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Overview

Information extraction
(Named entities, Relationships between entities, etc.)

Finding linguistic structure
Part-of-speech tagging, “Chunking”, Parsing

Log-linear (maximum-entropy) taggers

Probabillistic context-free grammars (PCFGs)
PCFGs with enriched non-terminals

Discriminative methods:
Conditional MRFs, Perceptron algorithms, Kernel methods



Some NLP Problems

e Information extraction

— Named entities
— Relationships between entities
— More complex relationships

e Finding linguistic structure

— Part-of-speech tagging
— “Chunking” (low-level syntactic structure)
— Parsing

e Machine translation



Common Themes

e Need to learn mapping from one discrete structure to another

— Strings to hidden state sequences
Named-entity extraction, part-of-speech tagging

— Strings to strings
Machine translation

— Strings to underlying trees
Parsing

— Strings to relational data structures
Information extraction

e Speech recognition is similar (and shares many techniques)



Two Fundamental Problems

TAGGING: Strings toTagged Sequences

abeeafhpp aChb/DeCeCabf/Ch/Dj/C

PARSING: Strings tolrees
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Information Extraction: Named Entities

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits soared atCompany Boeing Co}, easily topping forecasts
on |Location Wall Street, as their CEO|PersonAlan Mulally]
announced first quarter results.



Information Extraction: Relationships between Entities

INPUT:
Boeing is located in Seattle. Alan Mulally is the CEO.

OUTPUT:

{Relationship =Company-Location
Company =Boeing
Location  =Seattlg

{Relationship ==Employer-Employee
Employer =Boeing Co.
Employee =Alan Mulally}



Information Extraction: More Complex Relationships

INPUT:
Alan Mulally resigned as Boeing CEO yesterday. He will be
succeeded by Jane Swift, who was previously the president at Rolls

Royce.
OUTPUT:

{Relationship #Management Succession
Company =Boeing Co.

Role =CEO
Out =Alan Mulally
In = Jane Swif}

{Relationship #Management Succession
Company =Rolls Royce
Role =president
Out =Jane Swif}



Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

ProfitdN soaredv at’/P BoeingN Co/N ,/, easilyADV toppingV
forecast8N on/P Wall/N StreetN ,/, asP theirPOSS CEQN
Alan/N Mulally/N announcedd/ firstt ADJ quarterN resultsN ./.

N = Noun

V = Verb

P = Preposition
Adv = Adverb

Adj = Adjective



“Chunking” (Low-level syntactic structure)

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

NP Profit§ soared at|NP Boeing Col, easily topping|NP
forecasts on [NP Wall Street, as |NP their CEO Alan Mulally
announcedNP first quarter results

INP...] = non-recursiveoun phrase



Chunking as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

ProfitdS soared\ atN BoeingS Co/C ,/N easilyN toppingN
forecastsS on/N Wall/S StreetC ,/N asN theirS CEQ/C Alan/C
Mulally/C announcedtN first/S quarterC resultsC ./N

N = Not part of noun-phrase
S = Start noun-phrase
C = Continue noun-phrase



Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

ProfitdNA soared\NA at/NA BoeingSC Co/CC ,/NA easilyNA
toppingNA forecast8NA on/NA Wall/SL StreetCL ,/NA asNA
theirNA CEQNA Alan/SP Mulally/CP announceA first/NA
guartefNA resultsNA ./NA

NA = No entity

SC = Start Company

CC = Continue Company
SL = Start Location

CL = Continue Location



INPUT:

OUTPUT:

Parsing (Syntactic Structure)

Boeing is located in Seattle.

S
/\
NP VP
| /\
Ny VP

s v PP
/\
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| |
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|
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Machine Translation

INPUT:
Boeing is located in Seattle. Alan Mulally is the CEO.

OUTPUT:
Boeing ist in Seattle. Alan Mulally ist der CEO.



Summary

Problem Well-Studied| Class of Problem
Learning
Approaches?

Named entity extraction Yes Tagging
Relationships between entities A little Parsing
More complex relationships No ?7?
Part-of-speech tagging Yes Tagging
Chunking Yes Tagging
Syntactic Structure Yes Parsing
Machine translation Yes ?7?




