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Overview
Some NLP problems:

� Information extraction
(Named entities, Relationships between entities, etc.)

� Finding linguistic structure
Part-of-speech tagging, “Chunking”, Parsing

Techniques:

� Log-linear (maximum-entropy) taggers

� Probabilistic context-free grammars (PCFGs)
PCFGs with enriched non-terminals

� Discriminative methods:
Conditional MRFs, Perceptron algorithms, Kernel methods



Some NLP Problems
� Information extraction

– Named entities

– Relationships between entities

– More complex relationships

� Finding linguistic structure

– Part-of-speech tagging

– “Chunking” (low-level syntactic structure)

– Parsing

� Machine translation



Common Themes
� Need to learn mapping from one discrete structure to another

– Strings to hidden state sequences
Named-entity extraction, part-of-speech tagging

– Strings to strings
Machine translation

– Strings to underlying trees
Parsing

– Strings to relational data structures
Information extraction

� Speech recognition is similar (and shares many techniques)



Two Fundamental Problems

TAGGING: Strings toTagged Sequences

a b e e a f h j) a/C b/D e/C e/C a/D f/C h/D j/C

PARSING: Strings toTrees
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Information Extraction: Named Entities

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits soared at[Company Boeing Co.], easily topping forecasts
on [Location Wall Street], as their CEO[PersonAlan Mulally]

announced first quarter results.



Information Extraction: Relationships between Entities

INPUT:
Boeing is located in Seattle. Alan Mulally is the CEO.

OUTPUT:

fRelationship =Company-Location
Company =Boeing
Location =Seattleg

fRelationship =Employer-Employee
Employer =Boeing Co.
Employee =Alan Mulallyg



Information Extraction: More Complex Relationships
INPUT:
Alan Mulally resigned as Boeing CEO yesterday. He will be
succeeded by Jane Swift, who was previously the president at Rolls
Royce.

OUTPUT:

fRelationship =Management Succession
Company =Boeing Co.
Role =CEO
Out =Alan Mulally
In = Jane Swiftg

fRelationship =Management Succession
Company =Rolls Royce
Role =president
Out =Jane Swiftg



Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective

: : :



“Chunking” (Low-level syntactic structure)

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

[NP Profits] soared at[NP Boeing Co.], easily topping [NP
forecasts] on [NP Wall Street], as [NP their CEO Alan Mulally]

announced[NP first quarter results].

[NP : : : ] = non-recursivenoun phrase



Chunking as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/S soared/N at/N Boeing/S Co./C ,/N easily/N topping/N
forecasts/S on/N Wall/S Street/C ,/N as/N their/S CEO/C Alan/C
Mulally/C announced/N first/S quarter/C results/C ./N

N = Not part of noun-phrase
S = Start noun-phrase
C = Continue noun-phrase



Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location

: : :



Parsing (Syntactic Structure)

INPUT:
Boeing is located in Seattle.

OUTPUT:
S

NP

N

Boeing

VP

V

is

VP

V
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PP

P

in

NP

N

Seattle



Machine Translation

INPUT:
Boeing is located in Seattle. Alan Mulally is the CEO.

OUTPUT:

Boeing ist in Seattle. Alan Mulally ist der CEO.



Summary

Problem Well-Studied Class of Problem
Learning

Approaches?
Named entity extraction Yes Tagging
Relationships between entities A little Parsing
More complex relationships No ??
Part-of-speech tagging Yes Tagging
Chunking Yes Tagging
Syntactic Structure Yes Parsing
Machine translation Yes ??



Techniques Covered in this Tutorial
� Log-linear (maximum-entropy) taggers

� Probabilistic context-free grammars (PCFGs)

� PCFGs with enriched non-terminals

� Discriminative methods:

– Conditional Markov Random Fields

– Perceptron algorithms

– Kernels over NLP structures



Log-Linear Taggers: Notation
� Set of possible words =V , possible tags =T

� Word sequencew[1:n] = [w1; w2 : : : wn]

� Tag sequencet[1:n] = [t1; t2 : : : tn]

� Training data isn tagged sentences,
where thei’th sentence is of lengthni

(wi
[1:ni]
; ti[1:ni]) for i = 1 : : : n



Log-Linear Taggers: Independence Assumptions
� The basic idea

P (t[1:n] j w[1:n]) =
Qn

j=1 P (tj j tj�1 : : : t1; w[1:n]; j) Chain rule
=
Qn

j=1 P (tj j tj�1; tj�2; w[1:n]; j) Independence
assumptions

� Two questions:

1. How to parameterizeP (tj j tj�1; tj�2; w[1:n]; j)?

2. How to findargmaxt[1:n] P (t[1:n] j w[1:n])?



The Parameterization Problem

Hispaniola/NNP quickly/RB became/VB an/DT
important/JJ base/?? from which Spain expanded
its empire into the rest of the Western Hemisphere .

