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GPU Applications

x

eed:
1. New ways to evaluate computational GPU apps

=» Contribution 1: GT-Pin Tool

=» Contribution 2: Evaluation of very large computational apps
2. New hardware designs

=» Contribution 3: Accelerated parch simulation for GPUs
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GT-Pin Profiling Tool

* Pin for GPUs, i.e. dynamic binary instrumentation for
OpenCL programs on Intel GPUs.

e 100K to 1M times faster than simulation

* Provides detailed low-level info:
— opcode mixes
— instruction counts
— basic block counts
— memory access counts
... and more

e Custom GT-pin tools
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 OpenCLis alanguage standard for heterogeneous
computing (e.g. CPU+GPU)
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How GT-Pin works (first OpenCL background)

 OpenCLis alanguage standard for heterogeneous
computing (e.g. CPU+GPU)

* Programs have two parts, a host and a device (e.g.,
what runs on CPU vs. GPU)

* Host sets up runtime env., organizes program
execution (synchronization, distribution of work)
through API calls

* Device does computational work using kernels (like
procedures)
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Normal OpenCL execution

Application

l API Calls

OpenCL
Runtime

l Kernel Calls

Source code

GPU Driver | T
h
l Machine
Specific
GPU Binary
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GT-Pin instrumented execution

Application

1. Notify GPU driver that GT-
Pin has been invoked.

l API Calls 2 Allocate trace buffer

Init. GT-Pin

memory space for

OpenCL
Runtime

profiling results accessible

\ 4

by both CPU & GPU

Kernel Calls

Source code

GPU Driver

—
h

JIT

!

GPU

Machine
Specific
Binary
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GT-Pin instrumented execution

Application

l API Calls

Init. GT-Pin

OpenCL
Runtime

Redirect binary to binary
rewriter

Insert profiling instructions
into program’s assembly.
Output profiling results to
trace buffer; send
instrumented binary to
GPU

A 4

Kernel Calls

Source code

GPU Driver

—

JIT

Machine
Specific

!

GPU

Instrumented

Binary

WW

GT-Pin
Binary
Rewriter
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GT-Pin instrumented execution

Application
l API Calls
Init. GT-Pin OpenCl
Runtime
Kernel Calls
v Source code Machine
CPU | .
GPU Driver e | T Specific
chzry
6. CPU post-processes trace l,
buffer for user report. Instrumented GT-Pin
GPU Bi :
inary Binary
Rewriter
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Workload Analysis

25 OpenCL benchmarks from
— CompuBench

— SiSoftware Sandra

— Sony Vegas Pro Press Project

Vision, finance, physics, crypto, rendering

Test Machine: GEN 7 “lvy Bridge” Intel Core
i7-3770 CPU, Intel HD Graphics 4000 GPU,
Windows 7 64-bit OS.

Analyze a variety of metrics in Section |V
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Dynamic Execs

Workload Analysis

* Large real world applications not microkernels

* 6500 to 2 million times more dynamic instructions than
benchmarks used in related work.
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Avg. kernel calls = 4764

Avg. GPU instructions = 308 Billion
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% Dynamic

Instructions

Workload Analysis

* Instruction mixes vary between applications

. .
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 Need to explore multiple apps for good HW design
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Data Bytes

Workload Analysis

le+14
1e+13
1e+12
1le+11
1e+10
1e+09
1e+08

Applications also vary with respect to read/write ratios:

_ : Bytes Read 3
Bytes Written ——
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% Dynamic
Instructions

Workload Analysis

 We aren’t always taking full advantage of data
parallelism:

100 % SIMD Width = 16 =—=

80 % H | SIMD Width= 8 =—=

- — SIMD Width = 4 ===

60 % H - L % H SIMD Width = 2 ===
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— 52% instructions have 16-wide SIMD
— 45% instructions have 8-wide SIMD
— Remainder 4-wide or less
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Talk Overview

e GPU Simulation Acceleration
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GPU Simulation acceleration

 GPUs are very slow to simulate
e Are microkernels a solution?