Technigues Covered In this Tutorial

Log-linear (maximum-entropy) taggers
Probabillistic context-free grammars (PCFGSs)
PCFGs with enriched non-terminals

Discriminative methods:

— Conditional Markov Random Fields
— Perceptron algorithms
— Kernels over NLP structures



Log-Linear Taggers: Notation

e Set of possible words ¥, possible tags 7
e Word sequence;.,,) = (wi, ws . .. wy]
e Tag sequencey., = |ti,ta...1,]

e Training data is: tagged sentences,
where the’th sentence is of length;



Log-Linear Taggers: Independence Assumptions

e The basic idea
P(t[lzn] ‘ w[lm]) = H;L:1 P(tj tj—1...11, w[lm],j) Chain rule

= Il P(tj | t;—1,tj-2,wp.),J)  Independence
assumptions

e TWO questions:

1. How to parameteriz€(t; | t;_1,t;—2, Wi, J)?
2. How to findarg max;, . P({[1.n) | W) ?



The Parameterization Problem

HispanioldNNP  quickly/RB becamé&/B an'DT
ImportantJJ basé?? from which Spain expanded
Its empire into the rest of the Western Hemisphere .

e There are many possible tags in the posittGn

e Need to learn a function from (context, tag) pairs to a probability
P(tag|context)



Representation: Histories

e A history is a 4-tuple(t_i,t_2, w1y, J)
e t_y,t_5 are the previous two tags.

e wy;.,, are then words in the input sentence.

¢ j Is the index of the word being tagged



Representation: Histories

HispanioldNNP quicklyyRB becamé/B an'DT important]J
basé?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

® HiS’[OFy — <t—17t—27w[1:n]7j>
o t—lyt—Q — DT, \]\J

o Wiy, = (Hispaniola, quickly, became, . . .)

e 1 =0



Feature—Vector Representations

e Take a history/tag paiih, t).

e ¢,(h,t) for s = 1...d arefeatures representing
tagging decisiort in contexth.

1 If current wordw; IS base
d1000(h,t) = < andt = VB
0 otherwise

P1001(h,t) = { Lt (ty,t1,) = (DT, JJ, VB)

0 otherwise



Representation: Histories

o A history is a 4-tuple(t_i,t_2, wp.y, ¢)
e {_1,t_o are the previous two tags.

* wy;.,, are then words in the input sentence.

¢ ; IS the Index of the word being tagged

HispaniolaNNP quicklyyRB becamé/B an'DT important]J
basé?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

et{ 1,1 o=DT,JJ
® Wiy = (Hispaniola, quickly,became, ..., Hemisphere,.)

o1 =0



Feature—Vector Representations
e Take a history/tag paiih, t).

e ¢,(h,t) for s = 1...d arefeatures representing
tagging decisiort in contexth.

Example: POS TagginRatnaparkhi 9p
e Word/tag features

(1 if current wordw; is base andt = VB

Pro0(h,t) = <\ 0 otherwise

L <( 1 if current wordw; ends ining andt = VBG
o1 (1) = | 0 otherwise

e Contextual Features

(1 if{t_o,t_1,t) = (DT, J, VB
bros(h,t) = {O otherwise



Part-of-Speech (POS) TaggingRatnaparkhi 96]

e \Word/tag features

broo(hit) = 1 if current wordw, Is base andt =VB
WOV ) 0 otherwise

e Spelling features

1 if current wordw; ends ining andt = VBG

Pro1(h,t) = <\ 0 otherwise
bosht) — <’ 1 if current wordw; starts withpre andt = NN
10217 — 0 otherwise




Ratnaparkhi’'s POS Tagger

e Contextual Features

P103( N, 1)

¢104 (h7 t)

¢105 (h7 t)

¢106 (h7 t)

¢107(h7 t)

(1
0

1
0

-

O = O =

|f <t_2, t_l, t> — <DT, JJ, VB}
otherwise

if (t_1,t) =(3J, VB
otherwise

if (¢t) = (VB)
otherwise

If previous wordw,_; =theandt = VB
otherwise

If next wordw;; =theandt = VB
otherwise



Log-Linear (Maximum-Entropy) Models

e Take a history/tag paiih, t).
o ¢,(h,t)fors=1...d arefeatures
o W, fors=1...dare parameters

e Parameters define a conditional distribution
628 WS¢S<h7t>

Z(h, W)

