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Some NLP Problems

e Information extraction

— Named entities

— Relationships between entities
e Finding linguistic structure

— Part-of-speech tagging

— Parsing

e Machine translation



Common Themes

e Need to learn mapping from one discrete structure to another

— Strings to hidden state sequences
Named-entity extraction, part-of-speech tagging

— Strings to strings
Machine translation

— Strings to underlying trees
Parsing

— Strings to relational data structures
Information extraction

e Speech recognition is similar (and shares many techniques)



Two Fundamental Problems

TAGGING: Strings to Tagged Sequences

abeeafh]=aCb/DeCeCabDft/Ch/D|j/C

PARSING: Strings to Trees
defg = (AB(Dd)(Ee)(C(FN(GQ)

defg = A
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® — M
—— T
@— @



Information Extraction

Named Entity Recognition

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

Profits soared at [Company Boeing Co.|, easily topping forecasts
on [Location Wall Street|, as their CEO [Person Alan Mulally] announced first

quarter results.

Relationships between Entities
Boeing is located in Seattle. Alan Mulally is the CEO.

{Relationship = Company-Location {Relationship = Employer-Employee
Company = Boeing Employer = Boeing Co.
Location = Seattle} Employee = Alan Mulally}



Part-of-Speech Tagging

Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/VV
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun

V = Verb

P = Preposition
Adv = Adverb

Adj = Adjective



Named Entity Extraction as Tagging

Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity

SC = Start Company

CC = Continue Company
SL = Start Location

CL = Continue Location



Parsing (Syntactic Structure)

Boeing is located in Seattle.

s v PP
| P
located P NP

| |
In N

|
Seattle



Machine Translation

Boeing is located in Seattle. Alan Mulally is the CEO.

Boeing ist in Seattle. Alan Mulally ist der CEO.



Technigques Covered in this Tutorial

e Generative models for parsing
e Log-linear (maximum-entropy) taggers

e Learning theory for NLP



Data for Parsing Experiments

e Penn WSJ Treebank = 50,000 sentences with associated trees

e Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

/TIP\
NP
NNP NNP:

VP
. WP

T~ =
NP P ADVP IN
| o
NN I/\P RB N PP
| %\N
P PRP$ JJ NN cC JJ N NNS |
%c\ c e S
NNNNN c, WHADVP/\S
‘ /\
WRB NP Vi
/\ E/\
T NN VBZ P
}P\ NNS PU
RB CcD
Canadian Utilities  had 1988 revenue of C$ 116 billion , mainly  from its natural gas and electric utility businessesin Alberta where the  company serves about 800,000 cu

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its
natural gas and electric utility businesses in Alberta, where the company
serves about 800,000 customers.



The Information Conveyed by Parse Trees

1) Part of speech for each word

(N = noun, V = verb, D = determiner)

NP VP

NP

‘ /\
the burglar cobbed D N

the apartment



2) Phrases S

NP VP
/\
DT N T
| | Y, NP

| S
the burglar opheq pT N

the apartment

Noun Phrases (NP): “the burglar”, “the apartment”
Verb Phrases (VP): “robbed the apartment”

Sentences (S): “the burglar robbed the apartment”



3) Useful Relationships

S
/\ S
NP VP

| Y, /\

NP VP
verb =N /\
DT N
\V NP
S T
robbed DT N
| |

the apartment

= “the burglar” is the subject of “robbed”



An Example Application: Machine Translation

e English word order is subject — verb — object

e Japanese word order is  subject — object — verb

English: IBM bought Lotus
Japanese: IBM Lotus bought
English: Sources said that IBM bought Lotus yesterday

Japanese: Sources yesterday IBM Lotus bought that said



Context-Free Grammars

[Hopcroft and Ullman 1979]
A context free grammar G = (N, X, R, S) where:

e N is a set of non-terminal symbols
e X Is a set of terminal symbols

e R isasetof rules of the form X — Y Y, ...Y,
forn>0,XeN,Y,e (NUYX)

e S € N Is adistinguished start symbol



A Context-Free Grammar for English

N ={S, NP, VP, PP, D, Vi, Vt, N, P}

S =S

Y. = {sleeps, saw, man, woman, telescope, the, with, in}

R — Vi = sleeps
> = N.P M Vt = saw
VP = Vi N = man
VP = Vt NP N —  woman
VP = VP PP N = telescope
NP = D N D = the
NP = NP PP = with
PP = P NP .

