcode unavoidably has to read thePEB.LoaderData pointer.
We can use this constraint as a second condition for the PEB heuris-
tic (P2): the linear address ofPEB.LoaderData is read.

Condition P3. Moving on, the shellcode has to walk through the
loaded modules list and locate the second entry (kernel32.dll).
A pointer to the first entry of the list exists in theInInitializa-
tionOrderModuleList.Flink field located 0x1C bytes into
thePEB_LDR_DATA structure. The read operation from this mem-
ory location (line 4 in Fig. 2) allows for strengthening further the
detection heuristic with a third condition.

Although this is the most well known [5,26,27], and widely used
technique for all Windows versions up to Windows Vista, it does
not work “as-is” for Windows 7. In that version,kernel32.dll
is found in the third instead of the second position in the modules
list [7]. A more generic and robust technique is to walk through the
list and check the actual name of each module untilkernel32.dll
is found [7, 29]. In fact, thePEB_LDR_DATA structure contains
two more lists of the loaded modules that differ in the order of the
DLLs. All three lists are implemented as doubly linked lists, and
their correspondingLIST_ENTRY records contain two pointers to
the first (Flink) and last (Blink) entry in the list.

Based on the above, and given that (i)kernel32.dll can
be resolved through any of the three lists, and (ii) list traversing
can be made in both directions, the third condition of the heuristic
can be specified as follows(P3): the linear address of any of the
Flink or Blink pointers in theInLoadOrderModuleList,
InMemoryOrderModuleList, orInInitializationOr-
derModuleList records of thePEB_LDR_DATA structure is
read.

3.1.2 Backwards Searching
An alternative technique for locatingkernel32.dll is to find

a pointer that points somewhere into the memory area where the
kernel32.dll has been loaded, and then search backwards un-
til the beginning of the DLL is located [27]. A reliable way to
obtain a pointer into the address space ofkernel32.dll is to
take advantage of the Structured Exception Handling (SEH) mech-
anism of Windows [21], which provides a unified way of handling
hardware and software exceptions. When an exception occurs, the
exception dispatcher walks through a list of exception handlers for



Figure 3: A snapshot of the TIB and the stack memory areas
of a typical Windows process. The SEH chain consisting of two
nodes is highlighted.

the current thread and gives each handler the opportunity tohandle
the exception or pass it on to the next handler. The list is stored
on the stack of each thread, and each node is a SEH frame that
consists of two pointers to the next frame and the actual handler
routine. Figure 3 shows a typical snapshot of the TIB and the stack
memory areas of a process with two SEH handlers. A pointer to the
current SEH frame exists in the first field of the Thread Information
Block and is always accessible throughFS:[0].

At the end of the SEH chain (bottom of the stack) there is a de-
fault exception handler that is registered by the system forevery
thread. TheHandler pointer of this SEH record points to a rou-
tine that is located inkernel32.dll, as shown in Fig. 3. Thus,
the shellcode can start fromFS:[0] and walk the SEH chain un-
til reaching the last SEH frame, and from there get a pointer into
kernel32.dll by reading itsHandler field.

Another technique to reach the last SEH frame, known as “TOP-
STACK” [27], uses the stack of the exploited thread. The default
exception handler is registered by the system during threadcre-
ation, making its relative location from the bottom of the stack
fairly stable. Although the absolute address of the stack may vary,
a pointer to the bottom of the stack is always found in the second
field of the TIB atFS:[0x4]. TheHandler pointer of the de-
fault SEH handler can then be found 0x1C bytes into the stack,as
shown in Fig. 3. In fact, the TIB contains a second pointer to the
top of the stack atFS:[0x8].

Condition B1. Based on the same approach as in the previous
section, the first condition for the detection heuristic(BACKWD)
that matches the “backwards searching” method is the following
(B1): (i) any of the linear address betweenFS:[0]–FS:[0x8]
is read, and (ii) the current or any previous instruction involved the
FS register. The rationale is that a shellcode that uses the back-
wards searching technique should unavoidably read either i) the
memory location atFS:[0] for walking the SEH chain, or ii) one
of the locations atFS:[0x4] andFS:[0x8] for accessing the
stack directly.

Condition B2. In any case, the code will reach the default excep-
tion record on the stack and read itsHandler pointer. Since this
is a mandatory operation for landing intokernel32.dll, we
can use this dependency as our second condition(B2): the linear
address of theHandler field of the default SEH handler is read.

