Fast Computational GPU Design with GT-Pin

Melanie Kambadur*, Sunpyo Hong+, Juan Cabral+, Harish Patil+, Chi-Keung Luk+, Sohaib Sajid+, Martha A. Kim*.

- * Columbia University, New York, NY.
- ⁺ Intel Corporation, Hudson, MA.

Graphics

 Output image to screen **Computational**

 computer vision, finance, data mining

Graphics

 Output image to screen

Same:

- Highly Parallel
- Potentially low energy

Computational

 computer vision, finance, data mining

Repetitive computations

Different:

 instruction mix, parallel paradigm, performance (IPC)

Diverse computations

1. New ways to evaluate computational GPU apps

2. New hardware designs

- 1. New ways to evaluate computational GPU apps
 - Contribution 1: GT-Pin Tool
 - → Contribution 2: Evaluation of very large computational apps
- 2. New hardware designs
 - Contribution 3: Accelerated μarch simulation for GPUs

Talk Overview

- Motivation
- GT-Pin Tool

- Sample Measurements
- GPU Simulation Acceleration

GT-Pin Profiling Tool

- Pin for GPUs, i.e. dynamic binary instrumentation for OpenCL programs on Intel GPUs.
- 100K to 1M times faster than simulation
- Provides detailed low-level info:
 - opcode mixes
 - instruction counts
 - basic block counts
 - memory access counts
 - ... and more
- Custom GT-pin tools

 OpenCL is a language standard for heterogeneous computing (e.g. CPU+GPU)

- OpenCL is a language standard for heterogeneous computing (e.g. CPU+GPU)
- Programs have two parts, a host and a device (e.g., what runs on CPU vs. GPU)

- OpenCL is a language standard for heterogeneous computing (e.g. CPU+GPU)
- Programs have two parts, a host and a device (e.g., what runs on CPU vs. GPU)
- Host sets up runtime env., organizes program execution (synchronization, distribution of work) through API calls

- OpenCL is a language standard for heterogeneous computing (e.g. CPU+GPU)
- Programs have two parts, a host and a device (e.g., what runs on CPU vs. GPU)
- Host sets up runtime env., organizes program execution (synchronization, distribution of work) through API calls
- Device does computational work using kernels (like procedures)

Normal OpenCL execution

GT-Pin instrumented execution

GT-Pin instrumented execution

GT-Pin instrumented execution

Talk Overview

Motivation

- GT-Pin Tool
- Sample Measurements
- GPU Simulation Acceleration

- 25 OpenCL benchmarks from
 - CompuBench
 - SiSoftware Sandra
 - Sony Vegas Pro Press Project
- Vision, finance, physics, crypto, rendering
- Test Machine: GEN 7 "Ivy Bridge" Intel Core i7-3770 CPU, Intel HD Graphics 4000 GPU, Windows 7 64-bit OS.
- Analyze a variety of metrics in Section IV

- Large real world applications not microkernels
- 6500 to 2 million times more dynamic instructions than benchmarks used in related work.

Avg. kernel calls = 4764

Avg. # of basic blocks = 13 Billion

Avg. GPU instructions = 308 Billion

Instruction mixes vary between applications

Need to explore multiple apps for good HW design

Applications also vary with respect to read/write ratios:

Need to explore multiple apps for good HW design

 We aren't always taking full advantage of data parallelism:

- 52% instructions have 16-wide SIMD
- 45% instructions have 8-wide SIMD
- Remainder 4-wide or less

Talk Overview

- Motivation
- GT-Pin Tool
- Sample Measurements
- GPU Simulation Acceleration

GPU Simulation acceleration

- GPUs are very slow to simulate
- Are microkernels a solution?

Microkernel

GPU Simulation acceleration

- GPUs are very slow to simulate
- Are microkernels a solution? Probably not.

Microkernel

Not representative!

Solution: Representative Regions

 Use already known CPU region selection techniques, e.g. [Sherwood 2002, Patil 2004]

GOAL: select small but representative regions of current applications so we don't have to simulate full programs when designing future HW.

STEP 1: Trace program execution, gather performance statistics such as instruction & memory access counts

Program Trace

Trace

STEP 2: Divide program trace into *intervals*, e.g. break at every 100 million instructions.