� There are many possible tags in the position??

� Need to learn a function from (context, tag) pairs to a probability

P (tagjcontext)



Representation: Histories
� A history is a 4-tupleht�1; t�2; w[1:n]; ji

� t�1; t�2 are the previous two tags.

� w[1:n] are then words in the input sentence.

� j is the index of the word being tagged



Representation: Histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

� History = ht�1; t�2; w[1:n]; ji

� t�1; t�2 = DT, JJ

� w[1:n] = hHispaniola; quickly; became; : : :i

� j = 6



Feature–Vector Representations
� Take a history/tag pair(h; t).

� �s(h; t) for s = 1 : : : d are features representing
tagging decisiont in contexth.

�1000(h; t) =

8>>><
>>>:

1 if current wordwi is base
andt = VB

0 otherwise

�1001(h; t) =

8<
: 1 if ht�2; t�1; ti = hDT, JJ, VBi

0 otherwise



Representation: Histories
� A history is a 4-tupleht�1; t�2; w[1:n]; ii

� t�1; t�2 are the previous two tags.

� w[1:n] are then words in the input sentence.

� i is the index of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

� t�1; t�2 = DT, JJ

� w[1:n] = hHispaniola; quickly; became; : : : ; Hemisphere; :i

� i = 6



Feature–Vector Representations
� Take a history/tag pair(h; t).

� �s(h; t) for s = 1 : : : d are features representing
tagging decisiont in contexth.

Example: POS Tagging[Ratnaparkhi 96]

� Word/tag features

�100(h; t) =

(
1 if current wordwi is base andt = VB

0 otherwise

�101(h; t) =

(
1 if current wordwi ends ining andt = VBG

0 otherwise

� Contextual Features

�103(h; t) =

(
1 if ht�2; t�1; ti = hDT, JJ, VBi

0 otherwise



Part-of-Speech (POS) Tagging [Ratnaparkhi 96]
� Word/tag features

�100(h; t) =

(
1 if current wordwi is base andt = VB

0 otherwise

� Spelling features

�101(h; t) =

(
1 if current wordwi ends ining andt = VBG

0 otherwise

�102(h; t) =

(
1 if current wordwi starts withpre andt = NN

0 otherwise



Ratnaparkhi’s POS Tagger
� Contextual Features

�103(h; t) =

(
1 if ht�2; t�1; ti = hDT, JJ, VBi

0 otherwise

�104(h; t) =

(
1 if ht�1; ti = hJJ, VBi

0 otherwise

�105(h; t) =

(
1 if hti = hVBi

0 otherwise

�106(h; t) =

(
1 if previous wordwi�1 = theandt = VB

0 otherwise

�107(h; t) =

(
1 if next wordwi+1 = theandt = VB

0 otherwise



Log-Linear (Maximum-Entropy) Models
� Take a history/tag pair(h; t).

� �s(h; t) for s = 1 : : : d arefeatures

�Ws for s = 1 : : : d are parameters

� Parameters define a conditional distribution
P (tjh) =
e
P

sWs�s(h;t)

Z(h;W)

where

Z(h;W) =

X
t02T
e
P

sWs�s(h;t
0)



Log-Linear (Maximum Entropy) Models
� Word sequencew[1:n] = [w1; w2 : : : wn]

� Tag sequence t[1:n] = [t1; t2 : : : tn]

� Histories hi = hti�1; ti�2; w[1:n]; ii

logP (t[1:n] j w[1:n]) =

nX
i=1
logP (ti j hi)

=

nX
i=1

X
s

Ws�s(hi; ti)| {z }

Linear Score

�

nX
i=1
logZ(hi;W)

| {z }

Local Normalization
Terms



Log-Linear Models
� Word sequencew[1:n] = [w1; w2 : : : wn]