Condition B3. Finally, during the backwards searching phase,

the shellcode will inevitably perform several memory accesses to
the address space ofkernel32.dll in order to check whether
each 64KB-aligned address corresponds to the base address of the
DLL. In our experiments with typical code injection attacksin Win-
dows XP, the shellcode performed at least four memory reads in
kernel32.dll. Thus, after the first two conditions have been
met, we expect to encounter(B3): at least one memory read form
the address space ofkernel32.dll.

3.2 Process Memory Scanning
Some memory corruption vulnerabilities allow only a limited

space for the injected code—usually not enough for a fully func-
tional shellcode. In most such exploits though the attackercan in-
ject a second, much larger payload which however will land ata
random, non-deterministic location, e.g., in a buffer allocated in the
heap. The first-stage shellcode can then sweep the address space of
the process and search for the second-stage shellcode (alsoknown
as the “egg”), which can be identified by a long-enough character-
istic byte sequence. This type of first-stage payload is known as
“egg-hunt” shellcode [28].

Blindly searching the memory of a process in a reliable way re-
quires some method of determining whether a given memory page
is mapped into the address space of the process. In the rest ofthis
section, we describe two known memory scanning techniques and
the corresponding detection heuristics that can capture these behav-
iors, and thus, identify the execution of egg-hunt shellcode.

3.2.1 SEH
The first memory scanning technique takes advantage of the struc-

tured exception handling mechanism and relies on installing a cus-
tom exception handler that is invoked in case of a memory access
violation.

Condition S1. As discussed in Sec. 3.1.2, the list of SEH frames
is stored on the stack, and the current SEH frame is always ac-
cessible throughFS:[0]. The first-stage shellcode can register a
custom exception handler that has priority over all previous han-
dlers in two ways: create a new SEH frame and adjust the current
SEH frame pointer of the TIB to point to it [28], or directly mod-
ify the Handler pointer of the current SEH frame to point to the
attacker’s handler routine. In the first case, the shellcodemust up-
date the SEH list head pointer atFS:[0], while in the second
case, it has to access the current SEH frame in order to modify
its Handler field, which is only possible by reading the pointer
at FS:[0]. Thus, the first condition of the SEH-based memory
scanning detection heuristic(SEH) is (S1): (i) the linear address
of FS:[0] is read or written, and (ii) the current or any previous
instruction involved theFS register.

Condition S2. Another mandatory operation that will be encoun-
tered during execution is that theHandler field of the custom
SEH frame (irrespectively if its a new frame or an existing one)
should be modified to point to the custom exception handler rou-
tine. This operation is reflected by the second condition(S2): the
linear address of theHandler field in the custom SEH frame is or
has been written. Note that in case of a newly created SEH frame,
the Handler pointer can be written before or afterFS:[0] is
modified.

Condition S3. Although the above conditions are quite constrain-
ing, we can apply a third condition by exploiting the fact that upon
the registration of the custom SEH handler, the linked list of SEH
frames should be valid. In the risk of stack corruption, the excep-
tion dispatcher routine performs thorough checks on the integrity
of the SEH chain, e.g., ensuring that each SEH frame is dword-



1 push edx ; preserve edx across system call
2 push 0x8
3 pop eax ; eax = NtAddAtom
4 int 0x2e ; system call
5 cmp al, 0x05 ; check for STATUS_ACCESS_VIOLATION
6 pop edx ; restore edx

Figure 4: A typical system call invocation for checking if the
supplied address is valid.

aligned within the stack and is located higher than the previous
SEH frame [21]. Thus, the third condition requires that(S3): start-
ing fromFS:[0], all SEH frames should reside on the stack, and
theHandler field of the last frame should be set to 0xFFFFFFFF.
In essence, the above condition validates that the custom handler
registration has been performed correctly.

3.2.2 System Call
The extensive abuse of the SEH mechanism in various mem-

ory corruption vulnerabilities led to the introduction of SafeSEH, a
linker option that produces a table with all the legitimate exception
handlers of the image. In case the exploitation of some SafeSEH-
protected vulnerable application requires the use of egg-hunt shell-
code, an alternative but less reliable method for safely scanning
the process address space is to check whether a page is mapped—
before actually accessing it—using a system call [27, 28]. As al-
ready discussed, although the use of system calls in Windowsshell-
code is not common, since they are prone to changes between OS
versions and do not provide crucial functionality such as network
access, they can prove useful for determining if a memory address
is accessible.

