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Abstract—As computational applications become common for
graphics processing units, new hardware designs must be de-
veloped to meet the unique needs of these workloads. Perfor-
mance simulation is an important step in appraising how well
a candidate design will serve these needs, but unfortunately,
computational GPU programs are so large that simulating them
in detail is prohibitively slow.

This work addresses the need to understand very large
computational GPU programs in three ways. First, it introduces
a fast tracing tool that uses binary instrumentation for in-
depth analyses of native executions on existing architectures.
Second, it characterizes 25 commercial and benchmark OpenCL
applications, which average 308 billion GPU instructions apiece
and are by far the largest benchmarks that have been natively
profiled at this level of detail. Third, it accelerates simulation
of future hardware by pinpointing small subsets of OpenCL
applications that can be simulated as representative surrogates in
lieu of full-length programs. Our fast selection method requires
no simulation itself and allows the user to navigate the accu-
racy/simulation speed trade-off space, from extremely accurate
with reasonable speedups (35X increase in simulation speed for
0.3% error) to reasonably accurate with extreme speedups (223X
simulation speedup for 3.0% error).

Keywords-computer simulation; graphics processing unit; per-
formance analysis

I. INTRODUCTION

“Graphics processing unit” is now an inadequate term
to describe a piece of hardware with a domain extending
well beyond graphics applications. As programmers realize
the unique advantages of GPUs (e.g., wide availability on
commodity machines, extremely high throughput on parallel
tasks, fast memory accesses), many non-graphics applications
are being ported from their original CPU implementations
to GPU versions. Such computational GPU applications are
now commonplace in a range of fields including scientific
computing [24], computer vision [7], finance [27], and data
mining [17].

GPU architects must deliver improved hardware designs to
meet the computational needs of these varied applications.
A major barrier in achieving this is the massive overheads
associated with detailed micro-architectural performance sim-
ulations. Simulators execute a program up to 2 million times
slower than native execution [4], [14], depending on the simu-
lator and the level of detail in the information recorded. These
slowdowns are further compounded when hardware designers

need to repeatedly re-run applications to test thousands of
design space choices.

These prohibitively large simulation times force architects
to focus their evaluation on graphics kernels (potentially
neglecting important computational workloads) or to evaluate
computational workloads using only kernels rather than full
applications. Thus, there is a need in the computer architec-
ture community for detailed analyses of commercially-sized
computational GPU applications without the overheads of full-
program simulation.

This work addresses that need in three ways. First, it
provides a fast profiling tool that measures performance
statistics as applications run natively on existing hardware
(Section III). This new, industrial-grade tool, called GT-
Pin, can collect a variety of instruction-level data to inform
hardware design. Profiling with GT-Pin typically takes 2-
10 times as long as normal execution, does not perturb
program execution, and requires no source code modifications
or recompilation. In our second contribution, we use GT-Pin
to conduct a characterization study of very large OpenCL
programs, averaging 308 billion dynamic GPU instruc-
tions apiece (Section IV). The commercial and benchmark
applications studied are substantially larger than any OpenCL
programs that have been characterized publicly. The statistics
reported include dynamic instruction counts, breakdowns of
memory, control, computation, and logic instructions, kernel
and basic block execution counts, SIMD lengths, and memory
access information. This characterization reveals a breadth of
computational GPU workloads that implies an even greater
need for comprehensive simulation when evaluating future
GPU designs.

Finally, we demonstrate how to select small, representa-
tive subsets of OpenCL programs to accelerate the simu-
lation of future GPU architectures (Section V). These small
subsets can be simulated in lieu of full programs in a fraction
of the time, while still providing an accurate evaluation of the
applications’ performance on future hardware. The selection
process uses GT-Pin profiling and a little post-processing, but
itself requires no simulation. This is a key contrast to prior
work in CPU subset selection [2], [25] that allows us to
make selections even for applications that are prohibitively
expensive to simulate in full a single time. Developing this
methodology required several innovations including how best



to break GPU execution into intervals, how best to characterize
those intervals, and how to rapidly find the best combination
of interval and characterization for any given application.
The resulting methodology offers an exploitable trade-off
between simulation accuracy and speed, for example speeding
simulation by 35X for 0.3% error or speeding simulation by
223X for 3% error.

These new means of exploring large computational applica-
tions enable computer architects to rethink and optimize GPU
designs for the burgeoning diversity of workloads now being
targeted to GPUs.

II. BACKGROUND ON OPENCL

The GT-Pin tool, the benchmark analyses, and the simula-
tion speedup methodology are all based on OpenCL programs
and programming concepts. Unlike other GPU languages, such
as CUDA which is specific to NVIDIA, OpenCL programs can
run on any heterogeneous architecture from any vendor. This
paper uses a number of OpenCL keywords which we briefly
introduce here; a more comprehensive discussion of OpenCL
can be found elsewhere [19].

OpenCL programs consist of two parts. A host, which
uses API calls to manage the program’s execution, and ker-
nels, which are procedures that define computational work
for OpenCL devices. OpenCL devices can be any mix of
processing units, for example multiple GPUs and CPUs, but
in this paper the device is always a GPU. To manage OpenCL
kernels, the host must determine the available devices, set
up device-specific memory, create kernels on the host, pass
arguments to and run kernels on target devices, and organize
any results returned by the kernels. Each of these tasks is
completed via built-in OpenCL API calls. For example, one
named clSetKernelArg, as its name implies, sets an
argument to an upcoming kernel.