P(t|h) =

where

Z(h, W)=} o2os Wats(hit')
t'eT



Log-Linear (Maximum Entropy) Models

e Word sequencewy.,, (w1, wa . .. Wy
e Tagsequence tj., = [t1,l2...1,)
e Histories h; = <ti_1,ti_2,w[1:n],z’>

log P(t[lzn] | w[lzn]) = Z:llog P(t; | h;)

= Y S Was(hit) — 3 logZ(h W)

4 A\ 7

Linear Score Local Normalization
Terms



Log-Linear Models

e Word sequencey;., = |wy, ws . .. Wy
e Tag sequence;.,; = [ti,ta.. .1,

J

= > > Wios(hj, tj) — illogZ(hj,W)
S ]:

J=1

where
hj — <tj—2, tj—l; W1:n); ]>



Log-Linear Models

e Parameter estimation:
Maximize likelihood of training data through gradient descent,
iterative scaling

e Search fOFaI‘g maxy,., . P(t[lzn] ‘ w[lzn]):
Dynamic programming))(n|7|®) complexity

e EXxperimental results:

— Almost 97% accuracy for POS taggingdtnaparkhi 9p

— Over 90% accuracy for named-entity extraction
[Borthwick et. al 98

— Around 93% precision/recall for NP chunking

— Better results than an HMM for FAQ segmentation
[McCallum et al. 200D



Technigues Covered In this Tutorial

Log-linear (maximum-entropy) taggers
Probabillistic context-free grammars (PCFGS)
PCFGs with enriched non-terminals

Discriminative methods:

— Conditional Markov Random Fields
— Perceptron algorithms
— Kernels over NLP structures



Data for Parsing Experiments

e Penn WSJ Treebank = 50,000 sentences with associated trees

e Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

}P\ NNS PUNC.
RB C[

Canadian Utilities had 1988 revenue of C$ 116 hilion mainly from its natural gas and electric utlity businesses in Alberta where the company serves about 800,000 customers .

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its
natural gas and electric utility businesses in Alberta , where the company
serves about 800,000 customers .



The Information Conveyed by Parse Trees

1) Part of speech for each word

(N =noun, V = verb, D = determiner)

T

NP VP
/\ /\
[|’ 'T' Y, NP
the burglar rob|bed D/\I\I

the apartment



2) Phrases S

NP VP
/\
DT N T

‘ ; NP

|
the burglar rob|bed DT/\I\I

the apartment

Noun Phrases (NP): “the burglar”, “the apartment”
Verb Phrases (VP): “robbed the apartment”

Sentences (S): “the burglar robbed the apartment”



3) Useful Relationships

S
/\ S
NP VP
\ T
subject V

NP VP
verb = /\
DT N \/ NP
| |
the burglar rob|bed DT/\N
| |

the apartment

= “the burglar” is the subject of “robbed”



An Example Application: Machine Translation

e English word order is subject — verb — object

e Japanese word order is subject — object — verb

English: IBM bought Lotus
Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
Japanese:  Sources yesterday IBM Lotus bought that said



Context-Free Grammars

[Hopcroft and Uliman 1979
A context free grammat = (N, X, R, S) where:

e V is a set of non-terminal symbols
e X IS a set of terminal symbols

e 1R is asetofrules of the forlX — Y Y,...Y,
forn>0,X € N,Y, € (NU)

e S € N is adistinguished start symbol



A Context-Free Grammar for English

N ={S,NP, VP, PP, D, Vi, Vi, N, P
S =S
>, = {sleeps, saw, man, woman, telescope, the, with, in

R=rg = NP VP Vi = sleeps
: Vt = saw
VP = Vi N = man
VP o= vt NP N = woman
VP = VP PP
N = telescope
NP = D N D = the
NP = NP PP P = with
PP = P NP .
P = 1In

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase,
D=determiner, Vi=intransitive verb, Vt=transitive verb, N=noun, P=preposition



Left-Most Derivations
A left-most derivation is a sequence of strings. . s,,, where

e s; = 5, the start symbol
e 5, € X% l.e.s, IS made up of terminal symbols only

e Eachs; for: = 2...nis derived froms;_; by picking the left-
most non-terminak in s;_; and replacing it by someé where
X — pBisarule inR

For example[S], [NP VP], [D N VP], [the N VP], [the man VP],
[the man Vi], [the man sleeps]

Representation of a derivation as a tree:
S

T

NP VP
P |
D N Vi

the man sleeps



Notation

e We useD to denote the set of all left-most derivations (trees)
allowed by a grammar

e We useD(z) for a stringx € X* to denote the set of all
derivations whose final string (“yield”) is.