� Tag sequencet[1:n] = [t1; t2 : : : tn]

logP (t[1:n] j w[1:n]) =

nX
j=1
logP (tj j hj)

=

nX
j=1

X
s

Ws�s(hj; tj)�

nX
j=1
logZ(hj;W)

where

hj = htj�2; tj�1; w[1:n]; ji



Log-Linear Models
� Parameter estimation:

Maximize likelihood of training data through gradient descent,
iterative scaling

� Search forargmaxt[1:n] P (t[1:n] j w[1:n]):
Dynamic programming,O(njT j3) complexity

� Experimental results:

– Almost 97% accuracy for POS tagging [Ratnaparkhi 96]
– Over 90% accuracy for named-entity extraction

[Borthwick et. al 98]
– Around 93% precision/recall for NP chunking
– Better results than an HMM for FAQ segmentation

[McCallum et al. 2000]



Techniques Covered in this Tutorial
� Log-linear (maximum-entropy) taggers

� Probabilistic context-free grammars (PCFGs)

� PCFGs with enriched non-terminals

� Discriminative methods:

– Conditional Markov Random Fields

– Perceptron algorithms

– Kernels over NLP structures



Data for Parsing Experiments
� Penn WSJ Treebank = 50,000 sentences with associated trees

� Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:
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Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its
natural gas and electric utility businesses in Alberta , where the company
serves about 800,000 customers .



The Information Conveyed by Parse Trees

1) Part of speech for each word

(N = noun, V = verb, D = determiner)

S

NP

D

the

N

burglar

VP

V

robbed

NP

D

the

N

apartment



2) Phrases S

NP

DT

the

N

burglar

VP

V

robbed

NP

DT

the

N

apartment

Noun Phrases (NP): “the burglar”, “the apartment”

Verb Phrases (VP): “robbed the apartment”

Sentences (S): “the burglar robbed the apartment”



3) Useful Relationships

S

NP

subject

VP

V

verb

S

NP

DT

the

N

burglar

VP

V

robbed

NP

DT

the

N

apartment

) “the burglar” is the subject of “robbed”



An Example Application: Machine Translation
� English word order is subject – verb – object

� Japanese word order is subject – object – verb

English: IBM bought Lotus
Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said



Context-Free Grammars

[Hopcroft and Ullman 1979]
A context free grammarG = (N;�; R; S) where:

� N is a set of non-terminal symbols

� � is a set of terminal symbols

� R is a set of rules of the formX ! Y1Y2 : : : Yn

for n � 0, X 2 N , Yi 2 (N [ �)

� S 2 N is a distinguished start symbol



A Context-Free Grammar for English
N = fS, NP, VP, PP, D, Vi, Vt, N, Pg

S = S

� = fsleeps, saw, man, woman, telescope, the, with, ing

R = S ) NP VP
VP ) Vi
VP ) Vt NP
VP ) VP PP
NP ) D N
NP ) NP PP
PP ) P NP

Vi ) sleeps
Vt ) saw
N ) man
N ) woman
N ) telescope
D ) the
P ) with
P ) in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase,
D=determiner, Vi=intransitive verb, Vt=transitive verb, N=noun, P=preposition



Left-Most Derivations
A left-most derivation is a sequence of stringss1 : : : sn, where

� s1 = S, the start symbol

� sn 2 ��, i.e. sn is made up of terminal symbols only

� Eachsi for i = 2 : : : n is derived fromsi�1 by picking the left-
most non-terminalX in si�1 and replacing it by some� where

X ! � is a rule inR
For example:[S], [NP VP], [D N VP], [the N VP], [the man VP],
[the man Vi], [the man sleeps]

Representation of a derivation as a tree:

S

NP

D

the

N

man

VP

Vi

sleeps



Notation
� We useD to denote the set of all left-most derivations (trees)

allowed by a grammar

� We useD(x) for a stringx 2 �� to denote the set of all
derivations whose final string (“yield”) isx.



The Problem with Parsing: Ambiguity

INPUT:
She announced a program to promote safety in trucks and vans

+

POSSIBLE OUTPUTS:
And there are more...