P = 1In

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase,
D=determiner, Vi=intransitive verb, Vt=transitive verb, N=noun, P=preposition



|_eft-Most Derivations
A left-most derivation is a sequence of strings s; ... s,,, where

e s; = 5, the start symbol
e s, € X* l1.e. s, IS made up of terminal symbols only

e Eachs; for: = 2...n isderived from s;_; by picking the left-
most non-terminal X in s;_; and replacing it by some 5 where
X — pBisarulein R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP],
[the man V1], [the man sleeps]

Representation of a derivation as a tree:



The Problem with Parsing: Ambiguity

INPUT:
She announced a program to promote safety in trucks and vans

|
POSSIBLE OUTPUTS:

And there are more...



An Example Tree

Canadian Utilities had 1988 revenue of C$ 1.16 billion ,
mainly from its natural gas and electric utility businesses

In Alberta , where the company serves about 800,000
customers .

NNP  NNPS  VBD /P\ P
NP /\ ‘ /\

PP
CcD NN N NP RB PP
P PRF@%NN:ZZ%NS I/\NP
A
% CD PUNC, NP SBAR

NNP PUNC, WHADVP

WRB NP VP

/P\ NNS  PUNC.

RB cb

Canadian Utilities had 1988 revenue of C$ 116 hillion , mainly ~ from its natural gas and electric utility businessesin  Alberta , where the  company serves about BOLOO customers .



A Probabilistic Context-Free Grammar

S = NP VP 10 Vi = sleeps 1.0

: Vi = saw 1.0

VP = Vi 0.4 N = man 0

VP = Vt NP 0.4 N = woman 0'2
VP = VP PP 0.2 '

N = telescope | 0.1

NP = D N 0.3 D = the 10

NP = NP PP 0.7 = with 0'5
PP = P NP 1.0 ) '

P = 1In 0.5

e Probability of a tree with rules o; — 5; IS T]; P(a; — 5;]a;)

e Maximum Likelihood estimation

Count(VP = V NP)
Count(VP)

P(VP = V NP | VP) =



PCFGs

[Booth and Thompson 73] showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivations provided that:

1. The rule probabilities define conditional distributions over the
different ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite number
of steps is 1. (This condition is not really a practical concern.)



NP VP
| /\
N V NP

IBM  bought N

PROB = P(TOP — S)
P(S — NP VP)
P(VP — V NP)
P(NP — N)
(NP — N)

Lotus

« P(N — IBM)
x P(V — bought)
x P(N — Lotus)



The SPATTER Parser: (Magerman 95;Jelinek et al 94)

e For each rule, identify the “head” child

S = NP VP
VP = V NP
NP = DT N

e Add word to each non-terminal

S(questioned)
NP (lawyer) VP(questioned)
/\
DT N :
| | \/ NP (witness)
the lawyer | =N

questioned DT N
| |

the witness



A Lexicalized PCFG

S(questioned) = NP(lawyer) VP(questioned) | ??
VP(questioned) = V(questioned) NP(witness) 77
NP (lawyer) = D(the) N(lawyer) 77
NP (witness) = D(the) N(witness) 77

e The big question: how to estimate rule probabilities??




