
Tensor Decomposition for Fast Parsing with
Latent-Variable PCFGs

Shay B. Cohen and Michael Collins
Department of Computer Science

Columbia University
New York, NY 10027

scohen,mcollins@cs.columbia.edu

Abstract

We describe an approach to speed-up inference with latent-variable PCFGs, which
have been shown to be highly effective for natural language parsing. Our approach
is based on a tensor formulation recently introduced for spectral estimation of
latent-variable PCFGs coupled with a tensor decomposition algorithm well-known
in the multilinear algebra literature. We also describe an error bound for this
approximation, which gives guarantees showing that if the underlying tensors are
well approximated, then the probability distribution over trees will also be well
approximated. Empirical evaluation on real-world natural language parsing data
demonstrates a significant speed-up at minimal cost for parsing performance.

1 Introduction

Latent variable models have shown great success in various fields, including computational linguis-
tics and machine learning. In computational linguistics, for example, latent-variable models are
widely used for natural language parsing using models called latent-variable PCFGs (L-PCFGs;
[14]).

The mainstay for estimation of L-PCFGs has been the expectation-maximization algorithm [14,
16], though other algorithms, such as spectral algorithms, have been devised [5]. A by-product
of the spectral algorithm presented in [5] is a tensor formulation for computing the inside-outside
probabilities of a L-PCFG. Tensor products (or matrix-vector products, in certain cases) are used as
the basic operation for marginalization over the latent annotations of the L-PCFG.

The computational complexity with the tensor formulation (or with plain CKY, for that matter) is
cubic in the number of latent states in the L-PCFG. This multiplicative factor can be prohibitive for
a large number of hidden states; various heuristics are used in practice to avoid this problem [16].

In this paper, we show that tensor decomposition can be used to significantly speed-up the parsing
performance with L-PCFGs. Our approach is also provided with a theoretical guarantee: given the
accuracy of the tensor decomposition, one can compute how accurate the approximate parser is.

The rest of this paper is organized as follows. We give notation and background in §2–3, and then
present the main approach in §4. We describe experimental results in §5 and conclude in §6.

2 Notation

Given a matrix A or a vector v, we write A> or v> for the associated transpose. For any integer
n ≥ 1, we use [n] to denote the set {1, 2, . . . n}. We will make use of tensors of rank 3:1

1All PCFGs in this paper are assumed to be in Chomsky normal form. Our approach generalizes to arbitrary
PCFGs, which require tensors of higher rank.

1

Definition 1. A tensor C ∈ R(m×m×m) is a set of m3 parameters Ci,j,k for i, j, k ∈ [m]. Given
a tensor C, and vectors y1 ∈ Rm and y2 ∈ Rm, we define C(y1, y2) to be the m-dimensional row
vector with components [C(y1, y2)]i =

∑
j∈[m],k∈[m] Ci,j,ky

1
j y

2
k. Hence C can be interpreted as a

function C : Rm × Rm → R1×m that maps vectors y1 and y2 to a row vector C(y1, y2) ∈ R1×m.

In addition, we define the tensor C(1,2) ∈ R(m×m×m) for any tensor C ∈ R(m×m×m) to be the
function C(1,2) : Rm × Rm → Rm×1 defined as [C(1,2)(y

1, y2)]k =
∑
i∈[m],j∈[m] Ci,j,ky

1
i y

2
j .

Similarly, for any tensor C we define C(1,3) : Rm × Rm → Rm×1 as [C(1,3)(y
1, y2)]j =∑

i∈[m],k∈[m] Ci,j,ky
1
i y

2
k. Note that C(1,2)(y

1, y2) and C(1,3)(y
1, y2) are both column vectors.

For two vectors x ∈ Rm and y ∈ Rm we denote by x� y ∈ Rm the Hadamard product of x and y,
i.e. [x � y]i = xiyi. Finally, for vectors x, y, z ∈ Rm, xy>z> is the tensor D ∈ Rm×m×m where
Di,j,k = xiyjzk (this is analogous to the outer product: [xy>]i,j = xiyj).

3 Latent-Variable Parsing

In this section we describe latent-variable PCFGs and their parsing algorithms.