The API call clEnqueueNDKernelRange is particu-
larly important in this work. This call dispatches a kernel
to a device, signaling that GPU computation is commencing.
Also relevant to this project are a set of API calls that
manage synchronization. Synchronization calls constrain the
order of other API calls, enforcing the desired sequences of
events. Until a synchronization call forces coordination, for
example to make a memory transfer, kernels execute on the
devices asynchronously to the host program. OpenCL has
seven synchronization calls:

• clFinish,
• clEnqueueCopyImageToBuffer,
• clWaitForEvents,
• clFlush,
• clEnqueueReadImage,
• clEnqueueCopyBuffer, and
• clEnqueueReadBuffer.

Because these calls are the only points where host and device
work are guaranteed to align, they constitute a natural and
necessary point to start and stop device (in our case, GPU)
simulation. Thus, in Section V-B, we will use synchronization

calls as one potential means to divide a program’s execution
into intervals.

Another OpenCL concept relevant to this work is the
notion of global work size. Supplied as an argument to
clEnqueueNDKernelRange calls, the global work size
defines the total amount of work to be done on a given device,
so that larger global work sizes take more execution time.

III. TRACING GPU PROGRAMS WITH GT-PIN

GT-Pin serves a community need for a fast, accurate,
flexible, and detailed tool to profile commercial-scale native
OpenCL GPU applications. This section describes how GT-
Pin collects profiles within OpenCL execution environment
and discusses the kinds of profiling data it can collect.

A. Instrumenting within the OpenCL Runtime

GT-Pin, which was inspired by the CPU tool, Pin [15],
collects profiling data via dynamic binary instrumentation.
Instrumentation, which involves injecting profiling instructions
into program code, allows for much faster profiling than simu-
lation. GT-Pin uses binary instrumentation, which while harder
to implement than static compiler instrumentation (because
it necessitates GPU driver modifications), has the additional
benefit of not requiring program recompilation. At a high level,
GT-Pin’s instrumentation injects instructions into binaries’
assembly code as the they are just-in-time (JIT) compiled.
These insertions later output profiling results as the program
executes natively on the GPU.

Before describing how GT-Pin inserts profiling code into
OpenCL programs, we first describe how a normal OpenCL
execution works. The left side of Figure 1 illustrates an
uninstrumented OpenCL application’s execution. First, the ap-
plication communicates with the OpenCL Runtime by making
API calls. Then, when clEnqueueNDKernelRange calls
are made, the OpenCL Runtime passes the associated kernel
source and arguments to the appropriate device driver, in our
case a GPU driver. The GPU driver JIT-compiles the kernel
source, typically when a clBuildProgram() API call is
issued. Finally, the compiled, machine-specific binary code is
passed along to the GPU for execution.

GT-Pin modifies this process at two points, as shown in the
middle and right sides of Figure 1. First, when the OpenCL
runtime is initially called by the application, GT-Pin intercepts
the call and inserts a GT-Pin initialization routine, which
notifies the GPU driver that GT-Pin has been invoked. At this
time, a memory space called a trace buffer is allocated using
malloc. The trace buffer is accessible by both the CPU and
GPU and will be used to hold profiling data.

The GPU driver is the second point where GT-Pin must
make modifications. After the driver compiles the kernel
source code into machine-specific assembly, rather than al-
lowing the driver to send the binary directly to the GPU
for execution, the binary is diverted to a GT-Pin binary re-
writer. The binary re-writer inserts profiling instructions into
the program’s assembly code. The injected instrumentation
differs depending on the profiling data GT-Pin’s users wish
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Fig. 1. The GT-Pin Implementation makes multiple changes to the OpenCL runtime and the GPU driver, and adds a new GT-Pin binary re-writer and a
CPU post-processor. From a user perspective, however, the tool is easy to use and non-intrusive, with low overheads, no perturbation, and no source code
modifications or recompilation required.

to collect. For example, to track dynamic basic block counts,
GT-Pin adds instructions to initialize a basic block counter at
the program’s start, to update a counter at each block, and to
write the final counter value to the trace buffer at the program’s
end. Once the re-writer finishes inserting profiling instructions,
the GPU driver passes the instrumented binary to the GPU.
Then, as the program executes, profiling data is sent to the
trace buffer.

Finally, when GPU execution concludes, GT-Pin has the
CPU read the profiling results from the trace buffer to post-
process the data and generate a user report.

B. Types of information that GT-Pin can collect

GT-Pin can observe everything that is happening at the level
of both the kernel source and machine-specific binary, so it is
able to capture many kinds of profiling data, including:

• static and dynamic instruction execution counts for the
source and assembly;

• static and dynamic distributions of opcodes;
• static and dynamic SIMD width counts;
• static and dynamic basic block counts;
• thread cycles in kernel and non-inlined functions;
• latency for memory instructions per thread;
• cache simulation through the use of memory traces;
• memory bytes read and written per instruction; and
• utilization rates of per execution unit SIMD channels.

To reduce overheads, users may collect only the desired
subset of these statistics by writing custom profiling tools.
For example, for the simulation subset selection in Section V,
we wrote a custom GT-Pin tool that collected only instruction
counts and opcodes, basic block counts, and memory bytes
read and written per instruction.