An Example Tree

Canadian Utilities had 1988 revenue of C$ 1.16 billion ,
mainly from its natural gas and electric utility businesses
in Alberta , where the company serves about 800,000
customers .
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A Probabilistic Context-Free Grammar

S ) NP VP 1.0
VP ) Vi 0.4
VP ) Vt NP 0.4
VP ) VP PP 0.2
NP ) D N 0.3
NP ) NP PP 0.7
PP ) P NP 1.0

Vi ) sleeps 1.0
Vt ) saw 1.0
N ) man 0.7
N ) woman 0.2
N ) telescope 0.1
D ) the 1.0
P ) with 0.5
P ) in 0.5

� Probability of a tree with rules�i ! �i is

Q
i P (�i ! �ij�i)

� Maximum Likelihood estimation

P (VP) V NP j VP) =
Count(VP) V NP)

Count(VP)



PCFGs
[Booth and Thompson 73] showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivationsD provided that:

1. The rule probabilities define conditional distributions over the
different ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite number
of steps is 1. (This condition is not really a practical concern.)



TOP

S

NP

N

IBM

VP

V

bought

NP

N

Lotus

PROB = P (TOP! S)

�P (S! NP VP) �P (N ! IBM)

�P (VP! V NP) �P (V ! bought)

�P (NP! N) �P (N ! Lotus)

�P (NP! N)



The SPATTER Parser: (Magerman 95;Jelinek et al 94)
� For each rule, identify the “head” child

S ) NP VP
VP ) V NP
NP ) DT N

� Add word to each non-terminal
S(questioned)

NP(lawyer)

DT

the

N

lawyer

VP(questioned)

V

questioned

NP(witness)

DT

the

N

witness



A Lexicalized PCFG

S(questioned) ) NP(lawyer) VP(questioned)??
VP(questioned) ) V(questioned) NP(witness) ??
NP(lawyer) ) D(the) N(lawyer) ??
NP(witness) ) D(the) N(witness) ??

� The big question: how to estimate rule probabilities??



CHARNIAK (1997)

S(questioned)

+ P (NP VP j S(questioned))

S(questioned)

NP VP(questioned)

+ P (lawyer j S,VP,NP, questioned))

S(questioned)

NP(lawyer) VP(questioned)



Smoothed Estimation
P (NP VP j S(questioned)) =

�1 �
Count(S(questioned)!NP VP)

Count(S(questioned))

+�2 �
Count(S!NP VP)

Count(S)

� Where0 � �1; �2 � 1, and�1 + �2 = 1



Smoothed Estimation
P (lawyer j S,NP,VP,questioned) =

�1 �
Count(lawyerj S,NP,VP,questioned)

Count(S,NP,VP,questioned)

+�2 �
Count(lawyerj S,NP,VP)

Count(S,NP,VP)

+�3 �
Count(lawyerj NP)

Count(NP)

� Where0 � �1; �2; �3 � 1, and�1 + �2 + �3 = 1



P (NP(lawyer) VP(questioned)j S(questioned)) =

(�1 �
Count(S(questioned)!NP VP)

Count(S(questioned))

+�2 �
Count(S!NP VP)

Count(S)

)

� (�1 �
Count(lawyerj S,NP,VP,questioned)

Count(S,NP,VP,questioned)

+�2 �
Count(lawyerj S,NP,VP)

Count(S,NP,VP)

+�3 �
Count(lawyerj NP)

Count(NP)

)



Lexicalized Probabilistic Context-Free Grammars
� Transformation to lexicalized rules

S! NP VP
vs. S(questioned)! NP(lawyer) VP(questioned)

� Smoothed estimation techniques “blend” different counts

� Search for most probable tree through dynamic programming

� Perform vastly better than PCFGs (88% vs. 73% accuracy)



Independence Assumptions
� PCFGs

S
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the

N
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N
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� Lexicalized PCFGs
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N
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Results

Method Accuracy

PCFGs (Charniak 97) 73.0%
Conditional Models – Decision Trees (Magerman 95)84.2%
Lexical Dependencies (Collins 96) 85.5%
Conditional Models – Logistic (Ratnaparkhi 97) 86.9%
Generative Lexicalized Model (Charniak 97) 86.7%
Generative Lexicalized Model (Collins 97) 88.2%
Logistic-inspired Model (Charniak 99) 89.6%
Boosting (Collins 2000) 89.8%

� Accuracy = average recall/precision



Parsing for Information Extraction:
Relationships between Entities

INPUT:
Boeing is located in Seattle.

