

Time Complexity

- Running time depends on the input
- Parameterize by the size *n* of the input, and express complexity as function *T(n)*

Worst Case: maximum time over all inputs of size *n*

Average Case: expected time, assuming a probability distribution over inputs of size *n*

Asymptotic Notations:
little-oh, little-omegaIttle-oh: $o(g(n)) = \{ f(n) \mid \forall \text{ constant } c > 0 \exists n_0 \text{ s.t. } \forall n \ge n_0 : 0 \le f(n) \le c g(n) \}$ Ittle-omega: $\omega(g(n)) = \{ f(n) \mid \forall \text{ constant } c > 0 \exists n_0 \text{ s.t. } \forall n \ge n_0 : 0 \le c g(n) \le f(n) \}$ f(n)=o(g(n) means that for large n, function f is smaller
than any constant fraction of gf(n)=\omega(g(n) means that for large n, function f is larger than
any constant multiple of g, i.e., g=o(f(n))Example: $5n = o(n^2)$, $5n^2 = \omega(n)$

Example: Polynomials • Polynomial: $a_{d}n^{d} + a_{d-1}n^{d-1} + \dots + a_{1}n + a_{0}, \text{ where } a_{d} > 0$ $= \Theta(n^{d})$ $Ex : 5n^{3} + 4n^{2} - 3n + 8 = \Theta(n^{3})$ Proof: $\frac{f(n)}{n^{d}} = a_{d} + \frac{a_{d-1}}{n} + \dots + \frac{a_{0}}{n^{d}} \rightarrow a_{d} + 0 + \dots + 0 = a_{d}$ $(0 <)c < d \Leftrightarrow n^{c} = o(n^{d})$ $Ex : n^{3.2} = o(n^{3.3})$ Proof: $\frac{n^{c}}{n^{d}} = \frac{1}{n^{d-c}} \rightarrow 0$

Example: logarithms

- $\log_{10} n = \Theta (\log_2 n)$
- Proof: $\log_{10} n = \log_2 n / \log_2 10 = \log_2 n / 3.32$
- Same for any change of logarithm from one constant base a to another base b: log_an = Θ(log_bn)
- Notation: logn for log₂n; In n for log_en (natural log)

Properties

$$\begin{aligned} f(n) &= o(g(n)) \implies f(n) = O(g(n)) \\ f(n) &= \omega(g(n)) \implies f(n) = \Omega(g(n)) \\ f(n) &= \Theta(g(n)) \implies f(n) = O(g(n)), f(n) = \Omega(g(n)) \\ f(n) &= \Theta(g(n)) \Leftarrow f(n) = O(g(n)), f(n) = \Omega(g(n)) \end{aligned}$$

Transitivity: f = O(g) and $g = O(h) \implies f = O(h)$ same for $o, \omega, \Omega, \Theta$

Sum: $f+g = \Theta(\max(f,g))$

Asymptotic notation in equations

 $f(n) = 3n^{2} + O(n) \text{ means}$ $f(n) = 3n^{2} + h(n) \text{ for some function } h(n) \text{ that is } O(n)$ Can write equations like $3n^{3} + O(n^{2}) + O(n) + O(1) = \Theta(n^{3})$ **Caution:** O(1)+O(1)+...+O(1) (n times) is not O(1) O(n) + \Omega(n) = ? It is not $\Theta(n)$