
1

Analysis of Algorithms and
Asymptotics

CS 4231, Fall 2012 Mihalis Yannakakis

Analysis of Algorithms

• Correctness:
The algorithm terminates with the correct answer

• Performance
– Mainly Running time (Time complexity)
– Use of other resources (space, …)

• Experimental vs. analytical evaluation of
algorithms

• Other issues: simplicity, extensibility, …

2

Time Complexity

• Running time depends on the input

• Parameterize by the size n of the input, and
express complexity as function T(n)

Worst Case: maximum time over all inputs of
size n

Average Case: expected time, assuming a
probability distribution over inputs of size n

Analysis

Cost of each operation depends on machine

Simplification 1: machine-independent analysis:
assume all operations unit cost →

can add the costs of the different steps

3

Asymptotic Analysis

Simplification 2: Look at growth of T(n) as

n goes to infinity; focus on dominant term

- Example: 3n² +7n +10

Dominant term: 3n²

• Simplification 3: Look at the rate (order) of
growth: suppress the constant coefficient

- Example: Quadratic complexity n²)

Benefits of asymptotic analysis

• Machine independence – intrinsic
complexity of algorithms

• Abstraction from details, concentrate on
dominant factors

• A linear-time algorithm becomes faster
than a quadratic algorithm eventually (for
large enough n)

4

But .. caution:

• Eventually may be too late, if the constant of the
linear-time algorithm that we ignored is huge,

eg.

• Some operations may be much more costly than
others, and we may want to count them separately
(for example, comparisons in sorting of complex
objects)

929 10for 10 nnn

Asymptotic Notations:
Theta, Big-Oh, Omega

Theta:

))(()(iteusually wr We :Convention

})()()(

:s.t.and0, constants|)({))((

21

0021

ngnf

ngcnfngc

nnnccnfng

f(n)

)(1 ngc

)(2 ngc

Caution: = here denotes membership, not equality

0n n

5

Asymptotic Notations:
Theta, Big-Oh, Omega

Big-Oh:

(Order)

))(()(iteusually wr We :Convention

})()(0

:s.t.and0constant |)({))((00

ngOnf

ngcnf

nnncnfngO

f(n)
cg(n)

Example:

)(5 2nOn

but not vice-versa

0n n

Asymptotic Notations:
Theta, Big-Oh, Omega

Omega:

))(()(iteusually wr We :Convention

})()(

:s.t.and0constant |)({))((00

ngnf

nfngc

nnncnfng

f(n)

c g(n)

Example:

)(5 2 nn

but not vice-versa

0n n

6

Asymptotic Notations:
little-oh, little-omega

little-oh:

})()(0

:s.t.0constant |)({))((

})()(0

:s.t.0constant |)({))((

00

00

nfngc

nnncnfng

ngcnf

nnncnfngo

little-omega:

f(n)=o(g(n) means that for large n, function f is smaller
than any constant fraction of g

f(n)=(g(n) means that for large n, function f is larger than
any constant multiple of g, i.e., g=o(f(n))

Example:)(5),(5 22 nnnon

Asymptotic Notations Summary

Notation Ratio f(n)/g(n) for large n

0)(/)())(()(

)(/)())(()(

)(/)())(()(

)(/)())(()(

)(/)())(()(

21

ngnfngonf

cngnfngOnf

cngnfcngnf

ngnfcngnf

ngnfngnf

7

Example: Polynomials

• Polynomial:

)(8345 :Ex

)(

0 where,

323

01
1

1

nnnn

n

aananana
d

d
d

d
d

d

Proof: ddd
d

dd aa
n
a

n
a

a
n

nf 00
)(01

)(:Ex

)()0(
3.32.3 non

nondc dc

Proof: 0
1 cdd

c

nn
n

Example: logarithms

• log10 n = log2 n)

• Proof: log10n = log2n / log210 = log2n / 3.32

• Same for any change of logarithm from one constant
base a to another base b: logan = (logbn)

• Notation: logn for log2n ; ln n for logen (natural log)

8

Logs vs. powers/roots

• logn = o(nc) for all c>0

• For example:

• Proof: Use L’Hopital’s rule

1

1ln 1
lim lim lim 0

c c cn n n

n n
n cn cn

0.4 20log (); log ()n o n n o n

Some common functions

!32log 32 nnnnnn nn

polynomial exponential

9

Properties

() (()) () (())

() (()) () (())

() (()) () (()), () (())

() (()) () (()), () (())

() and () ()

same for , , ,

Transitivity:

f n o g n f n O g n

f n g n f n g n

f n g n f n O g n f n g n

f n g n f n O g n f n g n

f O g g O h f O h

o

Sum: f+g = (max(f,g))

Asymptotic notation in equations

)()1()()(3

like equations Can write

)(is that)(function somefor)(3)(

means)(3)(

323

2

2

nOnOnOn

nOnhnhnnf

nOnnf

Caution: O(1)+O(1)+…+O(1) (n times) is not O(1)

O(n) + n) = ? It is not n)

…..