STEP 3: Quantify performance behavior with *feature* vectors **per interval**, e.g. basic block vectors:

<unique block ID: basic block execs*instr/block>

<BB1:10, BB2:200, BB3:40, BB4:0, BB5:50>

STEP 4: Cluster similar feature vectors. Use machine learning, e.g. k-means or hierarchical clustering.

STEP 5: Select representative intervals per cluster, and compute associated weights per cluster.

- Weight is a ratio (all weights sum to 1)
- Relative # of instructions in cluster vs. whole program

STEP 6: Simulate the selected intervals in full, FF through the rest of the program. Record performance per selected interval, e.g.

$$CPI_C=0.5$$
 $CPI_F=0.7$ $CPI_F=0.4$

STEP 7: Extrapolate selected performance metrics to calculate whole program performance, e.g.,

$$CPI_{c}=0.5$$
 $CPI_{E}=0.7$ $CPI_{F}=0.4$ $CPI_{total}=(0.5*0.5)+(0.7*0.17)+(0.4*0.33)=0.501$

Adapting the CPU algorithm to GPUs

To adapt this process to GPUs, we had to make several adjustments.

Adapting the CPU algorithm to GPUs

To adapt this process to GPUs, we had to make several adjustments.

Trace with GT-Pin

In Trace Step, we use GT-Pin to collect:

- Ordered API trace, API call count
- Unique kernel count & frequency
- Dynamic & static instruction count
- Basic block executions
- Bytes read & written per instruction

Explore 3 Division Sizes

In Divide Step, we explore multiple interval divisions of API Call trace:

- 1) Large: divide at *synchronization* calls.
- 2) Medium: divide approx. every 100M instructions
- 3) Small: divide at each kernel

Explore 10 Feature Vectors

Also explore a number of Feature Vectors:

- 1) Unique kernels [KN]
- 2) Unique kernels with the same arguments [KN-ARGS]
- 3) Unique kernels with the same *global work size* [KN-GWS]
- 4) Unique kernels with same arguments & global work size [KN-ARGS-GWS]
- 5) Unique basic blocks (i.e. basic block vectors) [BB]

Explore 10 Feature Vectors

Including some Feature Vectors with memory accesses:

- 6) Unique BBs and matching bytes written [BB-W]
- 7) Unique BBs and matching bytes read [BB-R]
- 8) Unique BBs and matching total bytes (read + written) [BB-R+W]
- 9) Unique BBs and matching both bytes written & read [BB-RW]
- 10) Unique kernels and matching both bytes written & read [KN-RW]

Select Representative Regions

We use SimPoint, open source academic software designed for CPU simulation region selection, to group intervals into clusters, and to select representatives & weights

Choose best division size/feature vector combination

To choose best of 30 division size/feature vector combinations, compare performance of extrapolated selection to measured performance of whole program:

$$error = \left(\frac{Perf_{extrapolated} - Perf_{measured}}{Perf_{measured}}\right) \times 100\%$$

Adapting the CPU algorithm to GPUs

- Typically error performance measurements done via simulation, but this is slow.
- Instead, we use a kernel time measurement tool called Intel CoFluent CPR to validate the selections in native time.

Results

Results

press-proj-r3 ---×---

On avg. across 25 benchmarks, basic block (BB) features perform better than kernel (KN) features, generally incorporating memory accesses (R, W, R+W) reduces error.

Results

crypt-aes128 -----

press-proj-r3 ---×---

What's a good configuration for one app isn't always good for another app.

Results: Full Exploration Space

"Best configuration" also varies for other interval sizes.

Also consider selection size; "best config" in terms of error is not always best in terms of minimizing simulation time.

Don't have to choose one configuration

- Instead of picking best selection size/feature vector for all apps, pick best for each app.
- Can this because of fast (no simulation) validation

Don't have to choose one configuration

- Instead of picking best selection size/feature vector for all apps, pick best for each app.
- Can this because of fast (no simulation) validation

Don't have to choose lowest error

 Instead of choosing lowest error config, can tradeoff between low error and small selection size (i.e., bigger speedup).

