
1

Examples of

Divide and Conquer

and the Master theorem

CS 4231, Fall 2012 Mihalis Yannakakis

Divide and Conquer

Reduce to any number of smaller instances:

1. Divide the given problem instance into
subproblems

2. Conquer the subproblems by solving them
recursively

3. Combine the solutions for the subproblems
to a solution for the original problem

2

Search Problem

• Input: A set of numbers a1,a2,…,an

and a number x

• Question: Is x one of the numbers ai in the
given set?

If sorted array A of numbers a1,a2,…,an

then Binary Search

Binary Search

• Compare x to the middle element of the
array [2]A n

- If [2] then done

- If [2] then

recursively Search A[1,..., 2 1]

- If [2] then

recursively Search A[2 1,...,]

x A n

x A n

n

x A n

n n

?

3

Binary Search Analysis

(2) (1) for 1
()

(1) for 1

T n n
T n

n

2log log 1 01, 2, () (1), 1

Case 2 () (log)

b aa b f n n n n

T n n

Merge Sort

1. Divide: Divide the given n-element sequence to
be sorted into two sequences of length n/2

2. Conquer: Sort recursively the two subsequences
using Merge Sort

3. Combine: Merge the two sorted subsequences
to produce the sorted answer

4

Merge

• Input: Sorted arrays K[1..n1], L[1..n2]
• Output: Merged sorted array M[1.. n1+n2]

}
} 1j j L[j], M[t] {
} 1i i K[i], M[t] {

) L[j]) K[i]or j (and (i {
 to1 t

1j 1,i

21

21

else
then

if
for

nn
nn

Linear Time Complexity: (n1 + n2)

What if inputs, output in same array?

• Input: Sorted array segments

A[1..n1], A[n1+1.. n1+n2]
• Output: Merged sorted array A[1.. n1+n2]

Copy A[1..n1] into new array K[1..n1]

Copy A[n1+1…n1+n2] into L[1..n2]

Merge K[1..n1] and L[1..n2] into A[1.. n1+n2]

Linear Time Complexity: (n1 + n2)

5

Merge-Sort

Merge-Sort A[1…n]

If 1 then

 1. Recursively merge-sort [1 /2]

and [/2 1]

 2. Merge the two sorted subsequences

n

A n

A n n

Analysis of Merge-Sort

)(nT

1for)1(

1for)()2/()2/(

n

nnnTnT

Assume for simplicity that n is a power of 2

 () 2 (/ 2)T n T n cn

2log log 22, 2, () (),

Case 2 () (log)

b aa b f n n n n n

T n n n

6

Maximum Sum Subarray Problem
• Input: Array A[1…n] of integers (positive and negative)

• Problem: Compute a subarray A[i*…j*] with maximum sum

i.e., if s(i,j) denotes the sum of the elements of a subarray
A[i…j],

We want to compute indices i*j* such that

Example: 3 -4 5 -2 -2 6 -3 5 -3 2

(,) []
j

k i

s i j A k

(*, *) max{ (,) |1 }s i j s i j i j n

max sum = 9

Brute force solution
• Compute the sum of every subarray and pick the maximum

Try every pair of indices i,j with 1 ij n , and for each one
compute

• Time complexity (n3)

• With a little more care, can improve to (n2) :

can compute the sums of all the subarrays in time (n2).

(,) []
j

k i

s i j A k

7

Brute force solution - improved
• With a little more care, can improve to (n2):

• Can compute the sums for all subarrays with same left end
in O(n) time compute the sums of all the subarrays
(there are n(n-1)/2 +n subarrays) in time (n2)

for i =1 to n

{ s(i,i)=A[i]

for j=i+1 to n

s(i,j) = s(i,j-1)+A[i,j]

}

Divide and Conquer

• A subarray A[i*…j*] with maximum sum is

– Either contained entirely in the first half , i.e. j* n/2

– Or contained entirely in the right half , i.e. i* n/2

– Or overlaps both halfs: i* n/2 j*

• We can compute the best subarray of the first two types
with recursive calls on the left and right half.

• The best subarray of the third type consists of the best
subarray that ends at n/2 and the best subarray that
starts at n/2. We can compute these in O(n) time.

n/2

8

Divide and Conquer analysis

• Recurrence: T(n) = 2T(n/2) + (n)

• Solution: T(n) = (n logn)

• It is possible to do better: can compute the maximum sum
subarray in (n) time.