CHARNIAK (1997)

S(questioned)

J P(NP VP | S(questioned))
S(questioned)

NP VP(questioned)
J P(lawyer | S,VP,NP, questioned))

S(questioned)

NP(lawyer) VP(questioned)



Smoothed Estimation

P(NP VP | S(questioned)) =

\ Count S(queSthned)%NPVP)
e Count S(queSthned)
Count(S—=NP VP)
+A2 X Count(S)

0Wh€f€0§)\1,)\2§1,8ﬂd)\1+)\2:1



Smoothed Estimation

P(lawyer | SNPVPquestioned) —

Ao x count(lawyer | S;NPV P,questioned)
1 Count(S,NP,VP,queStiOned)

C’ount(laNyer ' SSNPVP)
tho X = SNPVP,

Count(IaNyer\ NP)
+A3 X Count(NP)

QWhereOS)\l,)\Q,)\gé 1,and>\1—|—>\2—|—)\3:1



P(NP(lawyer) VP(questioned) | S(questioned)) =

(A1 x count(S(questioned)—=NP VP)
1 Count(S(questioned))

Count(S—)NP VP) )

+)\2 % Count(S)

count(lawyer | S,NP,VP,questioned)
count(S,NP,VP,questioned)

X ()\1X

Count(lawyer | S,NP,VP)
tAe X = S.NPVP)

Count(lawyer | NP) )

+As X Count(NP)



_exicalized Probabilistic Context-Free Grammars

e Transformation to lexicalized rules

S — NP VP
vs. S(questioned) — NP(lawyer) VP(questioned)

e Smoothed estimation techniques “blend” different counts
e Search for most probable tree through dynamic programming

e Perform vastly better than PCFGs (88% vs. 73% accuracy)



e PCFGs

Independence Assumptions

/S\

NP VP
/\ /\
- v NP
the lawyer | N

guestioned DT N
| |

the withess

e Lexicalized PCFGs

S(questioned)
NP(lawyer) V P(questioned)
7 W
| | V NP(witness)
the lawyer |

questioned DT N
| |

the withess



Results

Method Accuracy
PCFGs (Charniak 97) 73.0%
Conditional Models — Decision Trees (Magerman 95) 84.2%
Lexical Dependencies (Collins 96) 85.5%
Conditional Models — Logistic (Ratnaparkhi 97) 86.9%
Generative Lexicalized Model (Charniak 97) 86.7%
Generative Lexicalized Model (Collins 97) 88.2%
Logistic-inspired Model (Charniak 99) 89.6%
Boosting (Collins 2000) 89.8%

e Accuracy = average recall/precision




Parsing for Information Extraction:

Relationships between Entities

Boeing is located in Seattle.

{Relationship = Company-Location
Company = Boeing
Location = Seattle}



A Generative Model (Miller et. al)

[Miller et. al 2000] use non-terminals to carry lexical items and

semantic tags
IS

SCL
I\IPBoeing \/pIS
COI\|/IPANY CLLOC
Boeing Y, located
| VPCLLOC
s \V in
| PPCLLOC
located NPSeattI o
| LOC|ATION
In Seattle
ppiN + |lexica head

CLLOC <« semantic tag



A Generative Model [Miller et. al 2000]

We’re now left with an even more complicated estimation problem,

IS Boeing
PSCL = NPcompany Vv PR Loc)

See [Miller et. al 2000] for the details

e Parsing algorithm recovers annotated trees
= Simultaneously recovers syntactic structure and named

entity relationships

e Accuracy (precision/recall) is greater than 80% in recovering
relations



Technigques Covered in this Tutorial

e Generative models for parsing
e Log-linear (maximum-entropy) taggers

e Learning theory for NLP



Tagging Problems

TAGGING: Strings to Tagged Sequences

abeeafhj=aCbh/DeCeCabDf/Ch/D|j/C

Example 1: Part-of-speech tagging

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N
Mulally/N announced/V first/ADJ quarter/N results/N ./.