OUTPUT:

fRelationship =Company-Location
Company =Boeing
Location =Seattleg



A Generative Model (Miller et. al)

[Miller et. al 2000] use non-terminals to carry lexical items and
semantic tags

Sis
CL

NP
Boeing
COMPANY

Boeing

VPis
CLLOC

V

is

VPlocated
CLLOC

V

located

PPin
CLLOC

P

in

NPSeattle
LOCATION

Seattle

PPin  lexical head
CLLOC  semantic tag



A Generative Model [Miller et. al 2000]

We’re now left with an even more complicated estimation problem,

P(Sis
CL ) NP

Boeing
COMPANY VPis

CLLOC)

See [Miller et. al 2000] for the details

� Parsing algorithm recovers annotated trees

) Simultaneously recovers syntactic structure and named
entity relationships

� Accuracy (precision/recall) is greater than 80% in recovering
relations



Techniques Covered in this Tutorial
� Log-linear (maximum-entropy) taggers

� Probabilistic context-free grammars (PCFGs)

� PCFGs with enriched non-terminals

� Discriminative methods:

– Conditional Markov Random Fields

– Perceptron algorithms

– Kernels over NLP structures



Linear Models for Parsing and Tagging
� Three components:

GEN is a function from a string to a set ofcandidates

� maps a candidate to a feature vector

W is a parameter vector



Component 1:GEN

� GEN enumerates a set ofcandidatesfor a sentence

She announced a program to promote safety in trucks and vans

+ GEN
S
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a program

VP

to promote NP
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in NP
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in NP
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Examples ofGEN

� A context-free grammar

� A finite-state machine

� TopN most probable analyses from a probabilistic grammar



Component 2:�

� � maps a candidate to afeature vector2 R
d

� � defines therepresentationof a candidate

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

+ �

h1; 0; 2; 0; 0; 15; 5i



Features
� A “feature” is a function on a structure, e.g.,

h(x) = Number of times A

B C

is seen inx

T1 A

B

D

d

E

e

C

F

f

G

g
T2 A

B

D

d

E

e

C

F

h

A

B

b

C

c

h(T1) = 1 h(T2) = 2



Feature Vectors
� A set of functionsh1 : : : hd define afeature vector

�(x) = hh1(x); h2(x) : : : hd(x)i

T1 A

B

D

d

E

e

C

F

f

G

g

T2 A

B

D

d

E

e

C

F

h

A

B

b

C

c

�(T1) = h1; 0; 0; 3i �(T2) = h2; 0; 1; 1i



Component 3:W

� W is aparameter vector2 R
d

� � andW together map a candidate to a real-valued score

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

+ �

h1; 0; 2; 0; 0; 15; 5i

+ � �W

h1; 0; 2; 0; 0; 15; 5i � h1:9;�0:3; 0:2; 1:3; 0; 1:0;�2:3i = 5:8



Putting it all Together
� X is set of sentences,Y is set of possible outputs (e.g. trees)

� Need to learn a functionF : X ! Y

� GEN,�,W define
F (x) = arg max

y2GEN(x)
�(y) �W

Choose the highest scoring tree as the most plausible structure

� Given examples(xi; yi), how to setW?



She announced a program to promote safety in trucks and vans

+ GEN
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a program
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to promote NP

safety PP

in NP

trucks and vans
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a program
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to promote NP

safety PP

in NP

trucks

and NP

vans
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to promote NP
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safety PP

in NP

trucks

and NP
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She
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announced NP
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a program
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to promote NP

safety

PP

in NP

trucks and vans

S

NP
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VP

announced NP

NP

NP

a program

VP
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PP

in NP

trucks

and NP
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S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

+ � + � + � + � + � + �

h1; 1; 3; 5i h2; 0; 0; 5i h1; 0; 1; 5i h0; 0; 3; 0i h0; 1; 0; 5i h0; 0; 1; 5i

+ � �W + � �W + � �W + � �W + � �W + � �W

13.6 12.2 12.1 3.3 9.4 11.1
+ argmax

S

NP

She
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announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans



Markov Random Fields
� ParametersW define a conditional distribution over candidates:

