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Analysis of Algorithms and 
Asymptotics

CS 4231, Fall 2012            Mihalis Yannakakis

Analysis of Algorithms

• Correctness:
The algorithm terminates with the correct answer

• Performance
– Mainly Running time (Time complexity)
– Use of other resources (space, …)

• Experimental vs. analytical evaluation of 
algorithms

• Other issues: simplicity, extensibility, …
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Time Complexity

• Running time depends on the input

• Parameterize by the size n of the input, and 
express complexity as function T(n)

Worst Case: maximum time over all inputs of    
size n

Average Case: expected time, assuming a 
probability distribution over inputs of size n

Analysis

Cost of each operation depends on machine

Simplification 1: machine-independent analysis: 
assume all operations unit cost → 

can add the costs of the different steps
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Asymptotic Analysis

Simplification 2: Look at growth of T(n) as 

n goes to infinity; focus on dominant term

- Example: 3n² +7n +10 

Dominant term: 3n²

• Simplification 3: Look at the rate (order) of 
growth: suppress the constant coefficient

- Example: Quadratic complexity  n²)

Benefits of asymptotic analysis

• Machine independence – intrinsic 
complexity of algorithms

• Abstraction from details, concentrate on 
dominant factors

• A linear-time algorithm becomes faster 
than a quadratic algorithm eventually (for 
large enough n)
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But .. caution:

• Eventually may be too late, if the constant of the 
linear-time algorithm that we ignored is huge, 

eg.

• Some operations may be much more costly than 
others, and we may want to count them separately 
(for example, comparisons in sorting of complex 
objects)
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Asymptotic Notations:
Theta, Big-Oh, Omega 
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Asymptotic Notations:
Theta, Big-Oh, Omega 

Big-Oh:

(Order)
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Asymptotic Notations:
Theta, Big-Oh, Omega 
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Asymptotic Notations:
little-oh, little-omega 

little-oh:
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little-omega:

f(n)=o(g(n) means that for large n, function f is smaller 
than any constant fraction of g

f(n)=(g(n) means that for large n, function f is larger than 
any constant multiple of g, i.e., g=o(f(n))

Example: )(5),(5 22 nnnon 

Asymptotic Notations Summary

Notation                 Ratio f(n)/g(n) for large n
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Example: Polynomials

• Polynomial:
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Example: logarithms

• log10 n = log2 n )

• Proof: log10n = log2n / log210  =  log2n / 3.32

• Same for any change of logarithm from one constant 
base a to another base b: logan = (logbn)

• Notation: logn for log2n ;  ln n for logen (natural log)
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Logs vs. powers/roots

• logn = o(nc) for all c>0

• For example:

• Proof: Use L’Hopital’s rule
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Some common functions
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polynomial exponential
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Properties
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Sum: f+g = (max(f,g))

Asymptotic notation in equations
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Caution: O(1)+O(1)+…+O(1)  (n times)  is not O(1)

O(n) + n)  = ?      It is not n)

….. 