C. Overheads and limitations

Like Pin, GT-Pin guarantees that the side-effects of inserting
instructions do not perturb program execution. During instru-
mentation, GT-Pin minimizes the number of inserted instruc-
tions. For example, when counting dynamic instructions, GT-
Pin inserts counter increments only once per basic block rather
than per instruction. To profile timing events (e.g., thread
cycles spent in kernels), GT-Pin inserts a simple timer call,

which reads the event timer register. For this type of tracking,
we observed timer read overheads of fewer than 10 cycles.
From a user perspective, GT-Pin profiling runs take only a
little longer than uninstrumented executions. While collecting
data for the benchmark characterization study in Section IV,
we observed 2-10X overheads. These overheads are very small
when compared to the up to 2,000,000X slowdowns required
to collect the same information through simulation.

The current version of GT-Pin works only on Intel architec-
tures and for OpenCL programs, although the design concepts
could be applied to GPU architectures from other vendors.
This would require a new driver implementation and a new
ISA specific binary re-writer for each architecture.

IV. A STUDY OF LARGE OPENCL APPLICATIONS

This section presents performance data relevant to GPU de-
sign for 25 commercial and benchmark applications shown in
Table I. All of the programs are written in OpenCL, and come
from three sources. First, there are 15 applications from the
CompuBench CL 1.2 desktop and mobile suites [12] spanning
the domains of computer vision, physics, image processing,
throughput, and graphics. Next, there are three applications
from the SiSoftware Sandra 2014 suite [26], including two
cryptography benchmarks and a GPU performance benchmark.
Finally, there are seven video rendering benchmarks from the
Sony Vegas Pro Test Project [29]. Sony Vegas Pro 2013 is a
video editing tool [28], and the seven benchmarks are pieces
of a press release project, each demonstrating different kinds
of video attributes such as crossfades and Gaussian blurs.
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Fig. 2. The Processor Architecture of our test system, which has an Intel
Core i7-3770 CPU and HD 4000 GPU.

A. Experimental system

All applications and benchmarks were run on a machine
with an Intel Core i7-3770 CPU and an Intel HD 4000 GPU,



 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

AVERAGE

cb-graphics-t-rex

cb-physics-ocean-surf

cb-throughput-bitcoin

cb-vision-facedetect

cb-vision-tv-l1-of

cb-physics-part-sim-64k

cb-graphics-provence

cb-gaussian-buffer

cb-gaussian-image

cb-histogram-buffer

cb-histogram-image

cb-physics-part-sim-32k

cb-throughput-ao

cb-throughput-juliaset

cb-vision-facedetect

sandra-crypt-aes128

sandra-crypt-aes256

sandra-proc-gpu

sonyvegas-proj-r1

sonyvegas-proj-r2

sonyvegas-proj-r3

sonyvegas-proj-r4

sonyvegas-proj-r5

sonyvegas-proj-r6

sonyvegas-proj-r7

D
y
n

a
m

ic
 E

x
e

c
s

(c) Dynamic GPU Work 

Kernel Count
Basic Blk Count

Instr. Count

 1

 10

 100

 1000

 10000

S
ta

ti
c
 O

c
c
u

re
n

c
e

s

(b) GPU Program Structures

Unique Kernels
Unique Basic Blks

0 %

20 %

40 %

60 %

80 %

100 %

%
 A

P
I 

C
a

lls

(a) OpenCL API Call Breakdown

Other
Synchronization

Kernel

Fig. 3. Benchmark Characterization. OpenCL call breakdowns (% synchronization, kernel, and other API calls) were measured on the CPU host using
CoFluent; program structure counts (unique kernels and static basic blocks) and dynamic work counts (executions of kernels, basic blocks, and instructions)
were measured on the GPU device using GT-Pin.

TABLE I
BENCHMARKS USED IN THIS STUDY.

Source Applications

CompuBench CL
1.2 Desktop [12]

Graphics T-Rex, Physics Ocean Surf, Physics Part Sim 64K,
Throughput Bitcoin, Vision Facedetect, Vision Tv-l1-of

CompuBench CL
1.2 Mobile [12]

Graphics Provence, Gaussian Buffer, Gaussian Image, His-
togram Buffer, Histogram Image, Physics Part Sim 32K,
Throughput Ao, Throughput Juliaset, Vision Face Detect

SiSoftware San-
dra 2014 [26]

Crypto Aes128, Crypto Aes256, Processor GPU

Sony Vegas Pro
2013 [28]

Press Project Region 1, Region 2, Region 3, Region 4, Region
5, Region 6, Region 7

both of the “Ivy Bridge” generation. As depicted in Figure 2,
the HD 4000 has 16 execution units (EUs) organized into two
subslices. The EUs are simultaneous multi-threaded (SMT)
processor units, which are highly optimized for floating point
and integer computations. Each EU has 8 hardware threads
per core for a total of 128 simultaneously executing hardware
threads. The GPU can perform at a peak rate of 332.8 GFLOPS
and has a maximum frequency of 1150 MHz. The system has
16 GB RAM and runs the Windows 7 64-bit operating system.
OpenCL Version 1.2 is used for the runtime, and the GPU
driver version is 15.33.30.64.3958.