Some Windows system calls accept as an argument a pointer to
an input parameter. If the supplied pointer is invalid, the system call
returns with a return value ofSTATUS_ACCESS_VIOLATION.
Thus, the egg-hunt shellcode can check the return value of the sys-
tem call, and proceed accordingly by searching for the egg ormov-
ing on to the next address [28]. In Windows, a system call is ini-
tiated by generating a software interrupt through theint 0x2e
instruction.

Figure 4 shows a typical code that checks the address stored in
edx using theNtAddAtom system call. In Windows, a system
call is initiated by generating a software interrupt through theint
0x2e instruction (line 4). The actual system call that is going tobe
executed is specified by the value stored in theeax register (line
3). Upon return from the system call, the code checks if the return
value equals the code forSTATUS_ACCESS_VIOLATION. The
actual value of this code is 0xC0000005, but checking only the
lower byte is enough in return for more compact code (line 5).

Condition C1. System call execution has several constraints that
can be used for deriving a detection heuristic for this kind of egg-
hunt shellcode. First, the immediate operand of theint instruction
should be set to 0x2E. Looking just for theint 0x2e instruction
is clearly not enough since any two-byte instruction will beencoun-
tered roughly once every 64KB of arbitrary binary input. However,
when encountering anint 0x2e instruction that corresponds to
an actual system call execution, theebx register should also have
been previously set to the proper system call number.

The publicly available egg-hunt shellcode implementations we
found (see Sec. 5.1) use one of the following system calls:NtAc-
cessCheckAndAuditAlarm (0x2), NtAddAtom (0x8), and
NtDisplayString (0x39 in Windows 2000, 0x43 in XP, 0x46
in 2003 Server, and 0x7F in Vista). The variability of the system
call number forNtDisplayString across the different Win-
dows versions is indicative of the complexity introduced inan ex-

ploit by the direct use of system calls. Based on the above, a nec-
essary condition during the execution of a system call in egg-hunt
shellcode is(C1): the execution of anint 0x2e instruction with
theeax register set to one of the following values: 0x2, 0x8, 0x39,
0x43, 0x46, 0x7F.

Condition C2. As shown in Sec. 5.2.2, condition C1 alone can
happen to hold true during the execution of random code, although
rarely. However, the heuristic can be strengthened based onthe
following observation. The egg-hunt shellcode will have toscan a
large part of the address space until it finds the egg. Even when
assuming that the egg can be located only at the beginning of a
page [37], the shellcode will have to search hundreds or thousands
of addresses, e.g., by repeatedly calling the code in Fig. 4 in a loop.
Hence, condition C1 will hold several times. The detection heuris-
tic (SYSCALL) can then be defined as a meta-condition(C{N}):
C1 holds true N times. As shown in Sec. 5.2.2, a value of N = 2
does not produce any false positives.

In case other system calls can be used for validating an arbitrary
address, they can easily be included in the above condition.Start-
ing from Windows XP, system calls can also be made using the
more efficientsysenter instruction if it is supported by the sys-
tem’s processor. The above heuristic can easily be extendedto also
support this type of system call invocation.

3.3 SEH-based GetPC Code
Before decrypting itself, polymorphic shellcode needs to first

find the absolute address at which it resides in the address space
of the vulnerable process. The most widely used types of GetPC
code for this purpose rely on some instruction from thecall or
fstenv instruction groups [23]. These instructions push on the
stack the address of the following instruction, which can then be
used to calculate the absolute address of the encrypted code. How-
ever, this type of GetPC code cannot be used in purely alphanu-
meric shellcode [19], because the opcodes of the required instruc-
tions fall outside the range of allowed ASCII bytes. In such cases,
the attacker can follow a different approach and take advantage of
the SEH mechanism to get a handle to the absolute memory address
of the injected shellcode [30].

When an exception occurs, the system generates an exception
record that contains the necessary information for handling the ex-
ception, including a snapshot of the execution state of the thread,
which contains the value of the program counter at the time the
exception was triggered. This information is stored on the stack,
so the shellcode can register a custom exception handler, trigger
an exception, and then extract the absolute memory address of the
faulting instruction. By writing the handler routine on theheap,
this technique can work even in Windows XP SP3, bypassing any
SEH protection mechanisms [30].

In essence, the SEH-based memory scanning detection heuris-
tic described in Sec. 3.2.1 does not identify the scanning behavior
per se, but the proper registration of a custom exception handler.
Although this is an inherent operation of any SEH-based egg-hunt
shellcode, any shellcode that installs a custom exception handler
can be detected, including polymorphic shellcode that usesSEH-
based GetPC code.