P (yi j xi;W) =

e�(yi)�WP
y2GEN(xi) e
�(y)�W

� Gaussian prior:logP (W) � �CjjWjj2=2

� MAP parameter estimates maximise

X
i
log

e�(yi)�WP
y2GEN(xi) e
�(y)�W

� C
jjWjj2

2

Note: This is a “globally normalised” model



Markov Random Fields Example 1: [Johnson et. al 1999]
GEN is the set of parses for a sentence with a hand-crafted

grammar (a Lexical Functional Grammar)

� can include arbitrary features of the candidate parses

W is estimated using conjugate gradient descent



Markov Random Fields Example 2: [Lafferty et al. 2001]

Going back to tagging:

� Inputsx are sentencesw[1:n]

� GEN(w[1:n]) = T n i.e. all tag sequences of lengthn

� Global representations� are composed from local feature
vectors�

�(w[1:n]; t[1:n]) =

nX
j=1
�(hj; tj)

wherehj = htj�2; tj�1; w[1:n]; ji



Markov Random Fields Example 2: [Lafferty et al. 2001]
� Typically, local features are indicator functions, e.g.,

�101(h; t) =

(
1 if current wordwi ends ining andt = VBG

0 otherwise

� and global features are then counts,

�101(w[1:n]; t[1:n]) = Number of times a word ending ining is
tagged asVBGin (w[1:n]; t[1:n])



Markov Random Fields Example 2: [Lafferty et al. 2001]
Conditional random fields areglobally normalisedmodels:

logP (t[1:n] j w[1:n]) = �(w[1:n]; t[1:n]) �W � logZ(w[1:n];W)

=

nX
j=1

X
s

Ws�s(hj; tj)

| {z }

Linear model

� logZ(w[1:n];W)| {z }

Normalization

whereZ(w[1:n];W) =
P

t[1:n]2T
n e�(w[1:n];t[1:n])�W

Log-linear taggers (see earlier part of the tutorial) arelocally normalisedmodels:

logP (t[1:n] j w[1:n]) =

nX
j=1

X
s

Ws�s(hj ; tj)

| {z }
Linear Model

�

nX
j=1

logZ(hj ;W)

| {z }

Local Normalization



Problems with Locally Normalized Models
� “Label bias” problem [Lafferty et al. 2001]

See also[Klein and Manning 2002]

� Example of a conditional distribution that locally normalized
models can’t capture (under bigram tag representation):

a b c) A — B — C
j j j

a b c
with P (A B C j a b c) = 1

a b e) A — D — E

j j j
a b e

with P (A D E j a b e) = 1

� Impossible to find parameters that satisfy

P (A j a)� P (B j b; A)� P (C j c; B) = 1

P (A j a)� P (D j b; A)� P (E j e;D) = 1



Markov Random Fields Example 2: [Lafferty et al. 2001]
Parameter Estimation

� Need to calculate gradient of the log-likelihood,

d
dW

P
i logP (ti[1:ni] j w
i

[1:ni]
;W)

= d
dW

�P
i�(w
i

[1:ni]
; ti[1:ni]) �W �
P

i logZ(w
i

[1:ni]
;W)
�

=

P
i�(w
i

[1:ni]
; ti[1:ni])

�
P

i
P

u[1:ni]
2T ni P (u[1:ni] j w
i

[1:ni]
;W)�(wi
[1:ni]
; u[1:ni])

Last term looks difficult to compute. But because� is defined
through “local” features, it can be calculated efficiently using
dynamic programming. (Very similar problem to that solved by
the EM algorithm for HMMs.) See [Lafferty et al. 2001].



Techniques Covered in this Tutorial
� Log-linear (maximum-entropy) taggers

� Probabilistic context-free grammars (PCFGs)

� PCFGs with enriched non-terminals

� Discriminative methods:

– Conditional Markov Random Fields

– Perceptron algorithms

– Kernels over NLP structures



A Variant of the Perceptron Algorithm

Inputs: Training set(xi; yi) for i = 1 : : : n

Initialization: W = 0

Define: F (x) = argmaxy2GEN(x)�(y) �W

Algorithm: For t = 1 : : : T , i = 1 : : : n

zi = F (xi)

If (zi 6= yi) W =W +�(yi)��(zi)