Example 2: Named Entity Recognition

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA
CEO/NA Alan/SP  Mulally/CP announced/NA first/NA quarter/NA
results/NA ./NA



Log-Linear Models

e Assumewe have sets X and )/

e Godl: define P(y | x) foranyz € X,y € ).

e A feature vector representationis¢ : X x Y — r?
o Parameters W ¢ r?

e Defl ne

Z(x, W)

Ply |z, W)=

where
Z(ij) — Z 6¢(£Iﬁ,y,)w

y'ey



Log-Linear Taggers: Notation

e Set of possiblewords=Y, possibletags="7T
o Word sequence wy;.,,) = (Wi, ws . . . Wy

o Tag sequencet(y., = [ti,t2.. .1,

e Training data isn tagged sentences,
where the ¢’ th sentence is of length n;



Log-Linear Taggers: Independence Assumptions

e Thebasicidea
P(t[lzn] | w[lm]) = H?Zl P(tj ti1...11, w[lm],j) Chain rule

=1’ P(t; | tj—1,tj—2,wpm),j)  Independence
assumptions

e Two questions:

1. Howto parameterize P(tj ‘ ti—1,t;—2, w[ln],])’?
2. How to fi nd arg max,. . P(t[lzn] | w[lm])?



The Parameterization Problem

Hispaniola/NNP  quickly/RB  became/VB an/DT

Important/JJ base/?? from which Spain expanded
Its empire into the rest of the Western Hemisphere .

e There are many possible tags in the position ??

e Need to learn a function from (context, tag) pairs to a probability
P(tag|context)



Representation: Histories

e A history isa4-tuple (t_1,t_2, Wy, ¢)
o t_1,1_o arethe previous two tags.

* wyi., arethen wordsin the input sentence.

e ; IStheindex of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

® t_l,t_g = DT, JJ
® wii.,] = (Hispaniola, quickly, became, ..., Hemisphere, .
[1:n]

e 1—=206



Feature—\Vector Representations
e Take ahistory/tag pair (h,t).

e ¢;(h,t) for s = 1...d are features representing
tagging decision ¢t in context h.

[Ratnaparkhi 96]
e Word/tag features

(ht) — <’ 1 if current word w; is base and ¢ = VB
Pro0lh, 1) = | 0 otherwise

b101 (. 1) <' 1 if current word w; ends ini ng and ¢t = VBG
LA | 0 otherwise

e Contextual Features

(1 if(t_s,t_q,t) = (DT, JJ, VB)
bros(h,t) = {O otherwise



Part-of-Speech (POS) Tagging [Ratnaparkhi 96]

o \Word/tag features

broolhit) = 1 if current word w; Is base and ¢t = VB
OB 27 ) 0 otherwise

e Spelling features

1 if current word w; ends ini ng and ¢t = VBG

$r01(h,t) = 0 otherwise

Y

1 if current word w; starts with pr e and ¢ = NN

dro2(h, 1) =« 0 otherwise




Ratnaparkhi’s POS Tagger
e Contextual Features

[ 1 if(t_y,t_q,t) = (DT, J, VB)
bos(ht) =4 otherwise

bosht) — (1) if (¢t_1,t) = (33, VB)

| 0 otherwise
_ [ 1 if(t) = (VB)
dr05(h,t) = <\ 0 otherwise
broslht) <’ if previous word w;_; = the and ¢t = VB
106\7%y o

otherwise

If next word w,,; =theand ¢t = VB

dr07(h,t) = 3 otherwise

O = O =



Log-Linear (Maximum-Entropy) Models

e Take ahistory/tag pair (h,t).
o ¢;(h,t)fors=1...d arefeatures
o W, fors=1...dareparameters

e Parameters defl ne a conditional distribution
ezs Ws¢s(h7t)

Z(h, W)

P(t|h) =

where

Z(h)W) — Z 623W8¢8(h7t,)
t'eT



Log-Linear (Maximum Entropy) Models

o Wordsequence wy., = Wi, Wa ... Wy
o Tagsequence ftp, = [t1,t2... 1)
e Histories h; — <tz'_1, t;_o, W(1:n], ’l,>

=3 S Was(hot) — X log Z(hi, W)