The Problem with Parsing: Ambiguity

INPUT:
She announced a program to promote safety in trucks and vans

4

POSSIBLE OUTPUTS:
And there are more...



An Example Tree

Canadian Utilities had 1988 revenue of C$ 1.16 billion,
mainly from its natural gas and electric utility businesses

In Alberta , where the company serves about 800,000
customers .

TOP

N{P  NNPS Vm”/,’,,/\ﬁp
NAPP AD%\NP

| T
IN/\P RB N PP
| e e
P PRFS 37 N{ CC  J3 AN WNS | P

CD  CD PUNC, NP SBAR

NP PUNC, WHADVI
WLB NP/\P
AN va/\

P
}P\ NNS  PUNC.

RB CcD
Canadian Utiites ~ had 1988 revenue of C$ 116 hilion , mainly  from its natural gas and electric utlity businesses in  Alberta where the  company serves about SOLOO customers .

P
cD NN

o

DT Z




A Probabilistic Context-Free Grammar

S = NP VP 10 Vi = sleeps 1.0

: Vt = saw 1.0

VP = Vi 0.4 N = man 07

VP = Vt NP 0.4 N = woman 0'2
VP = VP PP 0.2 '

N = telescope 0.1

NP = D N 0.3 D = the 10

NP = NP PP 0.7 5 = wih 0'5
PP = P NP 1.0 . '

P = 1n 0.5

e Probability of a tree with rules; — 3; is [1; P(a; — Bilay)

e Maximum Likelihood estimation

Count(VP = V NP)
Count(VP)

P(VP = VNP | VP) =



PCFGs

[Booth and Thompson T3 showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivationsD provided that:

1. The rule probabilities define conditional distributions over the
different ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite number
of steps is 1. (This condition is not really a practical concern.)



S
NP VP
| /\
N V NP

IBM  bought N
|

Lotus

PROB = (TOP—> S)
P(S — NP VP « P(N —s [ BM)
P(VP — V NP) x P(V — bought)
P(NP — N) X P(N — Lotus)
P(NP = N)



The SPATTER Parser: (Magerman 95;Jelinek et al 94)

e For each rule, identify the “head” child

S = NP VP
VP = V NP
NP = DT N

e Add word to each non-terminal

S(questioned)
NP (lawyer) VP(questioned)
/\
DT N RS
| | V NP (withess)
the lawyer | =N

questioned DT N
| |

the withess



A Lexicalized PCFG

S(questioned) = NP(lawyer) VP(questioned) ??

VP(questioned) = V(questioned) NP(witness) | ?7?
NP(lawyer) = D(the) N(lawyer) ?7?
NP(witnhess) = D(the) N(witness) ?7?

e The big question: how to estimate rule probabiliti@s




CHARNIAK (1997)

S(questioned)

J P(NP VP | S(questioned)
S(questioned)

NP VP(guestioned)
Y P(lawyer| S,VP,NP, questioneg)

S(questioned)

NP(awyer) VP(guestioned)



Smoothed Estimation

P(NP VP| S(questioned)=

A\ X count(S(questioned)NP VP

Count(S(QuUestioneq)

Count(S=NP VP
C’ount(S)

—l—)\g X

e Where0 < X\, o < 1,and\; + Xy =1



Smoothed Estimation

P(lawyer| S,NP,VP,questioned=

Ao x count(lawyer| S,NP,VP,questioned
1 Count(S,NP,VP,queStiOn@d

C’ount(lawyer\ S,NP,VB
tho X = S.NPVE

C’ount(lawyer\ NP)
+A3 X Count(NP)

o Wherel < A\, Ao, A3 < 1,andA; + X+ A3 =1



P(NP(lawyer) VP(questioned)S(questioned)=

count(S(questioned)NP VP

()\1 X Count(S(queStioned)
_|_>\2 % C’ount(S—)NP VP) )