Output: ParametersW



Theory Underlying the Algorithm

� Definition: GEN(xi) = GEN(xi)� fyig

� Definition: The training set isseparable with margin Æ,
if there is a vectorU 2 R

d with jjUjj = 1 such that
8i;8z 2 GEN(xi) U ��(yi)�U ��(z) � Æ

Theorem: For any training sequence(xi; yi) which is separable
with marginÆ, then for the perceptron algorithm

Number of mistakes�
R2

Æ2

whereR is a constant such that8i; 8z 2 GEN(xi) jj�(yi)��(z)jj � R

Proof: Direct modification of the proof for the classification case.
See [Collins 2002]



More Theory for the Perceptron Algorithm
� Question 1: what if the data is not separable?

[Freund and Schapire 99] give a modified theorem for this case

� Question 2: performance on training data is all very well,
but what about performance on new test examples?

Assume some distributionP (x; y) underlying examples

Theorem [Helmbold and Warmuth 95]: For any distribution

P (x; y) generating examples, ife = expected number of mistakes
of an online algorithm on a sequence ofm + 1 examples, then a
randomized algorithm trained onm samples will have probability

e
m+1

of making an error on a newly drawn example fromP .

[Freund and Schapire 99] use this to define theVoted Perceptron



Perceptron Algorithm 1: Tagging
� Score for a(w[1:n]; t[1:n]) pair is

F (w[1:n]; t[1:n]) =

X
i

X
s

Ws�s(hi; ti)

=

X
s

Ws�s(t[1:n]; w[1:n])

� Note: no normalization terms

� Note:F (w[1:n]; t[1:n]) is not a log probability

� Viterbi algorithm for

arg max

t[1:n]2T n
F (w[1:n]; t[1:n])



Training the Parameters

Inputs: Training set(wi
[1:ni]
; ti[1:ni]) for i = 1 : : : n.

Initialization: W = 0

Algorithm: For t = 1 : : : T; i = 1 : : : n

z[1:ni] = arg max

u[1:ni]
2T ni

X
s

Ws�s(w
i

[1:ni]
; u[1:ni])

z[1:ni] is output oni’th sentence with current parameters

If z[1:ni] 6= ti[1:ni] then

Ws =Ws + �s(w
i

[1:ni]
; ti[1:ni])| {z }

Correct tags’
feature value

� �s(w
i

[1:ni]
; z[1:ni])| {z }

Incorrect tags’
feature value

Output: Parameter vectorW.



An Example

Say the correct tags fori’th sentence are

the/DT man/NN bit/VBD the/DT dog/NN

Under current parameters, output is

the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs

Parameters incremented:

hNN, VBDi; hVBD, DTi; hVBD ! biti

Parameters decremented:

hNN, NNi; hNN, DTi; hNN ! biti



Experiments
� Wall Street Journal part-of-speech tagging data

Perceptron = 2.89%, Max-ent = 3.28%
(11.9% relative error reduction)

� [Ramshaw and Marcus 95] NP chunking data

Perceptron = 93.63%, Max-ent = 93.29%
(5.1% relative error reduction)

See [Collins 2002]



Perceptron Algorithm 2: Reranking Approaches
� GEN is the topnmost probable candidates from abase model

– Parsing: a lexicalized probabilistic context-free grammar

– Tagging: “maximum entropy” tagger

– Speech recognition: existing recogniser



Parsing Experiments
GEN Beam search used to parse training and test sentences:

around 27 parses for each sentence

� = hL(x); h1(x) : : : hm(x)i, whereL(x) = log-likelihood from
first-pass parser,h1 : : : hm are� 500; 000 indicator functions

e:g:; h1(x) =
(

1 if x containshS ! NP V P i

0 otherwise

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

+ �

h�15:65; 0; 0; 1; 1; 0; 1; 0; 0; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0; 0; 0; : : : 1; 0; 0i



Named Entities
GEN Top 20 segmentations from a “maximum-entropy” tagger

� = hL(x); h1(x) : : : hm(x)i,
e:g:; h1(x) =

(
1 if x contains a boundary =“ [The

0 otherwise

Whether you’re an aging flower child or a clueless
[Gen-Xer], “ [The Day They Shot John Lennon],” playing at the
[Dougherty Arts Center] , entertains the imagination.