B. Profiling results

At program execution time, the CPU was specified as
the OpenCL host, and the GPU was specified as the
device. As a convention, data reported at granularities
smaller than a kernel invocation (i.e., one execution of a

clEnqueueNDKernelRange) are aggregate counts across
hardware threads.

Calls between the CPU and GPU (Figure 3a). First, we
examine how the CPU and GPU communicate through the
OpenCL API. GT-Pin tracks only GPU instructions, so we
used the Intel CoFluent CPR API tracing tool [3] to count
and categorize OpenCL API calls made by the CPU. To
collect the name and arguments of every runtime API call,
CoFluent intercepts the calls at execution time just before they
application passes them to the OpenCL driver. Application
performance is unaffected by this capture. Figure 3a divides
the API calls made by our 25 applications into three types: ker-
nel invocations (i.e., clEnqueueNDKernelRange calls),
synchronization calls (those previously listed in Section II),
and other API calls, which include program setup, post-
processing, and cleanup and supply arguments to kernels.
Since the results are reported as percentages, the figure does
not show that the 25 applications vary significantly in terms of
the total number of OpenCL API calls, from just over 700 calls
to over 160,000 calls. The applications are somewhat more
consistent in terms of their usage of synchronization and kernel
calls. Most applications initiate GPU work through kernel calls
with about 15% of the total API calls, though in the case of
throughput bitcoin and physics part-sim 32K,
use as few or as many as 4.5% and 76.5%, respectively.
Synchronization calls unsurprisingly tend to comprise only a
small percentage of the total calls, on average 6.8%, and for the
majority of applications less than 3%. The application that uses
the highest proportion of synchronization calls (throughput
juliaset at 25.7%) has the fewest total API calls of any
program at 703.



GPU program structures (Figure 3b). Using GT-Pin, we
next profiled the static program structures created within the
kernels. The unique kernels counted in the first set of bars
in Figure 3b are the GPU’s analogue of CPU procedures.
Applications vary widely in the number of unique kernel
programs they contain, ranging from 1 to 50 kernels, with
a mean of 10.2. Looking at a smaller granularity, we found
that each program has at least 7 and at most 11,500 unique
basic blocks within these kernels, with a mean of 1139.

Dynamic GPU work (Figure 3c). The number of unique
kernels has little correlation with the number of kernel in-
vocations (initiated by clEnqueueNDKernelRange calls),
which range from 55 to over 18,000, with a mean of 4764.
Inside the kernels, 3.7 billion to 2.9 trillion GPU instructions
were executed depending on the application (with a mean of
227 billion), within 44 million to 180 billion total basic block
executions (on average, 13 billion).

Dynamic instruction mixes (Figure 4a). Figure 4a shows
the percentage of opcodes in five categories including logic,
control, computation, send, and move instructions. The logic
instructions, which include and, or, xor, shift, and
compare instructions among others, are heavily used, as are
the mov instructions. This is to support vector operations, such
as loading vectors and arithmetic operations within vectors.
The control instructions account for a smaller overall propor-
tion, at an average of 7.3% of total instructions, and compu-
tation instructions account for 36.2% of the total instructions.
The proc gpu application stands out with a relatively large
proportion of computation instructions (91%), because it is
designed to stress-test GPU performance. In GEN ISA, Intel
GPU’s instruction set architecture [10], send instructions make
up all of the memory communications between hardware
threads and execution units. In our applications they account
for 5.1% of the overall instructions across applications.

SIMD vector lengths (Figure 4b). In general, the ap-
plications take reasonable advantage of data-parallelism. All
use a large proportion of 16- and 8-wide SIMD vectors:
they comprise 52% and 45% of the instructions, respectively,
across applications. Single-width instructions are just 4% of
the instructions on average, 4-wide instructions are much less
common (<0.1% across all applications, and 0.3% of the 6
applications that do use them), and 2-wide instructions are
never used.

Memory operations (Figure 4c). Finally, we tracked the
cumulative bytes read and written to memory across all GPU
hardware threads. The two cryptography applications read the
most, at 624 and 2174 GB apiece. The seven Sony video
rendering applications were on the high end of writes, and
tended to write many more bytes (up to 525X more for
proj-r5) than they read. On average across all applications,
however, the opposite was true: an average of 105 GB were
written and 1110 GB were read.

V. SELECTING GPU SIMULATION SUBSETS

As we just saw, computational GPU benchmarks can be
extremely large. Simulating such large benchmarks to deter-

mine their performance on future architectures is a problem
that until now has been unaddressed. GT-Pin profiling can
be used to speed simulation by providing the information
necessary to choose small, representative program subsets to
simulate from within the large benchmarks. Unlike prior work
in simulation subset selection [2], [25], this selection process
does not require simulation, allowing us to target extremely
large applications that may be prohibitively long to simulate
even once in full.

This section describes our GT-Pin-enabled GPU simula-
tion subset selection methodology. GPUs pose a number of
unique challenges to address relative to existing CPU selec-
tion methodologies (Section V-A). In the experiments that
follow, we explore how computational GPU programs can
be represented as temporal intervals and architectural features
(Section V-B), how to rapidly identify the best interval and
feature set for a given application (Section V-C), and how
to trade simulation time for accuracy (Section V-D). Finally,
we validate that the selections made based on one profiled
execution are accurate across multiple execution trials on
different processor architecture generations (Section V-E).