HW Exercise. Not divide and conquer

For a nice paper on this problem see

J. Bentley, Programming Pearls, Addison-Wesley,

chapter 8 (Algorithm Design Techniques)

Also in Communications of the ACM, 27(9), 1984.

Multiplication of Big integers
• Given integers A, B with n bits each, can + , - in O(n) time.
• Ordinary multiplication: n² time (n additions)

• D&C: partition into high n/2 and low n/2 bits

A

B

Ah Al

Bh Bl

 / 22n
h lA A A

 / 22n
h lB B B

/ 2 / 2

/ 2 / 2

(2) (2)

2 2 2

n n
h l h l

n n n
h h h l l h l l

A B A A B B

A B A B A B A B

9

Multiplication of Big integers

/ 2 / 2

/ 2 / 2

(2) (2)

2 2 2

n n
h l h l

n n n
h h h l l h l l

A B A A B B

A B A B A B A B

Recurrence: T(n) = 4T(n/2) + cn

(last term for additions and shifts)

Solution: T(n) = O(n²)

4 multiplications of n/2-bit numbers: AhBh, AhBl, AlBh, AlBl ,

additions and shifts.

Note: multiplications by powers of 2 are just shifts

Multiplication of Big integers – Karatsuba’60

/ 2 / 2

/ 2 / 2

(2) (2)

2 2 2

n n
h l h l

n n n
h h h l l h l l

A B A A B B

A B A B A B A B

 / 2

()()

2 [()()] 2

h l l h h l h h l l l h

n n
h h h l h l h h l l l l

A A B B A B A B A B A B

A B A B A A B B A B A B A B

Recurrence: T(n) = 3T(n/2) + cn

Solution: 2log 3 1.585()T n n n

3 multiplications of n/2-bit numbers:

AhBh, AlBl, (Ah+Al)(Bh +Bl)

+ additions,subtractions and shifts.

10

Multiplication of Big integers – Karatsuba’60

Recursive Algorithm MULT(A,B)

Write A = Ah2n/2 +Al and B = Bh2n/2+Bl

Compute a = Ah + Al and b = Bh +Bl

C = MULT(a,b)

Dh = MULT(Ah , Bh)

Dl = MULT(Al , Bl)

Return / 22 [] 2n n
h h l lD C D D D

Time: 2log 3 1.585()T n n n

FFT-based method: n logn log logn

Matrix Multiplication

Input

Output:

: Matrices [], [], , 1,...,

[]

ij ij

ij

A a B b i j n

C c A B

1

n

ij ik kj
k

c a b

=

C BA

ijc row i

j

i

col.j

11

Standard Matrix Multiplication algorithm

for i = 1 to n

for j = 1 to n

{ cij = 0

for k = 1 to n

cij = cij + aik bkj

}

3Time Complexity: ()n

Divide and Conquer

Partition matrices A,B,C into 4 n/2 x n/2 submatrices

8 recursive multiplications of
n/2 x n/2 matrices

4 additions (direct – no recursion)

 C11 C12 = A11 A12 B11 B12

 C21 C22 = A21 A22 B21 B22

C11 = A11 B11 + A12 B21

C12 = A11B12 + A12 B22

C21 = A21 B11 + A22 B21

C22 = A21 B12 + A22 B22

12

log2 3

3

2

8, 2, () (),

Case 1 ()

() 8 (/

()

2) ()

b a

T n T n

a b f n n n n

T n n

n

Same as standard MM algorithm

• P = (A11 + A22)(B11 + B22)
Q = (A21 + A22)B11

R = A11(B12 - B22)
S = A22(B21 - B11)
T = (A11 + A12)B22

U = (A21 - A11)(B11 + B12)
V = (A12 - A22)(B21 + B22).

• C11 = P + S - T + V
C12 = R + T
C21 = Q + S
C22 = P + R - Q + U

Strassen’s algorithm

13

Strassen’s algorithm
• Can multiply 2x2 matrices with 7 multiplications,

and 18 additions and subtractions. The method
does not assume commutativity of multiplication

• Method applies to multiplication of 2x2 block
matrices.

• Can be used in divide and conquer scheme with 7
recursive multiplications of n/2 x n/2 submatrices.

2() 7 (/ 2) ()T n T n n

Strassen’s Algorithm

2() 7 (/ 2) ()T n n n

2log log 72 2.8

l

1

og7

7, 2, () (),

Case 1 () ()

b a

T

a b f n n n

n

n

n

n

Best current (theoretical) result: 2.373()n

