Analysis of Algorithms and
Asymptotics

CS 4231, Fall 2012 Mihalis Yannakakis

Analysis of Algorithms

Correctness:
The algorithm terminates with the correct answer

Performance
— Mainly Running time (Time complexity)
— Use of other resources (space, ...)

Experimental vs. analytical evaluation of
algorithms

Other issues: simplicity, extensibility, ...

Time Complexity

* Running time depends on the input

» Parameterize by the size n of the input, and
express complexity as function T(n)

Worst Case: maximum time over all inputs of
size n

Average Case: expected time, assuming a
probability distribution over inputs of size n

Analysis

Cost of each operation depends on machine

Simplification 1: machine-independent analysis:
assume all operations unit cost —

can add the costs of the different steps

Asymptotic Analysis

Simplification 2: Look at growth of T(n) as
n goes to infinity; focus on dominant term
- Example: 3n? +7n +10
Dominant term: 3n?

« Simplification 3: Look at the rate (order) of
growth: suppress the constant coefficient

- Example: Quadratic complexity ®(n?)

Benefits of asymptotic analysis

« Machine independence — intrinsic
complexity of algorithms

» Abstraction from details, concentrate on
dominant factors

* A linear-time algorithm becomes faster
than a quadratic algorithm eventually (for
large enough n)

But .. caution:

« Eventually may be too late, if the constant of the
linear-time algorithm that we ignored is huge,

eg. 10°n > n? for n<10°

« Some operations may be much more costly than
others, and we may want to count them separately
(for example, comparisons in sorting of complex
objects)

Asymptotic Notations:
Theta, Big-Oh, Omega
Theta: ©(g(n)) ={ f(n)|3 constants c¢;,c, >0 andn,s.t. ¥n=n,:

c,g(m<f(n) <cg(n)}

Convention : We usually write f(n)=0(g(n))

Caution: = here denotes membership, not equality

c,9(n)

f(n)

Big-Oh:
(Order)

Asymptotic Notations:
Theta, Big-Oh, Omega

O(g(n)) ={ f(n)| 3 constant c >0 andn,s.t. vn>n,:
0<f(n)<cg(n)}

Convention: We usually wiite f (n)=0(g(n))

Example:

f(n) 5 — o 2
cg(n n (n%)
but not vice-versa

Omega:

Asymptotic Notations:
Theta, Big-Oh, Omega

Q(g(n)) ={ f(n) |3 constantc >0 andn,s.t. Vn=>n,:
cg(m<f(n) }

Convention: We usually write f(n)=Q(g(n))
f(n) Example:

5n % = Q(n)
c g(n) but not vice-versa

Asymptotic Notations:
little-oh, little-omega

little-oh: o(g(n)) ={ f(n)| Vv constant ¢ >0 3n,st. Vvn=n,:
0<f(n)<cg(n)}

little-omega: o(g(n)) ={ f(n)|V constant ¢ >0 3In,st. VYn=n,:
0<cg(n)< f(n)}

f(n)=o(g(n) means that for large n, function f is smaller
than any constant fraction of g

f(nN)=w(g(n) means that for large n, function f is larger than
any constant multiple of g, i.e., g=0(f(n))

Example: 5n=o0(n%), 5n? = w(n)

Asymptotic Notations Summary

Notation Ratio f(n)/g(n) for large n
f(n) = o(g(n)) f(n)/g(n) — =

f(n) = Q(g(n)) c<f(n)/g(n)

f(n) = ©(g(n) ¢, <f(n/g(n) <c,

f(n) = O(g(n)) f(n)/gn) <c

f(n) = o(g(n) f(n/g(m — 0

Example: Polynomials

* Polynomial: ayn +a,,n"" +---+an+a,, wherea, >0
=0(n")
Ex:5n®+4n?-3n+8=0(n%)

Proof:

f(n a a
(d):ad +—224...+ L2 5a,+0+---+0=a,
n n n

(0<)c<d < n®=0(n")
Ex:n*? =0(n*%)

Proof: 2 _ 1

Example: logarithms

logion =0 (log, n)
Proof: log,,n = log,n / log,10 = log,n / 3.32

Same for any change of logarithm from one constant
base a to another base b: log,n = ©(log,n)

Notation: logn for log,n ; In n for log,n (natural log)

Logs vs. powers/roots

* logn = o(n°) for all c>0

- Forexample: logn=o0(n""); logn= o(Z{’/H)

» Proof: Use L’'Hopital’s rule

1
lim 00— jim Al —lim—_=0

nso n° n>wo cnt n-wo cn’

Some common functions

n<nlogn<n®<n’<-.<< 2" <3" <nl

N Y
- ~ -~ e

polynomial exponential

Properties

f(n)=o(g(n) = f(n) = O(g(n))

f(n)=w(g(n) = f(n)=Q(g(n))

f(n) = 6(g(n)) = f(n)=0(g(n)), f(n)=<(g(n))
f(n) = 6(g(n)) < f(n)=0(g(n)), f(n)=<(g(n))

Transitivity:
f=0(g)andg=0(h) = f=0(h)
same for o, w, QQ, ©®

Sum: f+g = ®(max(£g))

Asymptotic notation in equations

f(n) =3n°>+0(n) means
f(n) =3n? +h(n) for some function h(n) that is O(n)

Can write equations like
3n® +0(n?*) +0(n) +0O(1) = O(n®)

Caution: O(1)+O(1)+...+0(1) (n times) is not O(1)
O(n)+Q(n) =? Itis not O(n)