3.1 Latent-Variable PCFGs

This section gives a definition of the L-PCFG formalism used in this paper; we follow the definitions
given in [5]. An L-PCFG is a 5-tuple (N, I,P,m, n) where:

• N is the set of non-terminal symbols in the grammar. I ⊂ N is a finite set of in-terminals. P ⊂ N
is a finite set of pre-terminals. We assume that N = I ∪ P, and I ∩ P = ∅. Hence we have
partitioned the set of non-terminals into two subsets.

• [m] is the set of possible hidden states.
• [n] is the set of possible words.
• For all a ∈ I, b ∈ N, c ∈ N, h1, h2, h3 ∈ [m], we have a context-free rule a(h1)→ b(h2) c(h3).
• For all a ∈ P, h ∈ [m], x ∈ [n], we have a context-free rule a(h)→ x.

Note that for any binary rule, a→ b c, it holds that a ∈ I, and for any unary rule a → x, it holds
that a ∈ P.

The set of “skeletal rules” is defined as R = {a → b c : a ∈ I, b ∈ N, c ∈ N}. The parameters of
the model are as follows:

• For each a→ b c ∈ R, and h1, h2, h3 ∈ [m], we have a parameter t(a→ b c, h2, h3|h1, a).
• For each a ∈ P, x ∈ [n], and h ∈ [m], we have a parameter q(a→ x|h, a).

An L-PCFG corresponds to a regular PCFG with non-terminals annotated with latent states.
For each triplet of latent states and a rule a→ b c, we have a rule probability p(a(h1) →
b(h2) c(h3)|a(h1)) = t(a → b c, h2, h3|h1, a). Similarly, we also have parameters p(a(h) →
x|a(h)) = q(a → x|h, a). In addition, there are initial probabilities of generating a non-terminal
with a latent at the top of the tree, denoted by π(a, h).

L-PCFGs induce distributions over two type of trees: skeletal trees, i.e. trees without values for
latent states (these trees are observed in data), and full trees (trees with values for latent states). A
skeletal tree consists of a sequence of rules r1 . . . rN where ri ∈ R or ri = a → x. See Figure 3.1
for an example.

We now turn to the problem of computing the probability of a skeletal tree, by marginalizing out
the latent states of full trees. Let r1 . . . rN be a derivation, and let ai be the non-terminal on the left
hand-side of rule ri. For any ri = a→ b c, define h(2)i to be the latent state associated with the left
child of the rule ri and h(3)i to be the hidden variable value associated with the right child.

The distribution over full trees is then:

p(r1 . . . rN , h1 . . . hN) = π(a1, h1)×
∏
i:ai∈I

t(ri, h
(2)
i , h

(3)
i |hi, ai)×

∏
i:ai∈P

q(ri|hi, ai)

2

S1

NP2

D3

the

N4

man

VP5

V6

saw

P7

him

r1 = S→ NP VP
r2 = NP→ D N
r3 = D→ the
r4 = N→ man
r5 = VP→ V P
r6 = V→ saw
r7 = P→ him

Figure 1: An s-tree with its sequence of rules.
(The nodes in the tree are indexed by the deriva-
tion order, which is canonicalized as top-down,
left-most derviation.)

Marginalizing out the latent states leads to the distribution over the skeletal tree r1 . . . rN :
p(r1 . . . rN) =

∑
h1...hN

p(r1 . . . rN , h1 . . . hN).

It will be important for the rest of this paper to use of matrix form of parameters of an L-PCFG, as
follows:

• For each a→ b c ∈ R, we define T a→b c ∈ Rm×m×m to be the tensor with values

T a→b ch1,h2,h3
= t(a→ b c, h2, h3|a, h1)

• For each a ∈ P, x ∈ [n], we define Qa→x ∈ R1×m to be the vector with values q(a → x|h, a)
for h = 1, 2, . . .m.

• For each a ∈ I, we define the vector πa ∈ Rm where [πa]h = π(a, h).

Parameter Estimation Several ways to estimate the parameters T a→b c, Qa→x and πa have been
suggested in the literature. For example, vanilla EM has been used in [14], hierarchical state splitting
EM has been suggested in [16], and a spectral algorithm is proposed in [5].

In the rest of the paper, we assume that the parameters for these tensors have been identified, and
focus mostly on the problem of inference – i.e. parsing unseen sentences. The reason for this is
two-fold: (a) in real-world applications, training can be done off-line to identify a set of parameters
once, and therefore its computational efficiency is of lesser interest; (b) our approach can speed-up
the inference problems existing in the EM algorithm, but the speed-up is of lesser interest, because
the inference problem in the EM algorithm is linear in the tree size (and not cubic, as in the case
of parsing). The reason for this linear complexity is that the skeletal trees are observed during EM
training. Still, EM stays cubic in the number of states.