C ount(S)

count(lawyer; S,NP,VP,questioned
count(S,NP,VP,questioned

X ()\1><

C’ount(lawyer| S,NP,VR
tA xS NP VR

C’ount(lawyer| NP
—|_)\3 x C’ount(NP) )



L exicalized Probabilistic Context-Free Grammars

e Transformation to lexicalized rules

S— NP VP
vs. S(questioned)> NP(lawyer) VP(questioned)

e Smoothed estimation technigues “blend” different counts
e Search for most probable tree through dynamic programming

e Perform vastly better than PCFGs (88% vs. 73% accuracy)



e PCFGs

Independence Assumptions

NP VP
/\ /\
- v NP

the lawyer |

guestioned DT N
| |

the withess

e Lexicalized PCFGs

S(questioned)
NP (lawyer) VP(questioned)
7 N
| | V NP(witness)
the lawyer |

guestioned DT N
| |

the withess



Results

Method Accuracy
PCFGs (Charniak 97) 73.0%
Conditional Models — Decision Trees (Magerman 95)84.2%
Lexical Dependencies (Collins 96) 85.5%
Conditional Models — Logistic (Ratnaparkhi 97) 86.9%
Generative Lexicalized Model (Charniak 97) 86.7%
Generative Lexicalized Model (Collins 97) 88.2%
Logistic-inspired Model (Charniak 99) 89.6%
Boosting (Collins 2000) 89.8%

e Accuracy = average recall/precision



Parsing for Information Extraction:

Relationships between Entities

INPUT:
Boeing is located in Seattle.

OUTPUT:
{Relationship =Company-Location

Company =Boeing
Location  =Seattld



A Generative Model (Miller et. al)

[Miller et. al 200Q use non-terminals to carry lexical items and

semantic tags
IS

SCL
|\”:,Boelng VpIS
COMPANY CLLOC
Boeing vV located
VP
| CLLOC
IS \ in
| PFCLLOC
located
eattle
T NPEOC|ATION
in Seattle
pph + lexical head
CLLOC < semantic tag



A Generative Model [Miller et. al 2000]

We're now left with an even more complicated estimation problem,

Boeing
P = NPeompany YPELLOC)
See Miller et. al 200Q for the details

e Parsing algorithm recovers annotated trees
= Simultaneously recovers syntactic structure and named

entity relationships

e Accuracy (precision/recall) is greater than 80% In recovering
relations



Technigues Covered In this Tutorial

Log-linear (maximum-entropy) taggers
Probabillistic context-free grammars (PCFGSs)
PCFGs with enriched non-terminals

Discriminative methods:

— Conditional Markov Random Fields
— Perceptron algorithms
— Kernels over NLP structures



Linear Models for Parsing and Tagging

e Three components:

GEN Is a function from a string to a set ohndidates
$ maps a candidate to a feature vector
W Is a parameter vector



Component 1: GEN

e GEN enumerates a set ondidatesfor a sentence

She announced a program to promote safety in trucks and vans

| GEN



Examples of GEN

e A context-free grammar

e A finite-state machine

e Top N most probable analyses from a probabilistic grammar



Component 2: ¢

e ® maps a candidate tofaature vector € R

e & defines theepresentationof a candidate

nnnnnnnnn

ooooooo

ssssss

tttttt

] P

(1,0,2,0,0,15, 5)



Features

e A “feature” is a function on a structure, e.g.,

h(x) = Numberoftimes A |isseenin

PN
B C
7 A 15 A
N /\
B C B C
e U e P Y
D E F G D E F A
I [ I B
d e f ¢ d e h B C
|
b ¢



Feature Vectors

e A set of functionsh, ... h; define afeature vector

®(z) = (hi(x),ho(x) ... hq(x))

TlA T2 A
N /\
B C B C
e e e U
D E F G D E F A
I I I B
d e f ¢ d e h B C
|
b ¢

&(T)) = (1,0,0,3) B(Ty) = (2,0,1,1)



Component 3:' W

e W is aparameter vector € R?

e & andW together map a candidate to a real-valued score

nnnnnnnnn

ppppppp

tttttt

J @
(1,0,2,0,0,15,5)
Jo-W
(1,0,2,0,0,15,5) - (1.9,-0.3,0.2,1.3,0,1.0, —2.3) = 5.8



Putting it all Together

e X' Is set of sentenced) is set of possible outputs (e.g. trees)
e Need tolearn a functiof’ : X — )
e GEN, &, W define
F(x) = arg max P(y)- W
() = arg max @ (y)

Choose the highest scoring tree as the most plausible structure

e Given examplesz;, y;), how to setW?