A. CPU vs. GPU subset selection

First presented over ten years ago [25], simulation subset
selection is a well-studied field in the CPU domain [2], [13],
[21]–[23], [25]. In most of these works and in industry, a
standard procedure is used to select simulation subsets. The
procedure is as follows: (1) Profile the program. (2) Divide
the program trace into intervals that serve the dual purpose
of encapsulating periodic program behavior and marking the
starting and stopping points of the simulation subsets (that will
be selected in future steps). (3) For each interval, construct
a unique feature vector that reflects the interval’s architec-
tural features. The feature vector’s entries count the dynamic
occurrences of select runtime events such as the execution
of a particular basic block or procedure. (4) Group similar
feature vectors into a small number of clusters (e.g., 10) using
machine learning. (5) Choose a representative feature vector
per cluster, typically the centroid. Additionally, compute a
representation ratio per cluster, by dividing the number of
total dynamic instructions across intervals in the cluster by the
number of total dynamic instructions in the whole program.
This metric gauges the impact a given cluster has on overall
program performance. (6) The small number of intervals to
which the chosen feature vectors belong make up the selected
simulation subset. Simulate this subset of program intervals in
detail, while ignoring the remainder of the program by fast-
forwarding or check pointing. (7) Extrapolate the full-program
performance from the results of simulating the representative
subset. To do this, simply take the average of each interval’s
simulated performance, weighted by the representation ratio.

Adapting the procedure for GPUs. To adapt the above
procedure to GPUs, we had to answer several open-ended
questions. First, how to build a GPU selection methodology
that is architecturally independent and not tied to a specific
GPU platform or ISA. To achieve architectural independence,



 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

AVERAGE

cb-graphics-t-rex

cb-physics-ocean-surf

cb-throughput-bitcoin

cb-vision-facedetect

cb-vision-tv-l1-of

cb-physics-part-sim-64k

cb-graphics-provence

cb-gaussian-buffer

cb-gaussian-image

cb-histogram-buffer

cb-histogram-image

cb-physics-part-sim-32k

cb-throughput-ao

cb-throughput-juliaset

cb-vision-facedetect

sandra-crypt-aes128

sandra-crypt-aes256

sandra-proc-gpu

sonyvegas-proj-r1

sonyvegas-proj-r2

sonyvegas-proj-r3

sonyvegas-proj-r4

sonyvegas-proj-r5

sonyvegas-proj-r6

sonyvegas-proj-r7

D
a

ta
 B

y
te

s

(c) GPU Memory Activity

Bytes Read
Bytes Written

0 %

20 %

40 %

60 %

80 %

100 %

%
 D

y
n

a
m

ic
 

In
s
tr

u
c
ti
o

n
s

(b) SIMD Widths

SIMD Width =   1
SIMD Width =   2
SIMD Width =   4
SIMD Width =   8
SIMD Width = 16

0 %

20 %

40 %

60 %

80 %

100 %

%
 D

y
n

a
m

ic
 

In
s
tr

u
c
ti
o

n
s

(a) Instruction Mixes

Sends
Computation

Control
Logic

Moves

Fig. 4. GPU Work. GT-Pin can also measure GPU instruction mixes, the SIMD widths of instructions (i.e., how data-parallel an application is), and the
cumulative number of bytes read and written to memory across hardware threads.

TABLE II
THE PROGRAM INTERVAL SPACE EXPLORES THREE DIFFERENT WAYS OF

DIVIDING GPU PROGRAM TRACES INTO INTERVALS.

Intervals per Program
Interval Bound Relative Size Min Avg Max

Synchronization calls large 56 545 2115
∼100M instructions medium 55 916 3121
Single kernel boundaries small 55 4749 18157

we based our methodology around OpenCL programming
units and concepts. The next challenging decision was how
to divide the program into intervals. Interval division 1) must
not pose synchronization problems, 2) must strike a balance
between being large enough to capture periodic behaviors but
not so large as to capture multiple types of behaviors, and 3)
must have appropriate boundaries for later simulation, since
intervals mark the start and stop points of the selected subsets.
According to GPU hardware designers we spoke with, it is
a strict limitation that any GPU simulation subset selections
be at least a full kernel call in length and that they do not
span multiple OpenCL synchronization calls. Another open
question was what feature vectors will accurately summarize
the behavior of a GPU execution interval.

B. GPU interval and feature exploration

To answer these questions, we ran experiments using three
types of interval divisions and ten types of feature vectors.
In each of these experiments we used the profiling informa-
tion from GT-Pin and CoFluent to divide the execution into
intervals and populate the feature vectors.

Interval space. Previous CPU work divides program traces

TABLE III
THE PROGRAM FEATURE SPACE EXPLORES TEN FEATURE VECTORS,

WITH THE KEYS BELOW AND VALUES THAT COUNT THE DYNAMIC
EXECUTION COUNT OF THE RESPECTIVE KEY.