3.2 Tensor Formulation for Inside-Outside

There are several ways to parse a sentence with latent-variable PCFGs. Most of these approaches are
taken by using an inside-outside algorithm [12] which computes marginals for various non-terminals
and spans in the sentence, and then eventually finding a parse tree which maximizes a score which
is the sum of the marginals of the spans that appear in the tree.

More formally, let µ(a, i, j) =
∑
τ∈T(x):(a,i,j)∈τ p(τ) for each non-terminal a ∈ N, for each (i, j)

such that 1 ≤ i ≤ j ≤ N . Here T(x) denotes the set of all possible s-trees for the sentence x, and
we write (a, i, j) ∈ τ if non-terminal a spans words xi . . . xj in the parse tree τ .

Then, the parsing algorithm seeks for a given sentence x = x1 . . . xN the skeletal tree
argmaxτ∈T(x)

∑
(a,i,j)∈τ µ(a, i, j).

Given the marginals µ(a, i, j), one can use the dynamic programming algorithm described in [7] in
order to find this highest scoring tree.

A key question is how to compute the marginals µ(a, i, j) using the inside-outside algorithm. Dy-
namic programming solutions are available for this end as well. The complexity of a naı̈ve im-
plementation of the dynamic programming algorithm for this problem is cubic in the number of
latent states. This is where we suggest an alternative to the traditional dynamic programming solu-
tions. Our alternative relies on an existing tensor formulation for the inside-outside algorithm [5],
which re-formalizes the dynamic programming algorithm using tensor, matrix and vector product
operations.

Algorithm 2 presents the re-formulation of the inside-outside algorithm using tensors. For more
details and proofs of correctness, refer to [5]. The re-formalized algorithm is still cubic in

3

the number of hidden states, and spends most of the time computing the tensor applications
T a→b c(αb,i,k, αc,k+1,j), T b→c a(1,2) (βb,k,j , αc,k,i−1) and T b→a c(1,3) (βb,i,k, αc,j+1,k). This is the main
set of computations we aim to speed-up, as we show in the next section.

Inputs: Sentence x1 . . . xN , L-PCFG (N, I,P,m, n), parameters T a→b c ∈ R(m×m×m) for all a→ b c ∈ R,
Qa→x ∈ R(1×m) for all a ∈ P, x ∈ [n], πa ∈ R(m×1) for all a ∈ I.
Data structures:

• Each αa,i,j ∈ R1×m for a ∈ N, 1 ≤ i ≤ j ≤ N is a row vector of inside terms.

• Each βa,i,j ∈ Rm×1 for a ∈ N, 1 ≤ i ≤ j ≤ N is a column vector of outside terms.

• Each µ(a, i, j) ∈ R for a ∈ N, 1 ≤ i ≤ j ≤ N is a marginal probability.

Algorithm:
(Inside base case) ∀a ∈ P, i ∈ [N], αa,i,i = Qa→xi

(Inside recursion) ∀a ∈ I, 1 ≤ i < j ≤ N,

αa,i,j =

j−1∑
k=i

∑
a→b c

T a→b c(αb,i,k, αc,k+1,j)

(Outside base case) ∀a ∈ I, βa,1,n = πa

(Outside recursion) ∀a ∈ N, 1 ≤ i ≤ j ≤ N,

βa,i,j =

i−1∑
k=1

∑
b→c a

T b→c a
(1,2) (βb,k,j , αc,k,i−1) +

N∑
k=j+1

∑
b→a c

T b→a c
(1,3) (βb,i,k, αc,j+1,k)

(Marginals) ∀a ∈ N, 1 ≤ i ≤ j ≤ N,

µ(a, i, j) = αa,i,jβa,i,j =
∑

h∈[m]

αa,i,j
h βa,i,j

h

Figure 2: The tensor form of the inside-outside algorithm, for calculation of marginal terms µ(a, i, j).

4 Tensor Decomposition

As mentioned earlier, most computation for the inside-outside algorithm is spent on the tensor cal-
culation of T a→b c on the intermediate inside/outside quantities. These computations, appearing as
T a→b c(αb,i,k, αc,k+1,j), T b→c a(1,2) (βb,k,j , αc,k,i−1) and T b→a c(1,3) (βb,i,k, αc,j+1,k) output a vector of
length m, where computation of each element in the vector is O(m2). Therefore, the inside-outside
has a multiplicative O(m3) factor in its computational complexity, which we aim to reduce.

