Examples of
Divide and Conguer

and the Master theorem

CS 4231, Fall 2012 Mihalis Yannakakis

Divide and Conquer

Reduce to any number of smaller instances:

1. Divide the given problem instance into
subproblems

2. Conguer the subproblems by solving them
recursively

3. Combine the solutions for the subproblems
to a solution for the original problem

Search Problem

 Input: A set of numbers ai,az,...,an

and a number x

e Question: Is x one of the numbers ai in the
given set?

If sorted array A of numbers ai,az,...,an
then Binary Search

Binary Search

« Compare x to the middle element of the
array Al n/2]] |

?

- If x=A] n/2]] then done
- If x <A n/2]l then

recursively Search A[l,...,[n/2|-1]
- If x> A n/2] then

recursively Search A[[n/2]+1,...,n]

Binary Search Analysis

T(n/2)+0O() forn>1

T(n)={ 00 forn=1

a=1b=2f(n)=0(1), N°** =n"%*=n° =1
Case2 = T(n)=06(logn)

Merge Sort

Divide: Divide the given n-element sequence to
be sorted into two sequences of length n/2

Conquer: Sort recursively the two subsequences
using Merge Sort

Combine: Merge the two sorted subsequences
to produce the sorted answer

Merge

 Input: Sorted arrays K[1..n1], L[1..1]
» Output: Merged sorted array M[1.. n1+]

i=1 j=1

for t =1ton, +n,

{if(i<ngand (j>n, or K[i] <L[]))
then {M[t] =K]Ji], i=i+1}
else { M[t] =L[j], j=j+1}

Linear Time Complexity: ®(n1 +n2)

What if inputs, output in same array?

* Input: Sorted array segments
A[l..ni1], A[ni+1.. ni+n2
e Output: Merged sorted array A[1.. ni+/22)

Copy A[1..n1] into new array K[1..ni]
Copy A[n1+1...n1+n2] into L[1..nz]
Merge K[1..ni] and L[1..nz] into A[1.. n1+7]

Linear Time Complexity: ®(n1 +n2)

Merge-Sort

Merge-Sort A[1...n]

Ifn > 1then
1. Recursively merge-sort A[1---|n/2]

and A[|n/2|+1---n]
2. Merge the two sorted subsequences

Analysis of Merge-Sort

T(n/2) +T(n/2)) +©MN) forn>1

)= &) forn=1

Assume for simplicity that n is a power of 2
T(n)=2T(n/2)+cn

a=2b=2 f(n)=6(n), n°** =n"%*=n
Case2 = T(n)=06(nlogn)

Maximum Sum Subarray Problem

e Input: Array A[1...n] of integers (positive and negative)
* Problem: Compute a subarray A[i*...j*] with maximum sum
i.e., if s(i,j) denotes }he sum of the elements of a subarray

Al s(i, j) = 2, AlK]

We want to compute indices i*<j* such that
s(i*, j*) = max{s(i, j)|1<i< j<n}

Example: 3 -4 5 -2 -26 -35-32
L J

max sum =9

Brute force solution

» Compute the sum of every subarray and pick the maximum
Try every pair of indices i,j with 1 <i<j < n, and for each one
J

compute (i, j) :Z ALK]

» Time complexity ©(n3)

« With a little more care, can improve to ©(n?) :
can compute the sums of all the subarrays in time ©(n?).

Brute force solution - improved

» With a little more care, can improve to ®(n?):

» Can compute the sums for all subarrays with same left end
in O(n) time = compute the sums of all the subarrays
(there are n(n-1)/2 +n subarrays) in time O(n?)

fori=1ton
{ s(i,)=A[i]
forj=i+1lton
s(i.) = s(i.-1)+Al[i]]

Divide and Conquer

* A subarray A[i*...j*] with maximum sum is
— Either contained entirely in the first half , i.e. j* <n/2
— Or contained entirely in the right half , i.e. i* > n/2
— Or overlaps both halfs: i* <n/2 <j*

* We can compute the best subarray of the first two types
with recursive calls on the left and right half.

* The best subarray of the third type consists of the best
subarray that ends at n/2 and the best subarray that
starts at n/2. We can compute these in O(n) time.