Feature Key Identifier

Kernel KN
Kernel, Argument Values KN-ARGS
Kernel, Global Work Size KN-GWS
Kernel, Argument Values, Global Work Size KN-ARGS-GWS
Kernel, # Bytes Read, # Bytes Written KN-RW

Basic Block BB
Basic Block, # Bytes Read BB-R
Basic Block, # Bytes Written BB-W
Basic Block, # Bytes Read, # Bytes Written BB-R-W
Basic Block, # Bytes Read + # Bytes Written BB-(R+W)

into uniform intervals of a given number of dynamic instruc-
tions, for example 100M instructions [25]. However, such rigid
divisions will not work on a GPU as they violate the con-
straint that GPU intervals should not span kernel boundaries
or synchronization calls. Instead, we experiment with three
variable length interval sizes summarized in Table II. Syn-
chronization intervals are the largest division, splitting traces at
each OpenCL synchronization call. The next smallest intervals
further subdivide these into roughly 100M dynamic instruction
segments. In order not to split an interval across kernels or a
kernel across intervals, this results in some intervals that are
slightly larger or smaller than exactly 100M instructions, so we
call the division “Approximately 100M instructions”. Finally,
we consider each kernel invocation its own interval. While
some kernels are larger than 100M instructions, most are not,
resulting in the smallest average interval size.



Feature space. Having broken a program into intervals,
the second question is which program features to use to
characterize that interval for clustering. We experiment with
the ten types of feature vectors summarized in Table III. Each
feature vector is essentially a set of (key,value) pairs, where the
key is a distinct program event such as “calls to kernel foo”
or “calls to kernel foo with argument 256”, and the values
are counts of the number of times this event occurred in a
given interval. As Table III shows, our experiments explore
whether there is value in increasing the specificity of events
to include not only computational information such as kernel
or basic block ID, but also data interaction such as the kernel
arguments or the number of bytes read or written.

To ensure that these vectors place appropriate value on
differently sized kernels and basic blocks, we weight each
vector entry by instruction count. For example, if an interval
executes block A 10 times and block B 5 times, these counts
alone would suggest that A is a more important feature of
this interval. However, if A were 3 instructions long and B
were 20, then the weighted score of 5 × 20 = 100 for B
versus 10 × 3 = 30 for A will better reflect their actual
importance. Note that this weighting will also impact the
cluster representation ratios that are computed in the next
section.

Quantifying simulation error. Once intervals have been
divided and feature vectors constructed, any tool can be used
to cluster and score them. We used the standard tool from prior
CPU work, SimPoint. Specifically, we used SimPoint version
3.0 which can handle variable-sized intervals [8]. SimPoint
takes program feature vectors as input, and uses the k-means
clustering algorithm to group similar feature vectors. It then
computes the centroid of each cluster, based on the total
element count of each vector, and returns these centroids. We
trace these reported feature vector centroids back to their asso-
ciated intervals to get our simulation subset selections. Along
with the cluster centroids, SimPoint also returns representation
ratios for each of the selected feature vectors. SimPoint allows
users to specify the maximum number of clusters and thus
selections, but may return fewer than this maximum if its
machine learning algorithm judges it appropriate to do so. The
maximum clustering and therefore selection subset count is set
to 10 in all the experiments that follow.

Traditionally, detailed simulation of a full program is used
to evaluate the representativeness of the selected subsets.
However, since we needed to evaluate 30 interval size/feature
vector configurations for our 25 large applications, detailed
full-program simulation was out of the question. Instead, we
developed a heuristic for validating individual selections based
on per-kernel timing data, which we collected with the CoFlu-
ent CPR tool. The validation heuristic is an error percentage
of the measured whole program seconds per instruction (SPI)
versus the projected whole program SPI, extrapolated from the
selections’ timings and weights:

Error =
abs(Measured SPI− Projected SPI)

Measured SPI
∗ 100% (1)

To get the measured seconds per instruction of the whole

program, we divide the combined time in seconds taken by
all of the kernel invocations by the total number of dynamic
instructions executed by all of the kernel invocations. To get
projected SPI, we first find the SPI per selected interval,
dividing the sum of CoFluent reported time in seconds of
the kernels in the selected interval by the sum of dynamic
instruction execution counts reported by GT-Pin for the kernels
in the interval. Then, we multiply each selected interval’s SPI
by its SimPoint ratio, and add these products together to get
the projected whole program SPI.

Interval and feature exploration results. Figure 5 shows
how the 30 types of interval/feature vector combinations fared
in terms of selecting representative program subsets. For
brevity, the figure presents error and selection size results of
just 3 sample applications, but we tested all 30 combinations
on all 25 applications. The results of the remaining 22 appli-
cations lead to the same conclusion as the 3 shown: no single
combination of interval size and feature vector is ’best’ in
terms of error or selection size across all applications. There
are, however, several trends across applications. For example,
basic block based features tend to outperform kernel based fea-
tures, and features with memory access counts improve basic
block based features for most applications. The applications
with the fewest unique kernels tend to have high error rates
when kernel-only features are used.

As for interval size, synchronization-bounded intervals tend
to produce the smallest errors, but since they are also the
largest division, they produce the largest selection sizes. For
basic block based features, interval size tended to have less
of an effect on error rate than the effect of interval size
on kernel based features. If we were to choose the best
average interval size/feature vector combination of the 30
tested, the combination with the smallest error rate would
be basic block intervals with no memory features (BB), and
synchronization bounded intervals. This combination averages
1.5% error across all 25 applications, and selects subsets that
are 1.9% of the total program instructions (corresponding to
a 53X simulation speedup). In the worst case, one individual
application has an error of 8.8% and another application has a
selection containing 24.0% of the total program instructions.