Microkernel

ational
/ Mini replica
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GPU Simulation acceleration

 GPUs are very slow to simulate
' o2 Probably not.

Microkernel

¢

Minireol

Not representative!
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Solution: Representative Regions

e Use already known CPU region selection
techniques, e.g. [Sherwood 2002, Patil 2004]

Similar
€

ational
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Background: CPU selection

GOAL: select small but representative regions of
current applications so we don’t have to simulate full

programs when designing future HW.
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Background: CPU selection

STEP 1: Trace program execution, gather performance
statistics such as instruction & memory access counts

Program
Trace

Trace
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Background: CPU selection

STEP 2: Divide program trace into intervals, e.g. break
at every 100 million instructions.

Program

Trace |I|

Trace Divide
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Background: CPU selection

STEP 3: Quantify performance behavior with feature
vectors per interval, e.g. basic block vectors:

<unique block ID: basic block execs*instr/block>
<BB1:10, BB2:200, BB3:40, BB4:0, BB5:50>

Program
Trace

Feature
Vectors

Trace Divide
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Background: CPU selection

STEP 4: Cluster similar feature vectors. Use machine
learning, e.g. k-means or hierarchical clustering.

Program | [ ¢ | [ ¢ ] [ b ]

Trace

Feature

Trace Divide Cluster
Vectors
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Background: CPU selection

STEP 5: Select representative intervals per cluster, and
compute associated weights per cluster.

— Weight is a ratio (all weights sum to 1)
— Relative # of instructions in cluster vs. whole program

Program
Trace

Feature Select

Trace Divide Vectors Cluster Reps
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Background: CPU selection

STEP 6: Simulate the selected intervals in full, FF
through the rest of the program. Record performance
per selected interval, e.g.

CPI.=0.5 CPI.=0.7  CPI=0.4

Program
Trace

. . Feature Select :
Trace Divide Cluster Simulate
Vectors Reps
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Background: CPU selection

STEP 7: Extrapolate selected performance metrics to
calculate whole program performance, e.g.,

CPI.=0.5 CPI.=0.7  CPI.=0.4
CPI,_..,= (0.5%0.5) + (0.7*0.17) + (0.4*0.33) = 0.501

Program
Trace

. . Feature Select : Extrapo-
Trace Divide Cluster Simulate P
Vectors Reps late
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Adapting the CPU algorithm to GPUs

Program
Trace

Feature
Vectors

Extrapo-

Trace Divide
late

To adapt this process to GPUs, we had to make several
adjustments.
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Adapting the CPU algorithm to GPUs

Program
Trace

Select
Reps

Extrapo-
late

Cluster Simulate

To adapt this process to GPUs, we had to make several
adjustments.
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Trace with GT-Pin

Program
Trace

Select
Reps

Cluster Simulate

In Trace Step, we use GT-Pin to collect:
— Ordered API trace, API call count
— Unique kernel count & frequency
— Dynamic & static instruction count
— Basic block executions
— Bytes read & written per instruction

Extrapo-
late
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Explore 3 Division Sizes

Program
Trace

Extrapo-
late

Select
Reps

Cluster Simulate

In Divide Step, we explore multiple interval
divisions of API Call trace:

1) Large: divide at synchronization calls.
2) Medium: divide approx. every 100M instructions
3) Small: divide at each kernel
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Explore 10 Feature Vectors

Program
Trace

Select
Reps

Extrapo-
late

Cluster Simulate

Also explore a number of Feature Vectors:

1)
2)
3)
4)
5)

Unique kernels [KN]

Unique kernels with the same arguments [KN-ARGS]

Unique kernels with the same global work size [KN-GWS]

Unique kernels with same arguments & global work size [KN-ARGS-GWS]
Unique basic blocks (i.e. basic block vectors) [BB]
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Explore 10 Feature Vectors

