Examples of Divide and Conquer and the Master theorem

CS 4231, Fall 2012 Mihalis Yannakakis

Divide and Conquer

Reduce to any number of smaller instances:

1. Divide the given problem instance into subproblems
2. Conquer the subproblems by solving them recursively
3. Combine the solutions for the subproblems to a solution for the original problem

Search Problem

- Input: A set of numbers $a_{1}, a_{2}, \ldots, a_{n}$ and a number x
- Question: Is x one of the numbers a_{i} in the given set?

If sorted array A of numbers $a_{1}, a_{2}, \ldots, a_{n}$ then Binary Search

Binary Search

- Compare x to the middle element of the array $A[\lceil n / 2\rceil]$

- If $x=A[[n / 2]]$ then done
- If $x<A[\lceil n / 2\rceil$ then
recursively Search A[1,..., $\lceil n / 2\rceil-1]$
- If $x>A[[n / 2]$ then
recursively Search A[[n/2]+1,..,n]

Binary Search Analysis

$$
T(n)=\left\{\begin{array}{cc}
T(n / 2)+\Theta(1) & \text { for } n>1 \\
\Theta(1) & \text { for } n=1
\end{array}\right.
$$

$a=1, b=2, f(n)=\Theta(1), n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=1$
Case $2 \Rightarrow T(n)=\Theta(\log n)$

Merge Sort

1. Divide: Divide the given n-element sequence to be sorted into two sequences of length $\mathrm{n} / 2$
2. Conquer: Sort recursively the two subsequences using Merge Sort
3. Combine: Merge the two sorted subsequences to produce the sorted answer

Merge

- Input: Sorted arrays K[1.. n_{1}], L[1.. $\left.n_{2}\right]$
- Output: Merged sorted array M[1.. $\left.n_{1}+n_{2}\right]$

$$
\begin{aligned}
& \mathrm{i}=1, \mathrm{j}=1 \\
& \text { for } \mathrm{t}=1 \text { to } n_{1}+n_{2} \\
& \left\{\begin{array}{l}
\text { if }\left(\mathrm{i} \leq n_{1} \text { and }\left(\mathrm{j}>n_{2} \text { or } \mathrm{K}[\mathrm{i}]<\mathrm{L}[\mathrm{j}]\right)\right) \\
\quad \\
\quad \text { then }\{\mathrm{M}[\mathrm{t}]=\mathrm{K}[\mathrm{i}], \mathrm{i}=\mathrm{i}+1\} \\
\text { else }\{\mathrm{M}[\mathrm{t}]=\mathrm{L}[\mathrm{j}], \mathrm{j}=\mathrm{j}+1\}
\end{array}\right. \\
& \} \quad
\end{aligned}
$$

Linear Time Complexity: $\Theta\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)$

What if inputs, output in same array?

- Input: Sorted array segments
$\mathrm{A}\left[1 . . n_{1}\right], \mathrm{A}\left[n_{1}+1 . . n_{1+} n_{2}\right]$
- Output: Merged sorted array $A\left[1 . . n_{1}+n_{2}\right]$

Copy A[1..n n_{1}] into new array $\mathrm{K}\left[1 . . n_{1}\right]$
Copy A[$\left.n_{1}+1 . . . n_{1}+n_{2}\right]$ into $\mathrm{L}\left[1 . . n_{2}\right]$
Merge $\mathrm{K}\left[1 . . n_{1}\right]$ and $\mathrm{L}\left[1 . . n_{2}\right]$ into $\mathrm{A}\left[1 . . n_{1}+n_{2}\right]$
Linear Time Complexity: $\Theta\left(n_{1}+n_{2}\right)$

Merge-Sort

Merge-Sort A[1...n]
If $n>1$ then

1. Recursively merge-sort $A[1 \cdots\lfloor n / 2\rfloor]$ and $A[\lfloor n / 2\rfloor+1 \cdots n]$
2. Merge the two sorted subsequences

Analysis of Merge-Sort

$$
T(n)=\left\{\begin{array}{cc}
T(n / 2\rfloor)+T([n / 2])+\Theta(n) & \text { for } n>1 \\
\Theta(1) & \text { for } n=1
\end{array}\right.
$$

Assume for simplicity that n is a power of 2

$$
T(n)=2 T(n / 2)+c n
$$

$a=2, b=2, f(n)=\Theta(n), n^{\log _{b} a}=n^{\log _{2} 2}=n$
Case $2 \Rightarrow T(n)=\Theta(n \log n)$

Maximum Sum Subarray Problem

- Input: Array $\mathrm{A}[1 . . \mathrm{n}]$ of integers (positive and negative)
- Problem: Compute a subarray $A\left[i^{*} \ldots j^{*}\right]$ with maximum sum i.e., if $s(i, j)$ denotes the sum of the elements of a subarray $\mathrm{A}[i \ldots \mathrm{j}], \quad s(i, j)=\sum_{k=i}^{j} A[k]$
We want to compute indices $i^{*} \leq j *$ such that

$$
s\left(i^{*}, j^{*}\right)=\max \{s(i, j) \mid 1 \leq i \leq j \leq n\}
$$

Example: 3 -4 5 -2 $-2 \begin{array}{llllll} & 6 & -3 & 5 & -3 & 2\end{array}$

$$
\max \text { sum }=9
$$

Brute force solution

- Compute the sum of every subarray and pick the maximum Try every pair of indices i, j with $1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n}$, and for each one compute $s(i, j)=\sum_{k=i}^{j} A[k]$
- Time complexity $\Theta\left(n^{3}\right)$
- With a little more care, can improve to $\Theta\left(n^{2}\right)$: can compute the sums of all the subarrays in time $\Theta\left(n^{2}\right)$.