C. Identifying application specific intervals and features

To improve these error and selection size numbers, we can
leverage the fact that the combination that works best for
one application is not always what works best for another.
Rather than choosing one universal interval and set of fea-
tures, we can choose the best interval and features for each
individual application. Somewhat counter-intuitively, there is
almost no additional overhead for doing so, as we need to
profile (natively) each application just once to characterize the
error and selection sizes for all 30 interval and feature vector
combinations.

Picking the error-minimizing interval and feature combina-
tion for each individual application achieves an average error
rate of just 0.3%, with the worst case error being 2.1% for the
histogram buffer application. Figure 6 shows the error-
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Fig. 7. Optimizing for Both Error and Selection Size means choosing
the per application configuration that has the smallest selection size with an
error below a given threshold. For example, with an error threshold of 3%,
simulation speedups average 223X.

minimal configuration for each of the 25 applications. Of the
25 applications, only 5 chose kernel-based features while the
remainder chose basic block features.

As for interval sizes, 3 applications chose single kernel long
slices, 11 chose synchronization bounded slices, and 11 chose

100M instruction slices. Memory-based features were chosen
by 20 of the 25 applications. These diverse choices in ‘best’
configuration support our previous observation that no single
configuration is suitable for all applications.

D. Co-optimization of simulation time and error

Minimizing the error without regard to simulation speedup
may still result in subsets that are too large for certain
simulation needs. Across applications, this policy resulted
in an average simulation speedup of 35X, but just 6X in
the worst case. To improve these numbers, we tried jointly-
optimizing for error and selection size. By setting an accept-
able error threshold rather than aiming to minimize error,
we can greatly accelerate simulation. Specifically, we choose
the per-application configuration with the smallest selection
size that also has an error below a given threshold. If no
configuration has an error below the specified threshold, we
choose the configuration with the smallest error, regardless
of selection size. Figure 7 shows the results of applying a
range of different thresholds. The furthest left point on the
plot shows the cross-application average error and simulation
speedup when selection configurations are chosen to minimize
error. The remaining points show error thresholds of 0.5% and
1% to 10% at steps of 1%. As error thresholds are relaxed to
higher values, the speedups monotonically increase. At the far
right end of the graph, when we set the error threshold to 10%,
we get an average error across applications of 3.0% and an
average simulation speedup of 223X.

E. Validating the selections for future architectures

We have already seen that the selected subsets can ac-
curately predict the performance of full-programs executed
on the same hardware. Here, we test whether the selections
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Fig. 8. Timed Validation. One trial’s selections are still accurate across trials, frequencies, and architecture generations.

built from one set of profiling data can predict full program
execution across multiple trials run on different architectures.

Quantifying cross-trial and cross-architecture accuracy.
To test a single set of selections across trials and architectures,
we first need to guarantee that the kernel calls contained in
the selected intervals will be present and findable in future
executions. Thanks to non-determinism, this is not automat-
ically the case, but we can force it to be so with a record
and replay feature of the previously discussed CoFluent tool.
CoFluent’s record mechanism captures API call data as it
passes between the application and the OpenCL runtime. In
addition to call names, the recorder captures configuration
parameters, memory buffers and images, and OpenCL kernel
code and binaries. This recorded information can later be
replayed and runs just as a normal executable on native
hardware would, with the only difference being a consistent
and repeatable ordering of API calls.

We generate just one original set of selections and repre-
sentation ratios per application using a CoFluent recording.
We next verify this selection against measured SPIs computed
from new replayed trials’ timing and instruction data. Then,
we compute the error of the original selection on the new trial.

Cross trial accuracy. Our first experiments tested the
selection of one trial against multiple future trials on the same
machine. The top plot of Figure 8 shows the resulting error
rates for the new Trials 2-9 versus the original Trial 1, for
each of the 25 benchmark applications. Most of the error rates
are below 3% (with many below 1%), indicating that a single
trial’s selections can be successfully used to predict the whole
program performance of other trials.

Cross frequency accuracy. To see how the selections hold
up for future architectures with different processing rates, we

next validated the original set of selections against timing data
for new trials executed at varying GPU frequencies. All of the
data previously reported in this paper use the GPU’s maximum
frequency of 1150MHz, so the new frequency tests use lower
frequencies, specifically at 1000, 850, 700, 550, and 350MHz.
The middle plot of Figure 8 shows the resulting error rates.
Again, most are less than 3%, indicating that the selections of
a single frequency can be used to predict the whole program
performance of executions at other frequencies.

Cross architecture generation accuracy. As a final ex-
periment, we tested whether our selections could predict
whole program performance across different GPU architecture
generations. Specifically we used selections collected on our
Ivy Bridge HD4000 GPU to predict program performance
on a newer Intel GPU, the HD4600 Haswell processor. The
primary difference between the two processors is the number
of execution units (EUs) within each GPU: the HD4000 has
16 EUs whereas the HD4600 has 20 EUs. To compare the two
processors’ raw performance, we ran LuxMark [16] on both
machines. LuxMark is a popular cross-platform benchmarking
tool, which scores GPUs on their ability to render different
test scenes of varying complexity. The results (higher scores
are better) were 269 for the HD4000 and 351 for HD4600,
demonstrating the performance increases due to parallelism
on the HD4600.