Program
Trace

Extrapo-
late

Select
Reps

Cluster Simulate

Including some Feature Vectors with memory accesses:
6) Unigue BBs and matching bytes written [BB-W/]

7) Unique BBs and matching bytes read [BB-R]

8) Unique BBs and matching total bytes (read + written) [BB-R+W/]
9) Unique BBs and matching both bytes written & read [BB-RW/|

10)  Uniqgue kernels and matching both bytes written & read [KN-RW]
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Select Representative Regions

Program
Trace

Extrapo-
late

Simulate

We use SimPoint, open source academic software
designed for CPU simulation region selection, to
group intervals into clusters, and to select
representatives & weights
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Choose best division size/feature

vector combination

Program
Trace

Select
Reps

Extrapo-
late

Cluster Simulate

To choose best of 30 division size/feature vector
combinations, compare performance of extrapolated
selection to measured performance of whole program:

P er ﬂxtrapolated - P er -f measured X 100%

Perf

error =

easured
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Adapting the CPU algorithm to GPUs

Program
Trace

Select
Reps

Extrapo-
late

Cluster Simulate

« Typically error performance measurements done via
simulation, but this is slow.

« |nstead, we use a kernel time measurement tool called

Intel CoFluent CPR to validate the selections in native
time.
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Results

% Error
(LOWER is BETTER)
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Results

% Error

incorporating memory
accesses (R, W, R+W)
reduces error.

physics-ocean-surf —+— crypt-aes128 —-@—- press-proj-r3 ---x--
20 % |
S5 15% On avg. across 25
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Synchronization-sized
intervals
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Results

% Error

physics-ocean-surf —+— crypt-aes128 —-@—- press-proj-r3 ---x--
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Also consider selection size; “best config” in terms of error is
not always best in terms of minimizing simulation time.

physics-ocean-surf —+— crypt-aes128 —-o—- press-proj-r3 ---x--
20 %
§ 15 %
o 10%
X 59
0%
(S %250/ -
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o § 1.5 % time (due to large interval size). -
n' o 10/0 - X- X Xi -
— D S S X |
S 5 05% | i
“ 5 0% ¥ e W e ~ BAVE W A SV :
o\°é’ ix x xxxwmmwwixxxxxwmwwwi
£ 22 22 2Z2Z0020 0@ 222220000 9
| > > | QO > 3 DT = D [ > O > 3 D = I [
> e i = 3 = <+ 2 =32Z <
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Don’t have to choose one configuration

* Instead of picking best selection size/feature vector for all
apps, pick best for each app.

e (Can this because of fast (no simulation) validation
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Don’t have to choose one configuration

* Instead of picking best selection size/feature vector for all
apps, pick best for each app.

e (Can this because of fast (no simulation) validation

1X 10X 100X 1000X 10000X

- - A4 7 T Syne-KN* O
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O : . | 10OM-KN: -
- - K . ] 100M-BB* »
W X 01% L = 1 Single-KN* ©
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(Sl
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Simulation Speedup, AVG=35X
== inverse of selection size)
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Don’t have to choose lowest error

* Instead of choosing lowest error config, can tradeoff between
low error and small selection size (i.e., bigger speedup).

Threshold == Cross-App Average e

B 100/0 T T T T T T T T ]
| -
S 8%t
S 6% :
=
O, » 4
: o 1]
| -
O 2%} I :
a‘-’ OO/o |, P 1 1 1 1 1 1
Q < & ~ Z z 7 7 S
+ o) o 5) (@) < by - &) <
U R B Y Y e T Yy

Simulation Speedup (== inverse of selection size)

* For example, if 3% error is acceptable, average simulation
speedup is 223X
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Adapting the CPU algorithm to GPUs

Program
Trace

Select

Cluster .