7 A\ 7

Linear Score Local Normalization
Terms



Log-Linear Models

e Parameter estimation:
Maximize likelihood of training data through gradient descent,
Iterative scaling

e Searchfor arg maxy,, . P(t[lm] ‘ w[lm]):
Dynamic programming, O(n|7T|?) complexity

e Experimental results:

— Almost 97% accuracy for POS tagging [Ratnaparkhi 96]

— Over 90% accuracy for named-entity extraction
[Borthwick et. al 98]

— Better results than an HMM for FAQ segmentation
[McCallum et al. 2000]



Technigques Covered in this Tutorial

e Generative models for parsing
e Log-linear (maximum-entropy) taggers

e Learning theory for NLP



Linear Models for Classification

e Goal: learn a function F : X — {—1,+1}
e Training examples (z;,y;) fori =1...m,
e A representation ® : X — R?, parameter vector W € R,

e Classifier is defined as
F(z) = Sign (®(x) - W)

e Unifying framework for many results: Support vector machines, boosting,
kernel methods, logistic regression, margin-based generalization bounds,
online algorithms (perceptron, winnow), mistake bounds, etc.

How can these methods be generalized beyond classification
problems?



Linear Models for Parsing and Tagging

e Goal: learnafunction F: X —
e Training examples (z;,y;) fori =1...m,

e Three components to the model:

— A function GEN(z) enumerating candidates for «
— A representation ® : X x Y — RY.
— A parameter vector W € R,

e Function is defined as

F(z) = P W
(%) arg max (z,9)



Component 1: GEN

e GEN enumerates a set of candidates for a sentence

She announced a program to promote safety in trucks and vans

|| GEN
> T > > S =



Examples of GEN

e A context-free grammar

e A finite-state machine

e Top N most probable analyses from a probabilistic grammar



Component 2: ¢

e & maps a candidate to a feature vector € R

o & defines the representation of a candidate

ooooooo

I P

(1,0,2,0,0,15,5)



Features

o A “feature” is a function on a structure, e.g.,

h(x) = Number of times A |isseeninx
N
B C
T A T;
Py T
B C B C
e NN e U
D E F G D E F A
A S
d e f g d e h B C
.
b ¢
h(Ty) = 1 h(Ty) = 2



Feature \ectors

e A set of functions h; ... hy define a feature vector

®(z) = (hi(x), ho(x) ... hg(x))

TlA T2 A
T /\
B  C B C
e e e Y\
D E F G D E F A
[ I I N
d e f g d e h B C
I
b ¢

&(Ty) = (1,0,0,3) &(Ty) = (2,0,1,1)



Component 3: W

e W is a parameter vector € R?

e & and W together map a candidate to a real-valued score

ooooooo

tttttt

J @
(1,0,2,0,0,15,5)
Je-W
(1,0,2,0,0,15,5) - (1.9,-0.3,0.2,1.3,0,1.0, —2.3) = 5.8



Putting it all Together

e X Is set of sentences, ) Is set of possible outputs (e.g. trees)
e Need to learn a function F : X — )
e GEN, &, W define
F(x) =arg max P(x,y)- W
() = arg max  ®(z,y)

Choose the highest scoring tree as the most plausible structure

e Given examples (z;,y;), how to set W?



She announced a program to promote safety in trucks and vans

|| GEN

T

I I (¢ @ e @

(1,1, 3,5) (2,0,0,5) (1,0,1,5) (0,0,3,0) (0,1,0,5) (0,0,1,5)

|- W & W (& W [& W |[&- W (& W
13.6 12.2 12.1 3.3 9.4 11.1

|} arg max

WWWWWW



Markov Random Fields
[Johnson et. al 1999, Lafferty et al. 2001]

e Parameters W define a conditional distribution over candidates:

eq)(wiayi)'w

P(y; | z;, W) = >, cGEN(z) e®(ziy) W

e Gaussian prior: log P(W) ~ —C||W||*/2
e MAP parameter estimates maximise

o2 (zi,yi) W B CHWHQ
e®(ziy) W 2

> log

> yc GEN (z;)