For the rest of this section, fix a binary grammar rule a→ b c and consider the tensor T , T a→b c

associated with it. Consider a pair of two vectors y1, y2 ∈ Rm, associated with the distributions
over latent-states for the left (y1) and right child (y2) of a given node in a parse tree. Our method
for improving the speed of this tensor computation relies on a simple observation. Given an integer
r ≥ 1, assume that the tensor T had the following special form, which is also called “Kruskal form”,
T =

∑r
i=1 uiv

>
i w
>
i , i.e. it would be the sum of r tensors, each is the tensor product of three vectors.

In that case, the cost of computing T (y1, y2) could be greatly reduced by computing:

T (y1, y2) =

[
r∑
i=1

uiv
>
i w
>
i

]
(y1, y2) =

r∑
i=1

ui(v
>
i y

1)(w>i y
2) = U>(V y1 �Wy2) (1)

where U, V,W ∈ Rr×m with the ith row being ui, vi and wi respectively.

The total complexity of this computation is O(mr). We see later that our approach can be used
effectively for r as small as 2, turning the inside-outside algorithm for latent-variable PCFGs into a
linear algorithm in the number of hidden states.

4

We note that it is well-known that an exact tensor decomposition can be achieved by using r = m2

[11]. In that case, there is no computational gain. The minimal r required for an exact solution can
be smaller than m2, but identifying that minimal r is NP-hard [9].

We focused on this section on the computation T a→b c(αb,i,k, αc,k+1,j), but the steps above can be
generalized easily for the cases of computing T b→c a(1,2) (βb,k,j , αc,k,i−1) and T b→a c(1,3) (βb,i,k, αc,j+1,k).

4.1 CP Decomposition of Tensors

In the general case, for a fixed r, our latent-variable PCFG tensors will not have the exact decom-
posed form from the previous section. Still, by using decomposition algorithms from multilinear
algebra, we can approximate the latent-variable tensors, where the quality of approximation is mea-
sured according to some norm over the set of tensors Rm×m×m.

An example of such a decomposition is the canonical polyadic decomposition (CPD), also known
as CANDECOMP/PARAFAC decomposition [3, 8, 10]. Given an integer r, least squares CPD
aims to find the nearest tensor in Kruskal form according to the analogous norm (for tensors) to the
Frobenius norm (for matrices).

More formally, for a given tensor D ∈ Rm×m×m, let ||D||F =
√∑

i,j,kD
2
i,j,k. Let the set of

tensors in Kruskal form Cr be:

Cr = {C ∈ Rm×m×m | C =

r∑
i=1

uiv
>
i w
>
i s.t. ui, vi, wi ∈ Rm}.

The least squares CPD of C is a tensor Ĉ such that Ĉ ∈ argminĈ∈Cr
||C − Ĉ||F .

There are various algorithms to perform CPD, such as alternating least squares, direct linear decom-
position, alternating trilinear decomposition and pseudo alternating least squares [6]. Most of these
implementations treat the problem of identifying the approximate tensor as an optimization prob-
lem. These algorithms are not exact. Any of these implementations can be used in our approach.
We note that the decomposition optimization problem is hard, and often has multiple local maxima.
Therefore, the algorithms mentioned above are inexact.

In our experiments, we use the alternating least squares algorithm. This method works by iteratively
improving U , V and W from Eq. 1 (until convergence), each time solving a least squares problem.

4.2 Propagation of Errors

We next present a theoretical guarantee about the quality of the CP-approximated tensor formulation
of the inside-outside algorithm. We measure the propagation of errors in probability calculations
through a given parse tree. We derive a similar result for the marginals.