* If selection criteria are good, only need to select regions on
one architecture for each program

* Can then use for simulating/extrapolating all future
architecture designs’ performance
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Are selections valid for future HW?

Does performance extrapolated from selections at
one frequency (1150 MHz) match measured
performance of other frequencies?

Does performance extrapolated from selections on
one architecture generation (lvy Bridge) match
measured performance of future architecture
generations (Haswell)?
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Error Using
1150MHz Selections

Error Using
Ivy Bridge Selections

Are selections valid for future HW?

10% 4 1000MHz +
~ : 850MHz »
*»r Do selections work across frequencies? Yes. | 7o
6% - z =
49 * 350MHz »
o~ 4 =
2cyo — " ‘ A n =
0% —= — ; S D : ; o L e & & & = o § 7 i L I 2 B |
10% F . = | Haswell x
s» Do selections work across arch gens? Yes. -
6% - X -
4°/o — =
0, x X X X
2% | x x X X » X X -
0°/o LV v X X X ) 3 X X
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54



Real computational GPU programs are very
large and more diverse than graphics apps.

 To evaluate them, we need fast detailed
analysis = GT-Pin tool.

* To simulate them, and improve HW design,
we need GPU specific region selection
methods.
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Questions?

Paper Title: Fast Computational GPU Design
with GT-Pin
melanie@cs.columbia.edu

Intel contacts:
e Chi-Keung (CK) Luk: chi-keung.luk@intel.com
e Sunpyo Hong: sunpyo.hong@intel.com
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Notable trace internals

clEnqueueReadBuffer
clSetKernelArg
clSetKernelArg

clEnqueueNDRangeKernel
clSetKernelArg

clsetKernelAra * “clEnqueueNDRangeKernel” calls define

clEnaueueNDRangeKernel

— GPU work, (remaining cl* calls work on
C nqueueReanBuffer

CEnqueuewteBaTe host device, e.g. CPU)

clEnqueueWriteBuffer

clSetKernelArg

CE el  Synchronization calls (e.g. clEnqueueRead-

clEnqueueNDRangeKernel

clEnqueueReadBufer Buffer, clFinish) coordinate CPU/GPU work

clSetKernelArg
clSetKernelArg

clEnqueueNDRangeKernel
cisetkernelArg

clSetKernelArg

clEnqueueNDRangeKernel
clFinish

Feature Select : Extrapo-
Cluster Simulate P
Vectors Reps late

Intel Confidential 58



Division

1: Synchronization Intervals

clEnqueueReadBuffer
clSetKernelArg
clSetKernelArg
clEnqueueNDRangeKernel
clSetKernelArg
clSetKernelArg

—FlEnoueueNRRapgeKerpel
clFinish

—clEnqueueReadBuffer . . o o o 2 At D e =

clEnqueueWriteBuffer
clEnqueueWriteBuffer
clEnqueueWriteBuffer
clSetKernelArg

clSetKernelArg

2 Kernels

Look at kernels inside
consecutive
synchronization calls.

clEnqueueReadBuffer
clSetKernelArg

clSetKernelArg

clEnqueueNDRangeKernel
cisetkernelArg

clSetKernelArg

clFinish

Feature

Select : Extrapo-
Cluster Simulate P
Reps late

Intel Confidential 59



Division 2

~100M Instr Intervals

clEnqueueReadBuffer
clSetKernelArg
clSetKernelArg

1 Kernel

clSetKernelArg
clSetKernelArg

—flEnayeueNDRapgeKerpel . . o o e o -

clFinish

—clEnqueueReadBuffer . . o o o 2 At D e =

clEnqueueWriteBuffer
clEnqueueWriteBuffer
clEnqueueWriteBuffer
clSetKernelArg

clSetKernelArg

clEnqueueReadBuffer
clSetKernelArg

clSetKernelArg

clEnqueueNDRangeKernel
cisetkernelArg

clSetKernelArg

clFinish

Feature
Vectors

Cluster

Intel Confidential

Break synch intervals
further if sum of
kernels’ dynamic is
instructions is > 100M