Note: Thisisa“globally normalised” model



A Variant of the Perceptron Algorithm

Inputs: Training set (x;,y;) fori=1...n
Initialization: W =0
Define: F(z) = argmaxycgen() ®(z:,y) - W
Algorithm: Fort=1...T,v=1...n

zi = F(x;)

If (z; #y;)) W =W+ ®(zy,y;) — ®(x4, 21)

Output: Parameters W



Theory Underlying the Algorithm

e Definition: GEN(z;) = GEN(z;) — {v;}

e Definition: The training set is separable with margin ¢,
if there is a vector U € R with ||U|| = 1 such that

Vi,Vz € GEN(z;) U-®(z;,y;) — U-P(z;,2) > 6

Theorem: For any training sequence (x;,y;) which is separable
with margin 9, then for the perceptron algorithm

2

Number of mistakes < %

where RissuchthatVi,Vz € GEN(x;) ||®(x;,y;) — ®(z;,2)|| < R

Proof: Direct modification of the proof for the classification case.
See [Crammer and Singer 2001b, Collins 2002a]



Results that Carry Over from Classification

e [Freund and Schapire 99] define the Voted Perceptron, prove
results for the inseparable case.

e Compression bounds [Littlestone and Warmuth, 1986]

Say the perceptron algorithm makes d mistakes when
run to convergence over a training set of size m.
Then for all distributions D(x,y), with probability
at least 1 — ¢ over the choice of training set of size m
drawn from D, if h is the hypothesis at convergence,

1 1
Err(h) < — (dlog% + logm + log 5)

NB.d < &



Large-Margin (SVM) Hypothesis
An approach which is close to that of [Crammer and Singer 2001a]:

Minimize
WP +CD e

with respect to W, ¢; for i = 1...m, subject to the constraints

Vz,‘v’y c GEN(ZBZ),y 75 Yi, W@(xz,yz)—Wq)(xz,y) 2 1—6i

\V/i, €; 20

e See [Altun, Tsochantaridis, and Hofmann, 2003]:
“Hidden Markov Support Vector Machines”



Define:
° Fw(w) — argmax,cGEN(z) (I)(xvy) - W
o Brr(lw) =2, , D y)llFw(z) # yl
o L(W,y) =" [[®(xs,y:) - W — MaxX, cGEN () (i Y) - W <]

Generalization Theorem:

For all distributions D(z, y) generating examples, for all W € R® with ||[W|| =
1, for all v > 0, with probability at least 1 — & over the choice of training set of
size m drawn from D,

1

Err(Fw) < L(W,~) + 0 <\/— (

R? (logm + log N) 1
m

2 + log —

0
where R is a constant such that Vz € X,Vy € GEN(z),Vz € GEN(z),
|®(z,y) — ®(x,2)|| < R. The variable N is the smallest positive integer such
that Vo € X, |GEN(z)| — 1 < N.

Proof: See [Collins 2002b]. Based on [Bartlett 1998, Zhang, 2002]; closely
related to multiclass bounds in e.g., [Schapire et al., 1998].



. Tagging

Going back to tagging:
e Inputs = are sentences wi;.,|
o GEN(wp.,) = T™ i.e. all tag sequences of length n

e Global representations & are composed from local feature
vectors ¢

<I>(w[1:n], t[l:n]) — Z ¢<hj7 tj)

j=1

where hj = <tj_2, tj—l; w[l:n]7j>



. Tagging

e Typically, local features are indicator functions, e.g.,

gblOl(ha t)

1 if current word w; ends ini ng and ¢t = VBG
0 otherwise

e and global features are then counts,

P01 (Wpim), tmy) = Number of times a word ending in i ng is
tagged as VBGIn (wyi.n), t[1:n))



. Tagging

o Scorefor a (wyi.p, tj1.y) AT IS
F(w[lzn]7 ln] Zzwsgbs hzat ZW (I) ln wri: n])

e Viterbi algorithm for
arg max F( W n],t[lzn])