The bottom plot of Figure 8 shows the error rates of using
HD4000 selections to predict HD4600 performance. Once
again, most of the error rates are less than 3%, and the worst
case application (gaussian-image, one of the shortest
benchmarks in terms of kernel invocations) has 11% error.
These results show that a single set of selections can predict
the performance even on architectures with very different



performance characteristics.

VI. RELATED WORK

This is the first work to characterize large OpenCL pro-
grams, and one of the first works to explore accelerating GPU
simulation through the selection of representative subsets.

GPU application analysis. There are two related profiling
tools from the Georgia Institute of Technology: Ocelot [5],
[11] and Lynx [6]. Ocelot is a GPU compiler that instruments
programs at compile time to measure various performance
statistics. Unlike our work Ocelot emulates programs rather
than running them on native hardware, it also does not yet fully
support OpenCL compilation. Lynx, a binary instrumentation
tool that stems from Ocelot does support OpenCL execu-
tion on native hardware, but unlike GT-Pin, Lynx has only
been demonstrated to work on small programs (their tested
applications averaged 2 million times fewer dynamic GPU
instructions than ours). Lynx also instruments the NVIDIA
PTX instruction set rather than the GEN ISA, and does not
offer any solutions for selecting simulation subsets as we do.

Several additional works also characterize GPU programs,
although most study much smaller applications and focus on
CUDA workloads, which are NVIDIA specific, as opposed to
architecture-independent OpenCL workloads. Zhang et al. [31]
model the instruction pipeline, shared memory access, and
global memory accesses of GPUs to accurately predict —
and eventually improve — the performance of overlying
applications. Their tested application has 6500 times fewer
instructions than the average application studied in this work.
Mistry et al. [18] use built-in OpenCL API calls rather than
an external profiler to analyze a computer vision algorithm
for kernel call durations, average and variations in time spent
processing video frames, and GPU command queue activity.
Their API-based profiling is much more limited in terms of the
types of data it can collect versus GT-Pin’s instrumentation-
based profiling. Bakhoda et al. [1] use an instrumented version
of the GPGPU-Sim simulator to collect a variety of data
including instruction mixes, memory and branching statistics,
and parallel execution activity for a large collection of bench-
marks, but unlike GT-Pin their tool has hefty overheads, on
the order of a million times the original program execution
time.

Finally, there are commercial tools that monitor program
performance (e.g., [20]), but they do not measure instruction-
level metrics as we do.

Simulation region selection. There are just two other works
in the area of GPU simulation subset selection. The first, by
Huang et al. [9], finds representative GPU simulation subsets
using a similar overall methodology to our work, with single
kernel invocation intervals and compound feature vectors that
include a metric analogous to our global work size, a mem-
ory request count, and measures of intra-kernel parallelism.
Besides the differences in feature vector construction, the
work differs from ours in two significant ways. First, they
only demonstrate that their feature vector construction works
for 12 very small applications, with an average of just 34

kernels invoked per application (versus our applications that
average 4749 kernel invocations a piece). Second, while our
simulation time savings come entirely from skipping whole
kernel invocations, their savings come primarily from skipping
parts of kernel invocations. The second GPU subset selection
paper is a work by Yu et al. [30]. This work also reduces
simulation sizes by choosing partial kernel invocations, but
rather than having the simulator execute intra-kernel samples,
they reconstruct reduced-loop count micro-kernels that can be
simulated in full. It is possible that such an partial selection
method could be combined with our method of skipping whole
invocations for improved simulation speedups.

Since the first proposal of CPU simulation subset selec-
tion [25], there have been dozens of papers published in the
area. Here we address only those most relevant to this paper,
such as the PinPoints paper by Patil et al. [21]. Like our work,
PinPoints uses dynamic instrumentation to find representative
simulation subsets, but it does so only for CPU programs.
Follow-up works by the same authors address a repeatability
problem that arose between profiling and tracing runs [22]
(we avoid this through the use of CoFluent recordings), and
a toolkit for finding representative subsets deterministically
and check-pointing them for Pin-based simulation of x86
programs [23]. As we do for GPUs, Lau et al. [13] explore
a variety of appropriate feature vectors for CPU simulation,
finding that basic blocks, loop frequency counts, and regis-
ter reuse counts work best to encapsulate interval behavior.
Finally, the recent BarrierPoint work by Carlson et al. [2]
finds representative subsets in parallel OpenMP programs by
aligning their interval divisions with synchronization points,
much as we do by restricting our GPU programs to kernel
invocation boundaries or greater.

VII. SUMMARY

This paper took three steps towards speeding up the design
of GPUs for computational workloads. First, it introduced a
new, fast GPU profiling tool called GT-Pin, which measures a
variety of instruction-level performance factors of applications
as they run natively on existing GPUs. Next, it used GT-Pin
to characterize 25 very large OpenCL benchmarks, exploring
several features relevant to GPU design. Finally, it demon-
strated that representative subset selection can successfully
accelerate GPU design, by finding small but representative
program subsets for GPU developers to simulate in lieu of full
programs. These advances enable designers to optimize for the
diverse set of computational workloads that are currently being
developed for use on GPUs.
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