She announced a program to promote safety in trucks and vans

| GEN

<i>%\\ ////\\\\ ;(/\\\ ;(j:%>\ ////\\\\ /<5\>K

(e e |1 4 e U@

(1,1,3,5) (2,0,0,5) (1,0,1,5) (0,0, 3,0) (0,1,0,5) (0,0,1,5)

|- W [ W (& W [& W |[&- W [& W
13.6 12.2 12.1 3.3 94 11.1

|} arg max

nnnnnnn



Markov Random Fields

e ParameterdV define a conditional distribution over candidates:

efI)(yi)-W

P(y; | z;, W) =

Y eGEN(z) €2WW

e Gaussian priortog P(W) ~ —C||W||* /2
e MAP parameter estimates maximise

o2 (y:) W 3 CHWH2

Y yeGEN () €TWW 2

> log

Note: This is a “globally normalised” model



Markov Random Fields Example 1: [Johnson et. al 1999

GEN is the set of parses for a sentence with a hand-crafted
grammar (a Lexical Functional Grammar)

$ can include arbitrary features of the candidate parses

W is estimated using conjugate gradient descent



Markov Random Fields Example 2: [Lafferty et al. 2001]

Going back to tagging:
e INputsz are sentences;.

o GEN(wp.,) = T" i.e. all tag sequences of length

e Global representation® are composed from local feature
vectorsg

n

(I)(wu;n],t[l:n]) — Z (/b(hjvtj)

Jj=1

Wherehj — <tj_2, tj—17 Wli:n), ]>



Markov Random Fields Example 2: [Lafferty et al. 2001]

e Typically, local features are indicator functions, e.g.,

{1 If current wordw; ends ining andt¢ = VBG

d101(N, t) 0 otherwise

e and global features are then counts,

P01 (wpim, thm)) = Number of times a word ending img is
tagged a¥/BGin (wyi.), tj1:n))



Markov Random Fields Example 2: [Lafferty et al. 2001]

Conditional random fields ar@obally normaliseanmodels:

log P(ti1m) | wpmy) = ®(wpin, thim)) - W —log Z(wn., W)

— Z Z Ws¢s(hj7 t]) N log Z(w[lin]’ W)

j=1 s -~

- Normalization

Linear model

Log-linear taggers (see earlier part of the tutorial)lacally normalisednodels:

log P(t[lm] ‘ w[lm]) = ZZWS¢S(hj,tj) — Zlog Z(hj,W)

j=1 s 7=1

7 4

Linear Model Local Normalization



Problems with Locally Normalized Models

e “Label bias” problem Lafferty et al. 200}
See alsgKlein and Manning 2002]

e Example of a conditional distribution that locally normalized
models can’t capture (under bigram tag representation):

abc 2_1_(1 with P(ABC |ab @ = 1
abe. Q_T)_E\e with P(ADE |abe = 1

e Impossible to find parameters that satisfy
P(Ala)x P(B|b,A)x P(C|c¢,B)=1
P(Ala)x P(D|b,A) x P(E|e,D)=1



Markov Random Fields Example 2: [Lafferty et al. 2001]
Parameter Estimation

e Need to calculate gradient of the log-likelihood,

d i i
v 2 log P(t[mi] Wi W)

1:n;|?