4. IMPLEMENTATION
We have implemented the proposed detection method in Gene, a

network-level attack detector that uses a custom IA-32 emulator to
identify the presence of shellcode in network streams. Genescans
the client-initiated part of each TCP connection using the runtime
heuristics presented in this work. For evaluation purposes, a fifth



GetPC-based self-decrypting shellcode similar to the one used in
existing detectors [9, 23, 38] can be enabled at will. Since the ex-
act location of the shellcode in the input data is not known inad-
vance, the emulator repeats the execution multiple times, starting
from each and every position of the stream. In certain cases,how-
ever, the execution of some code paths can be skipped to optimize
runtime performance [24].

The heuristics used in Gene are mostly based on memory ac-
cesses to certain locations in the address space of a vulnerable Win-
dows process. To emulate correctly the execution of these accesses,
the virtual memory of the emulator is initialized with an image of
the complete address space of a typical Windows XP process taken
from a real system. The image consists of 971 pages (4KB each),
including the stack, heap, PEB/TIB, and loaded modules. Allfour
heuristics use the same memory image and thus can be evaluated in
parallel during execution.

Among other initializations before the beginning of a new exe-
cution [23], the segment registerFS is set to the segment selector
corresponding to the base address of the Thread InformationBlock,
the stack pointer is set accordingly, while any changes to the origi-
nal process image from the previous execution are reverted.

The runtime evaluation of the heuristics requires keeping some
state about the occurrence of instructions with an operand that in-
volved theFS register, as well as about read and write accesses
to the memory locations specified in the heuristics. Regarding the
SEH-based memory scanning heuristic (Sec. 3.2.1), although SEH
chain validation is more complex compared to other instrumenta-
tion operations, it is triggered only if conditions S1 and S2are true,
which in practice happens very rarely.

When anint 0x2e instruction is executed, theeax register
is checked for a value corresponding to one of the system calls
that can be used for memory scanning, as described in Sec. 3.2.2.
Although the actual functionality of the system call is not emulated,
the proper return value is stored in theeax register depending on
the validity of the supplied memory address. In case of an egg-
hunt shellcode, this behavior allows the scanning loop to continue
normally, resulting to several system call invocations.

5. EXPERIMENTAL EVALUATION

5.1 Detection Effectiveness
We began our evaluation with the shellcodes contained in the

Metasploit Framework [2]. For Windows targets, Metasploitin-
cludes six basic payloads for downloading and executing a file,
spawning a shell, adding a user account, and so on, as well as nine
“stagers.” In contrast to an egg-hunt shellcode, which searches for
a second payload that has already been injected into the vulnera-
ble process along with the egg-hunt shellcode, a stager establishes
a channel between the attacking and the victim host for upload-
ing other second-stage payloads. We generated plain (i.e.,non-
encrypted) instances of the above 15 shellcodes, as well as an-
other 15 polymorphic instances of the same shellcodes usingthe
ShikataGaNai encoder. As shown in Fig. 5, both Gene and the
GetPC-based heuristic detected the polymorphic versions of the
shellcodes. However, the original (plain) versions do not exhibit
any self-decrypting behavior and are thus detected only by Gene.
For both plain and polymorphic versions, Gene identified theshell-
code using the PEB heuristic. The use of the PEB-based method
for locatingkernel32.dll is probably preferred in Metasploit
due to its reliability.

We continued our evaluation with 22 samples downloaded from
the shellcode repository of the Nepenthes Project [6]. Two of the
samples had a broken decryptor and could not be executed prop-
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Figure 5: Number of shellcodes detected by Gene and the ex-
isting GetPC-based heuristic [9, 23, 38] for different shellcode
sets. From a total of 83 different shellcode implementations,
Gene detected 78 samples (94%), compared to 34 (41%) for the
GetPC heuristic.

erly. By manually unpacking the two payloads and scanning them
with Gene, in both cases the shellcode was identified by the PEB
heuristic. From the rest 20 shellcodes, 16 were identified bythe
PEB heuristic, and one, named “Saalfeld,” by the SEH heuristic.
The Saalfeld shellcode is of particular interest due to the use of a
custom SEH handler although it is not an egg-hunt shellcode.The
SEH handler is registered for safely searching the address space of
the vulnerable process starting from address 0x77E00000, with the
aim to reliably detect the base address ofkernel32.dll. The
SEH heuristic identifies the proper registration of a customSEH
handler, so the shellcode was successfully identified.