Simulation Speedup (== inverse of selection size)

For example, if 3% error is acceptable, average simulation speedup is 223X

Adapting the CPU algorithm to GPUs

- If selection criteria are good, only need to select regions on one architecture for each program
- Can then use for simulating/extrapolating all future architecture designs' performance

Are selections valid for future HW?

- Does performance extrapolated from selections at one frequency (1150 MHz) match measured performance of other frequencies?
- Does performance extrapolated from selections on one architecture generation (Ivy Bridge) match measured performance of future architecture generations (Haswell)?

Are selections valid for future HW?

Summary

Real computational GPU programs are very large and more diverse than graphics apps.

- To evaluate them, we need fast detailed analysis → GT-Pin tool.
- To simulate them, and improve HW design, we need GPU specific region selection methods.

Questions?

Paper Title: Fast Computational GPU Design with GT-Pin

melanie@cs.columbia.edu

Intel contacts:

- Chi-Keung (CK) Luk: chi-keung.luk@intel.com
- Sunpyo Hong: <u>sunpyo.hong@intel.com</u>

Notable trace internals

clEnqueueReadBuffer

clSetKernelArg

clSetKernelArg

clEnqueueNDRangeKernel

clSetKernelArg

clSetKernelArg

clEngueueNDRangeKernel

clFinish

clEnqueueReadBuffer

clEnqueueWriteBuffer clEnqueueWriteBuffer clEnqueueWriteBuffer

clSetKernelArg

...

clSetKernelArg

clEnqueueNDRangeKernel

clEnqueueReadBuffer

clSetKernelArg

clSetKernelArg

clEnqueueNDRangeKernel

cisetkerneiArg

clSetKernelArg

clEnqueueNDRangeKernel

clFinish

- "clEnqueueNDRangeKernel" calls define GPU work, (remaining cl* calls work on host device, e.g. CPU)
- Synchronization calls (e.g. clEnqueueRead-Buffer, clFinish) coordinate CPU/GPU work

Trace Divide Feature Vectors Cluster Select Reps Simulate Extrapolate

Division 1: Synchronization Intervals

Intel Confidential

Division 2: ~100M Instr Intervals

Intel Confidential

Division 3: Single Kernel Intervals

Feature vector creation

clEnqueueNDRangeKernel [KernelName = A]

BB #1

BB #2

BB #3

BB #4

clEnqueueNDRangeKernel [KernelName = B]

BB #1

BB #2

BB #3

From GTPin Traces

Feature vector with kernel names:

Kernel_A: 1, Kernel_B: 1

Feature vector with basic blocks

A_1: 1, A_2: 100, A_3: 2, A_4:20, B_1: 4, B_2: 80, B_3:7

Trace Divide Feature Vectors

ture Cluster

Select Reps

Simulate

Extrapolate

Feature vector creation

clEnqueueNDRangeKernel [KernelName = A] BB #1 BB #2 BB #3 BB #4 10 2 10 30 clEnqueueNDRangeKernel [KernelName = B] BB #1 BB #2 BB #3 20 20 10

Then **weight** by static instruction count (again, get these counts from GTPin traces).

Feature vector with kernel names:

Kernel_A: 52, Kernel_B: 50

Feature vector with basic blocks:

A_1: 10, A_2: 200, A_3: 20, A_4: 600,

B 1: 80, B 2: 1600, B 3:70

Intel CoFluent CPR

- To supplement GT-Pin profiling data, also use CoFluent CPR
- CoFluent outputs:
 - 1) Ordered API traces
 - 2) Seconds per kernel executed
- Use this data for our error feedback and validation.
- Guarantees repeatability through record/replay mechanism: rerun program (on new HW), same API call execution order, same inputs.

Extrapolate whole-program performance using selections

- To get measured whole program SPI:
 - Divide total seconds (sum of kernel seconds from CoFluent) by total dynamic instrs (from GT-Pin)
- To get projected whole program SPI:
 - Per selected interval, calculate seconds/dynamic instructions
 - Multiply interval SPI by SimPoint weight
 - Sum the weighted, selected interval SPIs

CoFluent one-time recording

Repeatable replay (on any arch)

CoFluent + GT-Pin + OpenCL