17L€7%

Log-linear taggers (see earlier part of the tutorial) are locally normalised models:

log Pt | wiimg) = Y Y Wios(hy,t;)— > log Z(hj, W)

j=1 s =1

>4 \ . >4

Linear Model LLocal Normalization



Training the Parameters

Inputs: Training set (wf,.,, j, t.,,) fori = 1.
Initialization: W =0

Algorithm: Fort=1...T,:=1...n

Z[1.n;) 1S OUtpUt ON 2’th sentence with current parameters

If Z[1:n;] # tflmz_] then

Ws — Ws T @S(wflzni]v tfln@]) o ?:)S(wflzni]7 Z[lm])J

J/

"

Correct tags’ Incorrect tags’
feature value feature value

Output: Parameter vector W.



An Example

Say the correct tags for :’th sentence are
the/DT man/NN bit/\/BD the/DT dog/NN

Under current parameters, output Is
the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs
Parameters incremented:

(NN, VBDY), (VBD, DT), (VBD — bit)

Parameters decremented:

(NN, NN), (NN, DT), (NN — bit)



Experiments

o Wall Street Journal part-of-speech tagging data

Perceptron = 2.89%, Max-ent = 3.28%
(11.9% relative error reduction)

e [Ramshaw and Marcus 95] NP chunking data

Perceptron = 93.63%, Max-ent = 93.29%
(5.1% relative error reduction)

See [Collins 20024a]



. Reranking Approaches

e GEN Isthe top n most probable candidates from a base model

— Parsing: a lexicalized probabilistic context-free grammar
— Tagging: “maximum entropy” tagger
— Speech recognition: existing recogniser



Parsing Experiments

GEN Beam search used to parse training and test sentences:
around 27 parses for each sentence

¢ = (L(x),hi(x)...h,(x)), where L(z) = log-likelihood from
first-pass parser, /7 . .. h,, are ~ 500, 000 indicator functions

b (z) = 1 if x contains(S — NP V P)
©9- =Y 0 otherwise

ooooooo

tttttt

| ®

(—15.65,0,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0,0,0,...1,0,0)



Named Entities

GEN Top 20 segmentations from a “maximum-entropy” tagger

® = (L(x),hi(z)...h,(2)),

1 if z contains a boundary = | “
h = )
1(2) { 0 otherwise

Whether vyou’re an aging flower «child or a clueless
“ playing at the
, entertains the imagination.

| &

(—3.17,1,0,0,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0,0,0,...0,1,1)



Whether you’re an aging flower child or a clueless
, 7 playing at the
, entertains the imagination.

| ®

(—3.17,1,0,0,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0,0,0,...0,1,1)

Whether you’re an aging flower child or a clueless
Gen-Xer, “The Day playing at the
, entertains the imagination.

I P

(-3.51,1,1,1,0,0,1,0,0,1,0,1,1,1,0,1,0,1,0,0,0,0,...0,1,0)

Whether you’re an aging flower child or a clueless
“The Day ;> playing at the
, entertains the imagination.

| &

(—2.87,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,...0,1,0)



Experiments

Parsing Wall Street Journal Treebank
Training set = 40,000 sentences, test = 2,416 sentences
State-of-the-art parser: 88.2% F-measure
Reranked model: 89.5% F-measure (11% relative error reduction)
Boosting: 89.7% F-measure (13% relative error reduction)

Recovering Named-Entities in Web Data
Training data = 53,609 sentences (1,047,491 words),
test data = 14,717 sentences (291,898 words)
State-of-the-art tagger: 85.3% F-measure
Reranked model: 87.9% F-measure (17.7% relative error reduction)
Boosting: 87.6% F-measure (15.6% relative error reduction)



- Kernel Methods
(Work with Nigel Duffy)

e It’s simple to derive a “dual form” of the perceptron algorithm

If we can compute ®(z) - ®(y) efficiently
we can learn efficiently with the representation &



“All Subtrees” Representation [Bod 98]

e Given: Non-Terminal symbols {A, B, ...}
Terminal symbols {a,b,c...}

e An infinite set of subtrees

A A A A
N N /\ T
B C B E B C B A

| | N Pl
b b A B B C
|
b
o Step 1:

Choose an (arbitrary) mapping from subtrees to integers
h;(x) = Number of times subtree 7 is seen in x

®(z) = (hi(x), ho(z), ha(x)...)