= % (ZZ (I)(wflznz] [1 nz]) W — Z lOg Z( [1 n;|’ W))

_Z q)( 1nz] [1?%])

T Z Zu[lnz] cT " P(u[lnz] wfl:ni]7 W)@(wrflnz]’ u[lnz])

Last term looks difficult to compute. But becaudeis defined
through “local” features, it can be calculated efficiently using
dynamic programming. (Very similar problem to that solved by
the EM algorithm for HMMs.) Sed [afferty et al. 2001



Technigues Covered In this Tutorial

Log-linear (maximum-entropy) taggers
Probabillistic context-free grammars (PCFGSs)
PCFGs with enriched non-terminals

Discriminative methods:

— Conditional Markov Random Fields
— Perceptron algorithms
— Kernels over NLP structures



A Variant of the Perceptron Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: W =0
Define: F(z) = argmaxyegune) ®(y) - W
Algorithm: Fort=1...T,:=1...n

zi = F(x;)

It (z 7 y)) W =W+ &(y;) — P(z)

Output: ParameterdVv



Theory Underlying the Algorithm

e Definition: GEN(z;) = GEN(z;) — {y;}

e Definition: The training set iseparable with marginJ,
if there is a vectolU € R? with ||U|| = 1 such that

Theorem: For any training sequende:;, y;) which is separable
with margind, then for the perceptron algorithm

2

: R
Number of mistakes< 2
whereR is a constant such thet,vVz € GEN(z;) ||®(y;) — ®(2)|| < R

Proof. Direct modification of the proof for the classification case.
See [Collins 2002



More Theory for the Perceptron Algorithm

e Question 1: what if the data is not separable?
[Freund and Schapire Pgive a modified theorem for this case

e Question 2: performance on training data is all very well,
but what about performance on new test examples?

Assume some distributioR (x, y) underlying examples

Theorem [Helmbold and Warmuth 95 For any distribution
P(z,y) generating examples, if = expected number of mistakes
of an online algorithm on a sequencemaf+ 1 examples, then a
randomized algorithm trained an samples will have probability

€~ of making an error on a newly drawn example frén
m-+1

[Freund and Schapire p@se this to define th¥oted Perceptron



. Tagging
e Score for awyy.,, j1.y)) PAIr is

F(w[ln]a t[ln]) — Z Zwsqbs(hu tz)

p— ZW3@3 (t[ll’l’b]7 w[l:n])

e Note: no normalization terms

o Note: I'(wpi., tj1.n) iS NOt a log probability
e Viterbi algorithm for

F . .
arg, max, (Wiin), t1om))



Training the Parameters

Inputs: Training set(w?,.,, ,t,.,1) fori=1.
Initialization: W =0

Algorithm: Fort=1...T,:=1...n

Y1) = ATg  Max ZWSCPS(wam], u[l:ni])
Z[1.n,] IS OUtPUL ore’th sentence with current parameters

| Z[1:n;] 75 ffl:ni] then

WS — Ws + \q)b’(wfl:ni]? tflnz]) o @S(wflznip Z[lnz])

7 A\ 7

Correct tags’ Incorrect tags’
feature value feature value

Output: Parameter vectow.



An Example

Say the correct tags foéith sentence are
theDT man'NN bit/VBD theDT dog NN

Under current parameters, output Is
theDT man'NN bit/NN theDT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs
Parameters incremented:

(NN, VBD), (VBD, DT), (VBD — bit)

Parameters decremented:

(NN, NN), (NN, DT), (NN — bit)



Experiments

e Wall Street Journal part-of-speech tagging data

Perceptron = 2.89%Max-ent = 3.28%
(11.9% relative error reduction)

e [Ramshaw and Marcus PNP chunking data

Perceptron = 93.63%Max-ent = 93.29%
(5.1% relative error reduction)

See [Collins 2002



. Reranking Approaches

e GEN isthe topn most probable candidates frobase model

— Parsing: a lexicalized probabilistic context-free grammar
— Tagging: “maximum entropy” tagger
— Speech recognition: existing recogniser



Parsing Experiments

GEN Beam search used to parse training and test sentences:
around 27 parses for each sentence

b = (L(x),hi(x)...h,(x)), whereL(z) = log-likelihood from
first-pass parsef,; ... h,, arex 500, 000 indicator functions

by (z) = 1 if x containgS — NP VP)
©9- TN 0 otherwise

nnnnnnnnn

ooooooo

tttttt

| ®

(—15.65,0,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0,0,0,...1,0,0)