We denote by p̂ the distribution induced over trees (skeletal and full), where we approximate each
T a→b c using the tensor T̂ a→b c. Similarly, we denote by µ̂(a, i, j) the approximated marginals.
Lemma 4.1. Let C ∈ Rm×m×m and let y1, y2, ŷ1, ŷ2 ∈ Rm. Then the following inequalities hold:

||C(y1, y2)||2 ≤ ||C||F ||y1||2||y2||2 (2)

||C(y1, y2)− C(ŷ1, ŷ2)||2 ≤ ||C||F max{||y1||2, ||ŷ2||2}(||y1 − ŷ1||2 + ||y2 − ŷ2||2) (3)

Proof. Eq. 2 is the result of applying Cauchy-Schwarz inequality twice:

||C(y1, y2)||22 =
∑
i

∑
j,k

Ci,j,ky
1
j y

2
k

2

≤
∑
i

∑
j,k

C2
i,j,k

∑
j

(y1j)
2

(∑
k

(y2k)
2

)
= ||C||2F · ||y1||22 · ||y2||22

5

For Eq. 3, note that C(y1, y2)−C(ŷ1, ŷ2) = C(y1, y2)−C(y1, ŷ2) +C(y1, ŷ2)−C(ŷ1, ŷ2), and
therefore from the triangle inequality and bi-linearity of C:

||C(y1, y2)− C(ŷ1, ŷ2)||2 ≤ ||C(y1, y2 − ŷ2)||2 + ||C(y1 − ŷ1, ŷ2)||2
≤ ||C||F

(
||y1||2||y2 − ŷ2||2 + ||y1 − ŷ1||2||ŷ2||2

)
≤ ||C||F max{||y1||2, ||ŷ2||2}(||y1 − ŷ1||2 + ||y2 − ŷ2||2)

Equipped with this Cauchy-Schwarz style lemma, we can prove the following theorem:

Theorem 4.2. Let d∗ =
log(1γ) + 1

log(2(
√
m+ 1)) + log(γ +

√
m)

where γ is the the “tensor approxima-

tion error” defined as γ = maxa→b c ||T a→b c − T̂ a→b c||F , then:

• For a given skeletal tree r1, . . . , rN , if the depth of the tree, denoted d, is such that

d ≤ min

{
log(1γ)− log(mε)

log(2(
√
m+ 1)) + log(γ +

√
m)

, d∗

}
then |p(r1, . . . , rN)− p̂(r1, . . . , rN)| ≤ ε

• For a given sentence x1, . . . , xM , it holds that for all triplets (a, i, j), if

M ≤ min

{
log(1γ)− log(mε)

2 log(4|N|) + log(2(
√
m+ 1)) + log(γ +

√
m)

, d∗

}
then |µ(a, i, j)−µ̂(a, i, j)| ≤ ε

Proof. For the first part, the proof is using structural induction on the structure of the test tree.
Assume a fixed skeletal tree r1, . . . , rN . The probability p(r1, . . . , rN) can be computed by using a
sequence of applications of T a→b c on distribution over latent states for left and right children. More
specifically, it can be shown that the vector of probabilities defined as [yi]h = p(ti | ai, hi = h)
(ranging over [m]), where ti is the skeletal subtree rooted at node i can be defined recursively as:

• yi = Qa→xi if i is a leaf node with word xi and,
• yi = T a→b c(yj , yk) if i is a non-leaf node with node j being the left child and node k being the

right child of node i.

Define the same quantities ŷi, only using the approximate tensors T̂ a→b c. Let δi = ||yi − ŷi||. We
will prove inductively that if di is the depth of the subtree at node i, then:

δi ≤ min

{
γm

(
(2(
√
m+ 1)(γ +

√
m))

di − 1

2(
√
m+ 1)(γ +

√
m)− 1

)
, 1

}
For any leaf node (base case): ||yi − ŷi||2 = 0. For a given non-leaf node i:

δi =||yi − ŷi||2 = ||T a→b c(yj , yk)− T̂ a→b c(ŷj , ŷk)||2
≤||T a→b c(yj , yk)− T̂ a→b c(yj , yk)||2 + ||T̂ a→b c(yj , yk)− T̂ a→b c(ŷj , ŷk)||2 (4)

≤||T a→b c − T̂ a→b c||F ||yj ||2||yk||2
+ ||T̂ a→b c||max{||yj ||2, ||ŷk||2}(||yj − ŷj ||2 + ||yk − ŷk||2) (5)

≤γm+ (
√
m+ 1)(γ +

√
m)(δj + δk)

≤γm

(
1 + 2(

√
m+ 1)(γ +

√
m)

(2(
√
m+ 1)(γ +

√
m))

di−1 − 1

2(
√
m+ 1)(γ +

√
m)− 1

)
(6)

=γm

(
(2(
√
m+ 1)(γ +

√
m))

di − 1

2(
√
m+ 1)(γ +

√
m)− 1

)