\ n/2

Divide and Conguer analysis

Recurrence: T(n) = 2T(n/2) + ®(n)
Solution: T(n) = ®(n logn)

» Itis possible to do better: can compute the maximum sum
subarray in ®(n) time.
HW Exercise. Not divide and conquer

For a nice paper on this problem see

J. Bentley, Programming Pearls, Addison-Wesley,
chapter 8 (Algorithm Design Techniques)

Also in Communications of the ACM, 27(9), 1984.

Multiplication of Big integers

* Given integers A, B with n bits each, can +, - in O(n) time.
» Ordinary multiplication: n2 time (n additions)

» D&C: partition into high n/2 and low n/2 bits

A An Al A=A 2"+ A

B Bh Bi B=B,-2"?+B,

A-B=(A,-2"*+A)(B,-2"*+B)
=AB, - 2"+AB,-2"*+AB, 2"+ AB,

Multiplication of Big integers
A-B=(A,-2"*+A)-(B,-2"%+B)
=AB, -2"+AB, 2" +AB, 2"+ AB,

4 multiplications of n/2-bit numbers: A, Bh, AhBI, AiBh, AIBI,
additions and shifts.

Note: multiplications by powers of 2 are just shifts

Recurrence: T(n) = 4T(n/2) + cn

(last term for additions and shifts)

Solution: T(n) = O(n?)

Multiplication of Big integers — Karatsuba’'60
A-B=(A -2""+A)-(B,-2"?+B))
=AB, - 2"+AB,-2"*+AB, 2"+ AB,
(A,+A)B +B,)=AB +AB,+AB +AB, =
A-B=AB, 2" +[(A,+A)B,+B)-AB, -AB]-2"? + AB,
3 multiplications of n/2-bit numbers:
A,Bh, ABI, (An+Al)(Bh +Bi)

+ additions,subtractions and shifts.

Recurrence: T(n) = 3T(n/2) + cn

Solution: T(n) =n"%3 =n'%%

Multiplication of Big integers — Karatsuba’'60

Recursive Algorithm MULT(A,B)
Write A = An2"2+A1 and B = Bn2"2+B;
Compute a=An+ A and b = Bn+Bi
C = MULT(a,b)

Dh= MULT(An, Bn)

Di= MULT(AI, Bi)

Return D, -2"+[C-D, -D]-2"?+D,

Time: T(n)=n"%® = 5

FFT-based method: n logn log logn

Matrix Multiplication

Input: Matrices A=[g;],B=[b;], i,j=1...,n
Output: C=[c;]=A-B
C | A B

col.j

10

Standard Matrix Multiplication algorithm

fori=1ton
forj=1ton
{Cij=0
fork=1ton

Cij = Cij + aik bkj

}
Time Complexity: ®(n®)

Divide and Conquer

Partition matrices A,B,C into 4 n/2 x n/2 submatrices
Cu Co|=|Au A B11 =
Ca Co =] Aun Ax 1 B

Cp =An By +A;LBy

C, =AuB, TA, By,

C,y =A, By +A, By

Co, =A; B, tA,, By,

8 recursive multiplications of

n/2 x n/2 matrices
4 additions (direct — no recursion)

11

T(n)=8T(n/2)+06(n%)
a=8,b=2 f(n)=0(n?), n°%? =n?
Casel = T(n)=0(n%)

Same as standard MM algorithm

Strassen’s algorithm

= (A + Ap)(By; +Byy)
(AZl + A22)Bll
A11(Blz B Bzz)
= Ap(Byy - Byy)
(A11 + AlZ)BZZ
(AZl B All)(Bll + Blz)
(A12 B Azz)(le + Bzz)-
e C;=P+S-T+V
C,L=R+T
C,,=Q+S
C,=P+R-Q+U

<C-H-wWxUTVO T

Strassen’s algorithm

« Can multiply 2x2 matrices with 7 multiplications,
and 18 additions and subtractions. The method
does not assume commutativity of multiplication

* Method applies to multiplication of 2x2 block
matrices.

* Can be used in divide and conquer scheme with 7
recursive multiplications of n/2 x n/2 submatrices.

T(N)=7T(n/2)+6(n?)

Strassen’s Algorithm

T(N)=7(n/2)+06(n?%)
a=7,b=2 f(n) — @(nZ)’ n'°%2a _ nl0%7 28l

Casel = T(n)=06(n"?)

Best current (theoretical) result: @(n*°")

13