Named Entities

GEN Top 20 segmentations from a “maximum-entropy” tagger

® = (L(x),hi(x)...h~h,(x)),

1 if x contains a boundary|=[The
0 otherwise

e.g., hi(z)= {

Whether vyoure an aging flower «child or a clueless
[Gen-Xer], “[The Day They Shot John Lennon]’ playing at the
[Dougherty Arts Center], entertains the imagination.

| ®

(—3.17,1,0,0,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0,0,0,...0,1,1)



Whether youre an aging flower <child or a clueless
[Gen-Xer], “[The Day They Shot John Lennon]” playing at the
[Dougherty Arts Center], entertains the imagination.

| ®

(—3.17,1,0,0,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0,0,0,...0,1,1)

Whether youre an aging flower child or a clueless
Gen-Xer, “The Day [They Shot John Lennon}” playing at the
[Dougherty Arts Center], entertains the imagination.

I P

(—3.51,1,1,1,0,0,1,0,0,1,0,1,1,1,0,1,0,1,0,0,0,0,...0,1,0)

Whether youre an aging flower child or a clueless
[Gen-Xer],  “The Day [They Shot John Lennon]”  playing at the
[Dougherty Arts Center], entertains the imagination.

| ®

(—2.87,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,...0,1,0)



Experiments

Parsing Wall Street Journal Treebank
Training set = 40,000 sentences, tes?,416 sentences
State-of-the-art parser: 88.2% F-measure
Reranked model: 89.5% F-measuié {o relative error reductign
Boosting: 89.7% F-measur&3% relative error reductign

Recovering Named-Entities in Web Data
Training data= 53,609 sentences (1,047,491 words),
test data= 14,717 sentences (291,898 words)
State-of-the-art tagger: 85.3% F-measure
Reranked model: 87.9% F-measuté.(/% relative error reductipn
Boosting: 87.6% F-measur&%.6% relative error reduction



: Kernel Methods
(Work with Nigel Duffy)

e |t's simple to derive a “dual form” of the perceptron algorithm

If we can compute®(z) - ®(y) efficiently
we can learn efficiently with the representation®



“All Subtrees” Representation [Bod 99

e Given: Non-Terminal symbol§A, B, ...}
Terminal symbols  {a,b,c...}

e An infinite set of subtrees

A A A A
PN PN N N
B C B E B C B A

| N P
b b A B B C
|
b
o Step 1:

Choose an (arbitrary) mapping from subtrees to integers
h;(x) = Number of times subtresis seen inc

®(x) = (hi(x), ho(z), hs(x)...)



All Subtrees Representation

e ® is now huge

e But inner product®(77) - ¢(75) can be computed
efficiently using dynamic programming.
See [ollins and Duffy 2001Collins and Duffy 200



Similar Kernels Exist for Tagged Sequences

Whether youre an aging flower child or a clueless
[Gen-Xer], “[The Day They Shot John Lennon]” playing
at the [Dougherty Arts Center], entertains the imagination.

|| &

Whether || [Gen-Xer], || Day They|| John Lennon],” playing

Whether you're an aging flower child or a cluelesdGen




Experiments

Parsing Wall Street Journal Treebank
Training set = 40,000 sentences, tes?,416 sentences
State-of-the-art parser: 88.5% F-measure
Reranked model: 89.1% F-measure
(5% relative error reductign

Recovering Named-Entities in Web Data
Training data= 53,609 sentences (1,047,491 words),
test data= 14,717 sentences (291,898 words)
State-of-the-art tagger: 85.3% F-measure
Reranked model: 87.6% F-measure
(15.6% relative error reduction



Conclusions

e Machine translation

e Unsupervised/partially supervised methods
e Finite state machines

e Generation

e Question answering

e Coreference

e Language modeling for speech recognition
e Lexical semantics

e \Word sense disambiguation

e Summarization



MACHINE TRANSLATION (BROWN ET. AL)

Training corpus: Canadian parliament (French-English translations)
Task: learn mapping frorRrench Sentence> English Sentence
Noisy channel model:

translation(F') = arg max P(E|F) = arg max P(E)P(F|E)

Parameterization

P(F|E) = ZPA|E (F|A, E)

> 4 Is a sum over possible alignments from English to French
Model estimation through EM
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