Brute force solution - improved

- With a little more care, can improve to $\Theta\left(\mathrm{n}^{2}\right)$:
- Can compute the sums for all subarrays with same left end in $\mathrm{O}(\mathrm{n})$ time \Rightarrow compute the sums of all the subarrays (there are $n(n-1) / 2+n$ subarrays) in time $O\left(n^{2}\right)$

```
for i=1 to n
    { s(i,i)=A[i]
        for j=i+1 to n
            s(i,j) = s(i,j-1)+A[i,j]
    }
```


Divide and Conquer

- A subarray A[i*...j*] with maximum sum is
- Either contained entirely in the first half , i.e. $\mathrm{j}^{*} \leq \mathrm{n} / 2$
- Or contained entirely in the right half, i.e. $i^{*} \geq \mathrm{n} / 2$
- Or overlaps both halfs: $\mathrm{i}^{*} \leq \mathrm{n} / 2 \leq \mathrm{j}^{*}$
- We can compute the best subarray of the first two types with recursive calls on the left and right half.
- The best subarray of the third type consists of the best subarray that ends at $\mathrm{n} / 2$ and the best subarray that starts at $\mathrm{n} / 2$. We can compute these in $\mathrm{O}(\mathrm{n})$ time.

Divide and Conquer analysis

- Recurrence: $T(n)=2 T(n / 2)+\Theta(n)$
- Solution: $T(n)=\Theta$ (n logn $)$
- It is possible to do better: can compute the maximum sum subarray in $\Theta(\mathrm{n})$ time.
HW Exercise. Not divide and conquer

For a nice paper on this problem see
J. Bentley, Programming Pearls, Addison-Wesley, chapter 8 (Algorithm Design Techniques)
Also in Communications of the ACM, 27(9), 1984.

Multiplication of Big integers

- Given integers A, B with n bits each, can + , - in O(n) time.
- Ordinary multiplication: n^{2} time (n additions)
- D\&C: partition into high $\mathrm{n} / 2$ and low $\mathrm{n} / 2$ bits

A

$$
A=A_{n} \cdot 2^{n / 2}+A_{l}
$$

B

$$
B=B_{n} \cdot 2^{n / 2}+B_{l}
$$

$$
\begin{aligned}
& A \cdot B=\left(A_{h} \cdot 2^{n / 2}+A_{l}\right) \cdot\left(B_{h} \cdot 2^{n / 2}+B_{l}\right) \\
& =A_{h} B_{h} \cdot 2^{n}+A_{h} B_{l} \cdot 2^{n / 2}+A_{l} B_{h} 2^{n / 2}+A_{l} B_{l}
\end{aligned}
$$

Multiplication of Big integers

$$
\begin{aligned}
& A \cdot B=\left(A_{h} \cdot 2^{n / 2}+A_{l}\right) \cdot\left(B_{h} \cdot 2^{n / 2}+B_{l}\right) \\
& =A_{h} B_{h} \cdot 2^{n}+A_{h} B_{l} \cdot 2^{n / 2}+A_{l} B_{h} 2^{n / 2}+A_{l} B_{l}
\end{aligned}
$$

4 multiplications of $n / 2$-bit numbers: $A_{h} B h, A h B I, A \not B h, A I B I$, additions and shifts.

Note: multiplications by powers of 2 are just shifts

Recurrence: $T(n)=4 T(n / 2)+c n$
(last term for additions and shifts)

Solution: $T(n)=O\left(n^{2}\right)$

Multiplication of Big integers - Karatsuba'60

$A \cdot B=\left(A_{h} \cdot 2^{n / 2}+A_{l}\right) \cdot\left(B_{h} \cdot 2^{n / 2}+B_{l}\right)$
$=A_{h} B_{h} \cdot 2^{n}+A_{h} B_{l} \cdot 2^{n / 2}+A_{l} B_{h} 2^{n / 2}+A_{l} B_{l}$
$\left(A_{h}+A_{l}\right)\left(B_{l}+B_{h}\right)=A_{h} B_{l}+A_{h} B_{h}+A_{l} B_{l}+A_{l} B_{h} \Rightarrow$
$A \cdot B=A_{h} B_{h} \cdot 2^{n}+\left[\left(A_{h}+A_{l}\right)\left(B_{h}+B_{l}\right)-A_{h} B_{h}-A_{l} B_{l}\right] \cdot 2^{n / 2}+A_{l} B_{l}$
3 multiplications of $\mathrm{n} / 2$-bit numbers:
$A_{h} B h, A I B I,(A h+A I)(B h+B I)$