The remaining three shellcodes were missed due to the use of
hard-coded addresses, e.g., the linear address ofkernel32.dll,
instead of reliable base address resolution. It would be trivial to
implement another detection heuristic similar to the PEB heuris-
tic based on commonly used hard-coded addresses in place of ad-
dressing based on theFS register to detect this kind of shellcode.
However, these samples correspond to quite old attacks and this
style naively implemented kind of shellcode is now encountered
rarely. From the 20 shellcodes, 15 are self-decrypting and are thus
detected by the GetPC-based heuristic.

Besides a few proof-of-concept implementations [5, 27] which
are identified correctly by Gene, we were not able to find any other
shellcode samples that locatekernel32.dll using backwards
searching, probably due to the simplicity of the alternative PEB-
based technique. In addition to the Saalfeld shellcode, theSEH
heuristic detected a proof-of-concept SEH-based egg-huntimple-
mentation [28], as well as the “omelet” shellcode [36], an egg-hunt
variation that locates and recombines multiple smaller eggs into
the whole original payload. The SEH heuristic was also effective
in detecting polymorphic shellcode that uses SEH-based GetPC
code [30], which is currently missed by existing payload execution
systems. The SYSCALL heuristic was tested with three different
egg-hunt shellcode implementations [27,28,37], which were identi-
fied correctly. In addition to these eight shellcode implementations,
we gathered more Windows shellcode samples from public repos-
itories [1, 3, 4], totaling 33 different samples. As shown inFig. 5,
the GetPC-based heuristic detected only four of the shellcodes that
use simple XOR encryption, while Gene detected all but two ofthe
samples, again due to the use of hard-coded addresses.

Finally, as an extra verification experiment, we tested Genewith
a large dataset of real polymorphic attacks captured in production
networks by Nemu [22]. Without using any self-decryption heuris-
tic, this data set allows us to test the effectiveness of Genein iden-



tifying the actual plain shellcode after the decryption process has
completed. Gene analyzed more than 1.2 million attacks, which af-
ter the decryption process resulted to 98,602 unique payloads, and
in all cases it identified the decrypted plain shellcode correctly. Not
surprisingly, all shellcodes were identified by the PEB heuristic.

5.2 Heuristic Robustness

5.2.1 False Positives Evaluation
We tested the robustness of the heuristics against false positives

using a large and diverse set of benign inputs. For our first experi-
ment, we captured the internal and external traffic in two research
and educational networks and kept the client-initiated stream of
each TCP flow, since currently Gene detects only attacks against
network services. Collectively, the data set consists of 15.5 million
streams, totaling more than 48GB of data. Depending on its size, a
stream can have from a few hundreds to many thousands of validin-
struction sequences which are all analyzed independently by Gene.
Thus, we consider as a false positive any benign input with atleast
one instruction sequence that matches one of the heuristics. When
scanning the 15.5 million streams of this data set with Gene,none
of the inputs matched any of the heuristics, resulting to zero false
positives.

Seeking more evidence for the resilience of the heuristics against
false positives, we continued the experiments with a much larger
set of artificially generated benign data. The purpose of this ex-
periment is to ensure that the random IA-32 machine code thatis
derived by interpreting arbitrary data as code does not match any of
the heuristics. For this purpose, we used a script that continuously
generates inputs of random binary and ASCII data that are subse-
quently scanned by Gene. The script generated 20 million 32KB-
inputs of each type, totaling more than 1.3TB of data. The rationale
behind using inputs consisting of random ASCII characters,in ad-
dition to random binary data, is to approximate the random code
found in network streams that use text-based protocols. Similarly
to the previous experiment, the false positive rate was again kept at
zero.

5.2.2 Heuristic Analysis
We repeated the experiments of the previous section with theaim

to explore in depth the behavior of the heuristics when operating on
benign data. This time we measured the number of inputs with at
least one instruction sequence that matched the first, the first two,
or all three conditions of a heuristic.

Figure 6(a) shows the percentage of network streams that matched
a given number of conditions. Out of 15.5 million inputs, only 82
(0.0005%) had an instruction sequence with a memory access to
FS:[0x30] through theFS register—satisfying the first condi-
tion of the PEB heuristic. There were no streams that matchedboth
the first and the second or all three conditions, which is a promis-
ing indication for the robustness of the PEB heuristic sinceall three
conditions must be true for flagging an input as shellcode. The
SYSCALL heuristic had a similar behavior, with just 51 of thein-
puts (0.0003%) exhibiting a single system call invocation,while
there were no streams with two or more system calls.