+ �

h�3:17; 1; 0; 0; 0; 1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1; 0; 1; 0; 0; 0; 0; : : : 0; 1; 1i



Whether you’re an aging flower child or a clueless
[Gen-Xer], “ [The Day They Shot John Lennon],” playing at the
[Dougherty Arts Center] , entertains the imagination.

+ �

h�3:17; 1; 0; 0; 0; 1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1; 0; 1; 0; 0; 0; 0; : : : 0; 1; 1i

Whether you’re an aging flower child or a clueless
Gen-Xer, “The Day [They Shot John Lennon],” playing at the
[Dougherty Arts Center] , entertains the imagination.

+ �

h�3:51; 1; 1; 1; 0; 0; 1; 0; 0; 1; 0; 1; 1; 1; 0; 1; 0; 1; 0; 0; 0; 0; : : : 0; 1; 0i

Whether you’re an aging flower child or a clueless
[Gen-Xer], “The Day [They Shot John Lennon],” playing at the
[Dougherty Arts Center] , entertains the imagination.

+ �

h�2:87; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1; 0; 1; 0; 0; 0; 0; : : : 0; 1; 0i



Experiments

Parsing Wall Street Journal Treebank
Training set = 40,000 sentences, test= 2,416 sentences
State-of-the-art parser: 88.2% F-measure
Reranked model: 89.5% F-measure (11% relative error reduction)
Boosting: 89.7% F-measure (13% relative error reduction)

Recovering Named-Entities in Web Data
Training data= 53,609 sentences (1,047,491 words),
test data= 14,717 sentences (291,898 words)
State-of-the-art tagger: 85.3% F-measure
Reranked model: 87.9% F-measure (17.7% relative error reduction)
Boosting: 87.6% F-measure (15.6% relative error reduction)



Perceptron Algorithm 3: Kernel Methods
(Work with Nigel Duffy)

� It’s simple to derive a “dual form” of the perceptron algorithm

If we can compute�(x) ��(y) efficiently
we can learn efficiently with the representation�



“All Subtrees” Representation [Bod 98]
� Given: Non-Terminal symbolsfA;B; : : :g

Terminal symbols fa; b; c : : :g

� An infinite set of subtrees
A

B C

A

B

b

E

A

B

b

C

A B

A

B A

B

b

C

: : :

� Step 1:
Choose an (arbitrary) mapping from subtrees to integers

hi(x) = Number of times subtreei is seen inx

�(x) = hh1(x); h2(x); h3(x) : : :i



All Subtrees Representation
� � is now huge

� But inner product�(T1) � �(T2) can be computed
efficiently using dynamic programming.
See [Collins and Duffy 2001, Collins and Duffy 2002]



Similar Kernels Exist for Tagged Sequences

Whether you’re an aging flower child or a clueless
[Gen-Xer], “ [The Day They Shot John Lennon],” playing
at the [Dougherty Arts Center] , entertains the imagination.

+ �
Whether [Gen-Xer], Day They John Lennon],” playing

Whether you’re an aging flower child or a clueless[Gen

: : :



Experiments

Parsing Wall Street Journal Treebank
Training set = 40,000 sentences, test= 2,416 sentences
State-of-the-art parser: 88.5% F-measure
Reranked model: 89.1% F-measure
(5% relative error reduction)

Recovering Named-Entities in Web Data
Training data= 53,609 sentences (1,047,491 words),
test data= 14,717 sentences (291,898 words)
State-of-the-art tagger: 85.3% F-measure
Reranked model: 87.6% F-measure
(15.6% relative error reduction)



Conclusions

Some Other Topics in Statistical NLP:
� Machine translation

� Unsupervised/partially supervised methods

� Finite state machines

� Generation

� Question answering

� Coreference

� Language modeling for speech recognition

� Lexical semantics

� Word sense disambiguation

� Summarization



MACHINE TRANSLATION (BROWN ET. AL )
� Training corpus: Canadian parliament (French-English translations)

� Task: learn mapping fromFrench Sentence! English Sentence

� Noisy channel model:

translation(F ) = argmax
E

P (EjF ) = argmax
E

P (E)P (F jE)

� Parameterization

P (F jE) =
X

A

P (AjE)P (F jA;E)

�
P

A is a sum over possible alignments from English to French
Model estimation through EM
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