+ additions,subtractions and shifts.
Recurrence: $T(n)=3 T(n / 2)+c n$
Solution: $\quad T(n)=n^{\log _{2} 3}=n^{1.585}$

Multiplication of Big integers - Karatsuba'60
Recursive Algorithm MULT(A,B)
Write $A=A_{h} 2^{n / 2}+A_{1}$ and $B=B_{h} 2^{n / 2}+B_{1}$
Compute $\mathrm{a}=\mathrm{A}_{\mathrm{h}}+\mathrm{A}_{\mathrm{t}}$ and $\mathrm{b}=\mathrm{B}_{\mathrm{h}}+\mathrm{B}_{\mathrm{r}}$
C = MULT (a, b)
$D_{h}=\operatorname{MULT}\left(A_{h}, B_{h}\right)$
$D_{1}=\operatorname{MULT}\left(A_{1}, B_{1}\right)$
Return $D_{h} \cdot 2^{n}+\left[C-D_{h}-D_{l}\right] \cdot 2^{n / 2}+D_{l}$

Time: $\quad T(n)=n^{\log _{2} 3}=n^{1.585}$

FFT-based method: n logn log logn

Matrix Multiplication

Input: Matrices $A=\left[a_{i j}\right], B=\left[b_{i j}\right], i, j=1, \ldots, n$
Output: $C=\left[c_{i j}\right]=A \cdot B$

$$
\begin{aligned}
& c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
\end{aligned}
$$

Standard Matrix Multiplication algorithm

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \\
& \qquad \begin{array}{l}
\text { for } j=1 \text { to } n \\
\left\{c_{i j}=0\right. \\
\\
\quad \text { for } k=1 \text { to } n \\
\quad c_{i j}=c_{i j}+a_{i k} b_{k j} \\
\} \quad
\end{array}
\end{aligned}
$$

Time Complexity: $\Theta\left(n^{3}\right)$

Divide and Conquer

Partition matrices A, B, C into $4 n / 2 \times n / 2$ submatrices

$$
\left[\begin{array}{ll}
\mathrm{C}_{11} & \mathrm{C}_{12} \\
\mathrm{C}_{21} & \mathrm{C}_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{B}_{11} & \mathrm{~B}_{12} \\
\mathrm{~B}_{21} & \mathrm{~B}_{22}
\end{array}\right]
$$

$C_{11}=A_{11} B_{11}+A_{12} B_{21}$
$\mathrm{C}_{12}=\mathrm{A}_{11} \mathrm{~B}_{12}+\mathrm{A}_{12} \mathrm{~B}_{22}$
$C_{21}=A_{21} B_{11}+A_{22} B_{21}$
$\mathrm{C}_{22}=\mathrm{A}_{21} \mathrm{~B}_{12}+\mathrm{A}_{22} \mathrm{~B}_{22}$
8 recursive multiplications of $n / 2 \times n / 2$ matrices

4 additions (direct - no recursion)
$T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$
$a=8, b=2, f(n)=\Theta\left(n^{2}\right), n^{\log _{5} a}=n^{3}$
Case $1 \Rightarrow T(n)=\Theta\left(n^{3}\right)$
Same as standard MM algorithm

Strassen's algorithm

- $P=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right)$
$\mathrm{Q}=\left(\mathrm{A}_{21}+\mathrm{A}_{22}\right) \mathrm{B}_{11}$
$\mathrm{R}=\mathrm{A}_{11}\left(\mathrm{~B}_{12}-\mathrm{B}_{22}\right)$
$S=A_{22}\left(B_{21}-B_{11}\right)$
$T=\left(A_{11}+A_{12}\right) B_{22}$
$U=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right)$
$V=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)$.
- $\mathrm{C}_{11}=\mathrm{P}+\mathrm{S}-\mathrm{T}+\mathrm{V}$
$\mathrm{C}_{12}=\mathrm{R}+\mathrm{T}$
$\mathrm{C}_{21}=\mathrm{Q}+\mathrm{S}$
$\mathrm{C}_{22}=\mathrm{P}+\mathrm{R}-\mathrm{Q}+\mathrm{U}$

Strassen's algorithm

- Can multiply 2×2 matrices with 7 multiplications, and 18 additions and subtractions. The method does not assume commutativity of multiplication
- Method applies to multiplication of 2×2 block matrices.
- Can be used in divide and conquer scheme with 7 recursive multiplications of $n / 2 \times n / 2$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Strassen's Algorithm

$$
\begin{aligned}
& \quad T(n)=7(n / 2)+\Theta\left(n^{2}\right) \\
& a=7, b=2, f(n)=\Theta\left(n^{2}\right), n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \\
& \text { Case 1 } \Rightarrow T(n)=\Theta\left(n^{\log ^{7}}\right)
\end{aligned}
$$

Best current (theoretical) result: $\Theta\left(n^{2.373}\right)$