A much larger number of streams matched the first condition of
the BACKWD and SEH heuristics (8,620 and 41,063 streams, re-
spectively). In both heuristics, the first condition includes a mem-
ory access toFS:[0], which seems to appear more frequently
in random code compared to accesses atFS:[0x30]. A possi-
ble explanation for this is that the effective address computation in
the memory operand of some instruction can result to zero with a
higher probability compared to other values. For example, when
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Figure 7: The raw processing throughput of Gene for different
execution thresholds.

amov ebx,fs:[eax] instruction is executed, it is more likely
that eax will have been zeroed out, e.g., due to a previous two-
byte longxor eax,eax instruction, instead of being set to 0x30.
However, the percentage of inputs that matched both the firstand
the second condition is very low (0.0003% and 0.0004%, respec-
tively), and no inputs matched all three conditions.

As shown in Fig. 6(b), the overall behavior when operating on
random binary data is comparable to that for network streams, with
no inputs fully matching any of the heuristics. However, forASCII
data (Fig. 6(c)), although the first condition in the PEB, BACKWD,
and SEH heuristics matched in roughly 0.03% of the inputs, there
were no inputs matching any of the subsequent conditions. The op-
code for theint instruction falls outside the ASCII range, so no in-
put matched not even the first condition of the SYSCALL heuristic.
Overall, all heuristics seem to perform even better when operating
on ASCII data.

5.3 Runtime Performance
We evaluated the processing throughput of Gene using the real

network traffic traces presented in Sec. 5.2.1. Gene was running on
a system with a Xeon 1.86GHz processor and 2GB of RAM. Fig-
ure 7 shows the raw processing throughput of Gene for different ex-
ecution thresholds. The throughput is mainly affected by the num-
ber of CPU cycles spent on each input. As the execution threshold
increases, the achieved throughput decreases because moreemu-
lated instructions are executed per stream. A threshold in the order
of 8–16K instructions is sufficient for the detection of plain as well
as the most advanced polymorphic shellcodes [24]. For port 80
traffic, the random code due to ASCII data tends to form long in-
struction sequences that result to degraded performance compared
to binary data.

The overall runtime throughput is slightly lower compared to ex-
isting emulation-based detectors [23,24] due to the overhead added
by the virtual memory subsystem, as well as because Gene does
not use the zero-delimited chunk optimization used in thesesys-
tems [23]. Previous approaches skip the execution of zero-byte de-
limited regions smaller than 50 bytes, with the rationale that most
memory corruption vulnerabilities cannot be exploited if the attack
vector contains null bytes. However, the detection heuristics of
Gene can identify shellcode in other attack vectors that maycontain
null bytes, such as document files. Furthermore, our approach can
be applied in other domains [14,15], for example for the detection
of client-side attacks, in which the shellcode is usually encrypted
at a higher level using some script language, and thus can be fully
functional even if it contains null bytes.
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Figure 6: False positives evaluation with (a) 15.5 million real network streams (48GB total data size), (b) 20 million randomly
generated binary inputs (650GB), and (c) 20 million randomly generated ASCII inputs (650GB). For all heuristics, none of the
inputs matched all three conditions, resulting to zero false positives.

In practice, Gene can monitor high speed links when scanning
for server-side attacks because client-initiated traffic (requests) is
usually a fraction of the server-initiated traffic (responses). In our
preliminary deployments in production networks, Gene can scan
traffic of up to 100 Mbit/s without dropping packets. Furthermore,
Gene currently scans the whole input blindly, without any knowl-
edge about the actual network protocol used. Augmenting thein-
spection engine with protocol parsing would significantly improve
the scanning throughput by inspecting each protocol field sepa-
rately.

5.4 Real-world Deployment
We have deployed Gene in two University networks, where it

has been operational since 25 November 2009. In these two de-
ployments, Gene scans the traffic between the internal network and
the Internet, as well as the traffic between selected internal subnets.
As of 17 April 2010, Gene has detected 116,513 code injectionat-
tacks against internal and external hosts in these two networks. Al-
though we cannot know how many of the attacks actually infected
the targeted host, since many systems might had been previously
patched, in all cases the attacker was able to connect and send the
malicious input to the potentially vulnerable service. Almost one
third of the attacks were launched from internal PCs, probably al-
ready infected by malware. About 86% of the attacks targetedport
445, while there were also attacks against ports 80, 135, 139, and
2967.