6

m = 8 m = 16 m = 20

log threshold
−20 −15 −10 −5

3.
5

4.
0

4.
5

5.
0

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

84
.0

84
.5

85
.0

85
.5

86
.0

F
1

se
co

nd
s

pe
r

se
nt

en
ce

log threshold
−20 −15 −10 −5

4
6

8
10

12
14

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

84
.0

84
.5

85
.0

85
.5

86
.0

F
1

se
co

nd
s

pe
r

se
nt

en
ce

log threshold
−20 −15 −10 −5

5
10

15
20

25

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

84
.0

84
.5

85
.0

85
.5

86
.0

F
1

se
co

nd
s

pe
r

se
nt

en
ce

threshold no approx. 10−8 10−5 0.001

m
=
8 seconds per sentence 4.6 4.2 3.4 3.5

F1 85.72 85.72 85.60 85.61

m
=
16 seconds per sentence 14.6 9.8 3.5 3.2

F1 85.59 85.58 85.46 85.49

m
=
20 seconds per sentence 23.7 15.6 3.6 3.2

F1 85.20 85.21 85.15 85.14

Figure 3: Speed and performance of parsing with tensor decomposition for m ∈ {8, 16, 20} (left
plots, middle plots and right plots respectively). The left y axis is running time (red circles), the
right y axis is F1 performance of the parser (blue squares), the x axis corresponds to log t. Solid
lines describe decomposition with r = 2, dashed lines describe decomposition with r = 8. In
addition, we include the numerical results for various m for r = 8.

where Eq. 4 is the result of the triangle inequality, Eq. 5 comes from Lemma 4.1 and the fact that
||T̂ a→b c||F ≤ ||T̂ a→b c−T a→b c||F + ||T a→b c||F ≤ γ+

√
m and ||ŷk||2 ≤ δk+ ||yk||2 ≤ 1+

√
m

for any node k (under ind. hyp.), and Eq. 6 is the result of applying the induction hypothesis. It can
also be verified that since di ≤ d ≤ d∗ we have δi ≤ 1.

Since m ≥ 1, it holds that δi ≤ γm (2(
√
m+ 1)(γ +

√
m))

di . Consider |p(r1, . . . , rN) −
p̂(r1, . . . , rN)| = |πa1(y1 − ŷ1)| ≤ ||πa1 ||2δ1 ≤ δ1 where a1 is the non-terminal at the root of

the tree. It is easy to verify that if d1 ≤
log(1γ)− log(mε)

log(2(
√
m+ 1)) + log(γ +

√
m)

, then δ1 ≤ ε, as needed.

For the marginals, consider that: |µ(a, i, j)− µ̂(a, i, j)| ≤
∑
τ∈T(x) |p(τ)− p̂(τ)|.

We have d1 ≤M . In addition, if

M ≤
log(1γ)− 2M log(4|N|)− log(mε)

log(2(
√
m+ 1)) + log(γ +

√
m)

then d1 ≤
log(1γ)− log(m

ε/|T(x)|)

log(2(
√
m+ 1)) + log(γ +

√
m)

(7)

because the number of labeled binary trees for a sentence of length M is at most (4|N|)2M (and
therefore |T(x)| ≤ (4|N|)2M ; 4l is a bound on the Catalan number, the number of binary trees over
l nodes), then |µ(a, i, j)− µ̂(a, i, j)| ≤ ε.
It can be verified that the left hand-side of Eq. 7 is satisfied if M ≤

log(1γ)− log(mε)

2 log(4|N|) + log(2(
√
m+ 1)) + log(γ +

√
m)

.

As expected, the longer a sentence is, or the deeper a parse tree is, the better we need the tensor
approximation to be (smaller γ) for the inside-outside to be more accurate.

5 Experiments

We devote this section to empirical evaluation of our approach. Our goal is to evaluate the trade-off
between the accuracy of the tensor decomposition and the speed-up in the parsing algorithm.

7

Experimental Setup We use sections 2–21 of the Penn treebank [13] to train a latent-variable
parsing model using the expectation-maximization algorithm (EM was run for 15 iterations) for
various number of latent states (m ∈ {8, 16, 20}), and then parse in various settings section 22 of
the same treebank (sentences of length ≤ 40). Whenever we report parsing accuracy, we use the
traditional F1 measure from the Parseval metric [2]. It computes the F1 measure of spans (a, i, j)
appearing in the gold standard and the hypothesized trees.