Select : Extrapo-
Simulate P
Reps late
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Division 3: Single Kernel Intervals

clEnqueueReadBuffer

clSetKernelArg
clSetKernelArg 1 Kernel

clSetKernelArg

clSetKernelArg 1 Kernel
~lEnoueueNDRapgekerpel o o o e e - - - — — — —
clFinish

LeiEnausiereadmufier s _ _ _ OKernels Divide until each

clEnqueueWriteBuffer

clEnqueueWriteBuffer interval is one kernel.

clEnqueueWriteBuffer
clSetKernelArg 1 Kerne|

clSetKernelArg

clEnqueueReadBuffer
clSetKernelArg

clSetKernelArg 1 Kernel

clEnqueueNDRangeKernel
=tiSekernglalg =~ T T T 44—/ /m/mmemmmmm—m -

clSetKernelArg 1 Kernel

clFinish

Feature Select : Extrapo-
Cluster Simulate P
Vectors Reps late

Intel Confidential 61



Feature vector creation

clEnqueueNDRangeKernel [KerneIName = A]

BB #1 BB #2 BB #3 BB #4 \
From GTPin Traces
clEnqueueNDRangeKernel [Kernelle
BB #1 BB #2 BB #3

Feature vector with kernel names:
Kernel A:1, Kernel B:1

Feature vector with basic blocks
A1:1,A 2:100,A 3:2,A 4:20,B 1:4,B 2:80,B_3:7

Select : Extrapo-
Cluster Simulate P
Reps late
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Feature vector creation

clEnqueueNDRangeKernel [KerneIName = A]

BB #1 BB #2 BB #3 BB #4 Then weight by static

10 E 10 30 <—___instruction count (again,
clEnqueueNDRangeKernel [KernelName = B] get these counts from

BB #1 BB #2 ge#s < GTPin traces).

20 20 10

Feature vector with kernel names:
Kernel A:52, Kernel B: 50

Feature vector with basic blocks:
A 1:10,A 2:200,A 3:20, A 4:600,
B 1:80,B 2:1600, B _3:70

Select : Extrapo-
Cluster Simulate P
Reps late
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Intel CoFluent CPR

To supplement GT-Pin profiling data, also use
CoFluent CPR

CoFluent outputs:

1) Ordered API traces

2) Seconds per kernel executed

Use this data for our error feedback and validation.
Guarantees repeatability through record/replay

mechanism: rerun program (on new HW), same API
call execution order, same inputs.

64
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Extrapolate whole-program performance

using selections

* To get measured whole program SPI:

— Divide total seconds (sum of kernel seconds from CoFluent) by
total dynamic instrs (from GT-Pin)

* To get projected whole program SPI:
— Per selected interval, calculate seconds/dynamic instructions
— Multiply interval SPI by SimPoint weight
— Sum the weighted, selected interval SPIs

. Extrapo-
Simulate P
late
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CoFluent one-time recording

Application Ordered API calls
Config params
l API Calls CPR Recording | Memory buffers
Kernel code & binaries
CPR Recorder
l API Calls Profiling Dat Ordered API calls
rofiling Data )
OpenCL Time per kernel
Runtime
Kernel Calls
v Source code
GPU Driver o
h
l, Machine
Specific

GPU Binary
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Repeatable replay (on any arch)

Application

CPR Recording

l API Calls CPR Recording

l API Calls

CPR Recorder

CPR Replayer

l API Calls

Profiling Data
OpenCL

Profiling Data

l API Calls

Runtime
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CoFluent + GT-Pin + OpenCL

Init. GT-Pin

CPR

:', API Calls

CPR : Profiling
Replayer Data
API Calls
OpenCL
Runtime | xo,01 Calls
\l, Source code .
N Machine
GPU Driver JIT Specific
ll Binary
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