In both deployments, Gene uses the four new heuristics pre-
sented in this paper, as well as the GetPC heuristic used in existing
polymorphic shellcode detectors, allowing us to compare the detec-
tion coverage of both approaches. The PEB heuristic matchedin all
of the attacks, supporting the fact that this is the most widely used
technique for resolvingkernel32.dll. However, the GetPC
heuristic was triggered only by 85,144 attacks, i.e., 31,369 attacks
(27%) did not use any form of self-decrypting shellcode. This
means that the ability of Gene to detect plain shellcode increased
the detection coverage for server-side code injection attacks by 37%
compared to existing polymorphic shellcode detection approaches.
By statically analyzing the identified machine code [22] we con-
firmed that in all cases it corresponds to actual shellcode, and so far
we have not encountered any false positives.

6. DISCUSSION
The runtime heuristics presented in this paper allows Gene to

detect a broad range of different shellcode classes. Of course, we
cannot exclude the possibility that there are other kinds ofWin-

dows shellcode, or alternative techniques to those on whichthe
heuristics are based, that may have missed our attention or have
not been publicly released yet. Nevertheless, the architecture of
Gene allows the parallel evaluation of multiple heuristics, and thus
the detection engine can be easily extended with more heuristics
for other shellcode types. For example, for our experimental eval-
uation, we have already implemented a fifth heuristic based on the
widely used GetPC code technique used in existing polymorphic
shellcode detectors [23,24,38]. In our future work, we planto im-
plement heuristics for the detection of the code required ina swarm
attack [13], Linux-specific plain shellcode, Windows shellcode that
uses hard-coded addresses, and so on.

A well known evasion technique against dynamic code analysis
systems is the use of very long loops that force the detector to spend
countless cycles until reaching the execution threshold, before any
signs of malicious behavior are shown [32]. Gene uses infinite loop
squashing [23] to reduce the number of inputs that reach the exe-
cution threshold. As stated in the literature [23,24], the percentage
of inputs with an instruction sequence that reaches the execution
threshold ranges between 3–6%, which we also verified duringthe
experiments of this paper. Since this is a small fraction of all in-
spected inputs, the endless loops in these sequences can potentially
be analyzed further at a second stage using other techniquessuch
as static analysis or symbolic execution [25].

Another inherent limitation of emulation-based shellcodedetec-
tion is the lack of an accurate view of the system’s state at the time
the injected code would run on the victim system. This information
includes the values of the CPU registers, as well as the complete ad-
dress space of the particular exploited process [10, 23]. Although
register values can sometimes be inferred [24], and Gene augments
the emulator with the complete address space of a typical Windows
process, which includes the most common system DLLs used by
Windows shellcode, the shellcode may perform memory accesses
to application-specific DLLs that are not known in advance, and
thus cannot be followed by the emulator [16]. Fortunately, when
protecting specific services, exact memory images of each service
can be used in place of the generic process image. However, as
already discussed, since the linear addresses of DLLs change quite
often across different systems, and due to the increasing adoption
of address space layout randomization and DLL rebasing, theuse
of absolute addressing results to less reliable shellcode.On the
other hand, when the emulator runs within the context of a pro-
tected application, as for example in the browser-embeddeddetec-
tor proposed by Egele et al. [14], the emulator can have full access
to the complete address space of the process.



Some of the operations matched by the heuristics, such as the
registration of a custom exception handler, might also be found in
legitimate executables. However, Gene is tailored for scanning in-
puts that otherwise should not contain executable IA-32 code. In
case of file uploads, Gene can easily be extended to identify and
extract executable files by looking for executables’ headers in the
inspected traffic, and then pass them on to a virus scanner.

7. RELATED WORK
Having realised the limitations of signature-based approaches in

the face of polymorphic code and targeted attacks, several research
efforts turned to static binary code analysis for identifying the pres-
ence of shellcode in network streams. One of the first such ap-
proaches by Toth and Kruegel uses code disassembly on network
streams to identify the NOP-sled that sometimes precedes the shell-
code [33]. Focusing on the shellcode itself, Anderson et al.[8]
propose to scan each input for multiple occurrences of instruction
sequences that end with anint 0x80 instruction for the identifi-
cation of Linux shellcode, with the rationale that the shellcode will
have to execute several system calls. Other detection methods that
use static code analysis aim to detect previously unknown polymor-
phic shellcode based on the identification of structural similarities
among different worm instances [17], control and data flow analy-
sis [12,34,35], or neural networks [20].