All Subtrees Representation

e d isnow huge

e But inner product ®(77) - ®(73) can be computed
effi ciently using dynamic programming.
See [Collins and Duffy 2001, Collins and Duffy 2002]



Computing the Inner Product

Define  — N and IV, are sets of nodes in 77 and 75 respectively.

— I(z) = 1 1f 7’th subtree Is rooted at .
) 0 otherwise.

Follows that:
hi(Th) = Xnen, Li(na) and hy(To) = 3op,en, Li(n2)

®(T1) - ®(T2) = > hi(T1)hi(T2) = 22 Cneny Li(n1)) Cnsen, Li(n2))
= D niE€Ny 2nseNy D Ii(n1)I;(n2)

— Zn1EN1 Z’I’LQENQ A(n17 n2>

where A(ny,ne) = >, I;(n1)I;(ng) is the number of common
subtrees at nq, no



An Example

Tl A T2 A
/\ /\
B C B C
PN P PN PN
D E F G D E F G
I . I
d e f ¢ d e h i

B(T1)- (1) = A(A, A)+A(A, B) ...+ AB, A)+A(B, B) ...+ A(G, G)

e Most of these terms are 0 (e.g. A(A, B)).
e Some are non-zero, e.g. A(B, B) =4
B B B B
N N N N
D E D E D E D E
| .
e d e

|
d



Recursive Definition of A(ny, n9)

e If the productions at n; and n, are different
A(ny,ng) =0

e Else if ny, ny are pre-terminals,
A(nq,ng) =1

e Else

nc(ni)
A(nl,ng) = ];[1 (1 + A(Ch(nlaj)76h(n2aj)))

nc(ny) is number of children of node n;;
ch(nq, 7) is the j’th child of n.



lllustration of the Recursion

A A
/\ /\

B C B C
N N N N
D E F G D E F G
[ [
d e f ¢ d e h i

How many subtrees do nodes A and A have in common? i.e., What is A(A, A)?

A(B, B) = 4 A(C,C) = 1
B B B B C
N N N N P
D E D E D E D E F G
Jj Lod

A(A, A) = (AB,B)+1) x (A(C,C) +1) = 10







Similar Kernels Exist for Tagged Sequences

Whether you’re an aging flower child or a clueless

, . playing
at the , entertains the imagination.
Whether , " playing

Whether you’re an aging flower child or a clueless




Experiments

Parsing Wall Street Journal Treebank
Training set = 40,000 sentences, test = 2,416 sentences
State-of-the-art parser: 88.5% F-measure
Reranked model: 89.1% F-measure
(5% relative error reduction)

Recovering Named-Entities in Web Data
Training data = 53,609 sentences (1,047,491 words),
test data = 14,717 sentences (291,898 words)
State-of-the-art tagger: 85.3% F-measure
Reranked model: 87.6% F-measure
(15.6% relative error reduction)



Open Questions

e Can the Ilarge-margin  hypothesis be  trained
efficientlyy, even when GEN(z) is huge? (see
[Altun, Tsochantaridis, and Hofmann, 2003])

e Can the large-margin bound be improved, to remove the log NV
factor?

e Which representations lead to good performance on parsing,
tagging etc.?

e Can methods with “global” kernels be implemented
efficiently?



Conclusions

e Machine translation

e Unsupervised/partially supervised methods
e Finite state machines

e (Generation

e Question answering

e Coreference

e Language modeling for speech recognition
e Lexical semantics

e \Word sense disambiguation

e Summarization
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