However, methods based on static analysis can be easily evaded
by malicious code that uses obfuscation methods such as indirect
jumps and self-modifications [23], which are widely used by cur-
rent malware packers and polymorphic shellcode engines. Incon-
trast, emulation-based detection can correctly handle even exten-
sively obfuscated malicious code [23]. Polychronakis et al. pro-
pose the use of code emulation for the detection of self decrypt-
ing shellcode at the network level [23, 24]. The detection algo-
rithm is based on the identification of the GetPC code and the
self-references that take place during the execution of theshell-
code. Zhang et al. propose to combine network-level emulation
with static and data flow analysis for improving the runtime perfor-
mance of the GetPC heuristic [38].
Libemu [9] is an open-source x86 emulation library tailored to

shellcode analysis and detection. Shellcode execution is identified
using the GetPC heuristic.Libemu can also emulate the execution
of Windows API calls by creating a minimalistic process environ-
ment that allows the user to install custom hooks to API functions.
Although the actual execution of API functions can be used asan
indication for the execution of shellcode, these actions will be ob-
served only afterkernel32.dll has been resolved and the re-
quired API functions have been located through the EDT or IAT.
Compared to thekernel32.dll resolution heuristics presented
in Section 3.1, this technique would require the execution of a much
larger number of instructions until the first API function iscalled,
and also the emulation of the actual functionality of each API call
thereafter. This means that the execution threshold of the detector
should be set much higher, resulting to degraded runtime perfor-
mance. For applications in which the emulator can spend more
cycles on each input, both heuristics can coexist and operate in par-
allel, e.g., along with all other heuristics used in Gene, offering
even better detection accuracy.

Besides the detection of code injection attacks against network
services [22], emulation-based shellcode detection usingthe GetPC
heuristic has been used for the detection of drive-by download at-
tacks and malicious web sites. Egele et al. [14] propose a technique
that uses a browser-embedded CPU emulator to identify javascript
string buffers that contain shellcode. Wepawet [15] is a service for
web-based malware detection that scans and identifies malicious

web pages based on various indications, including the presence of
shellcode. The CPU emulator in both projects is based onlibemu.

Shellcode analysis systems help analysts study and understand
the structure and functionality of a shellcode sample. Ma etal. [18]
used code emulation to extract the actual runtime instruction se-
quence of shellcode samples captured in the wild. Spector [11] uses
symbolic execution to extract the sequence of library callsmade by
the shellcode, along with their arguments, and at the end of the
execution generates a low-level execution trace. Yataglass [25] im-
proves the analysis capabilities of Spector by handling shellcode
that uses memory-scanning attacks.

8. CONCLUSION
The increasing professionalism of cyber criminals and the vast

number of malware variants and malicious websites make the need
for effective code injection attack detection a critical challenge.
To this end, shellcode detection using payload execution offers
important advantages, including generic detection without exploit
or vulnerability-specific signatures, practically zero false positives,
while it is effective against targeted attacks.

In this paper we present a comprehensive shellcode detection
method based on code emulation. Our approach expands the range
of malicious code types that can be detected by enabling the parallel
evaluation of multiple runtime heuristics that match inherent low-
level operations during the execution of different shellcode types.
The runtime heuristics presented in this work enable the effective
detection of plain and metamorphic shellcode, both of whichare
not identified by existing shellcode detectors. This is achieved re-
gardless of the use of self-modifying code or dynamic code gen-
eration, on which existing emulation-based polymorphic shellcode
detectors are exclusively based.

Our experimental evaluation shows that the proposed approach
can effectively detect a broad range of diverse shellcode types and
implementations, increasing significantly the detection coverage
compared to existing emulation-based detectors, while extensive
testing with a large set of benign data did not produce any false
positives. Gene, our prototype implementation of the proposed
technique for the detection of server-side code injection attacks de-
tected 116,513 attacks against production systems in a period of
almost five months without false positives.

Although Gene currently operates at the network level, the pro-
posed detection heuristics can be readily implemented in emulation-
based systems in other domains, including host-level or application-
specific detectors. As part of our future work, we plan to implement
more heuristics to cover the detection of less widely used shellcode
types, such as shellcode that uses hard-coded addresses, and ex-
plore the design of a description language that would expedite the
development of new heuristics.
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