The total number of tensors extracted from the training data using EM was 7,236 (corresponding
to the number of grammar rules). Let γa→b c = ||T a→b c − T̂ a→b c||F . In our experiments, we
vary a threshold t ∈ {0.1, 0.001, 10−5, 10−6, 10−8, 0} – an approximate tensor T̂ a→b c is used
instead of T a→b c only if γa→b c ≤ t. The value t = 0 implies using vanilla inference, without any
approximate tensors. We describe experiments with r ∈ {2, 8}. For the tensor approximation, we
use the implementation provided in the Matlab tensor toolbox from [1]. The toolbox implements the
alternating least squares method.

As is common, we use a pruning technique to make the parser faster – items in the dynamic pro-
gramming chart are pruned if their value according to a base vanilla maximum likelihood model is
less than 0.00005 [4]. We report running times considering this pruning as part of the execution.
The parser was run on a single Intel Xeon 2.67GHz CPU.

We note that the performance of the parser improves as we add more latent states. The performance
of the parser with vanilla PCFG (m = 1) is 70.26 F1 measure.

Experimental Results Table 3 describes F1 performance and running time as we vary t. It is
interesting to note that the speed-up, for the same threshold t, seems to be larger when using r = 8
instead of r = 2. At first this may sound counter-intuitive. The reason for this happening is that
with r = 8, more of the tensors have an approximation error which is smaller than t, and therefore
more approximate tensors are used than in the case of r = 2.

Using t = 0.1, the speed-up is significant over non-approximate version of the parser. More specif-
ically, for r = 8, it takes 72% of the time (without considering the pruning phase) of the non-
approximate parser to parse section 22 with m = 8, 24% of the time with m = 16 and 21% of the
time with m = 20. The larger m is, the more significant the speed-up is.

The loss in performance because of the approximation, on the other hand, is negligible. More
specifically, for r = 8, performance is decreased by 0.12% for m = 8, 0.11% for m = 16 and
0.08% for m = 20.

6 Conclusion

We described an approach to significantly improve the speed of inference with latent-variable
PCFGs. The approach approximates tensors which are used in the inside-outside algorithm. The
approximation comes with a minimal cost to the performance of the parser. Our algorithm can be
used in tandem with estimation algorithms such as EM or spectral algorithms [5]. We note that
tensor formulations are used with graphical models [15], for which our technique is also applicable.
Similarly, our technique can be applied to other dynamic programming algorithms which compute
marginals of a given statistical model.

References

[1] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping. ACM Transactions on Mathematical Software, 32(4):635–653, 2006.

[2] E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P Harrison, D. Hindle, R. Ingria,
F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and T. Strzalkowski.
A procedure for quantitatively comparing the syntactic coverage of English grammars. In Proc.
of DARPA Workshop on Speech and Natural Language, 1991.

[3] J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional scaling via
an N-way generalization of Eckart-Young decomposition. Psychometrika, 35:283–319, 1970.

8

[4] E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of ACL, 2005.

[5] S. B. Cohen, K. Stratos, M. Collins, D. F. Foster, and L. Ungar. Spectral learning of latent-
variable PCFGs. In Proceedings of ACL, 2012.

[6] N. M. Faber, R. Bro, and P. Hopke. Recent developments in CANDECOMP/PARAFAC algo-
rithms: a critical review. Chemometrics and Intelligent Laboratory Systems, 65(1):119–137,
2003.

[7] J. Goodman. Parsing algorithms and metrics. In Proceedings of ACL, 1996.
[8] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an

“explanatory” multi-modal factor analysis. UCLA working papers in phoentics, 16:1–84, 1970.
[9] J. Høastad. Tensor rank is NP-complete. Algorithms, 11:644–654, 1990.

[10] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Rev., 51:455–500,
2009.

[11] J. B. Kruskal. Rank, decomposition, and uniqueness for 3-way and N-way arrays. In R. Coppi
and S. Bolasco, editors, Multiway Data Analysis, pages 7–18, 1989.

[12] C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT
Press, 1999.

[13] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of
English: The Penn treebank. Computational Linguistics, 19:313–330, 1993.

[14] T. Matsuzaki, Y. Miyao, and J. Tsujii. Probabilistic CFG with latent annotations. In Proceed-
ings of ACL, 2005.

[15] A. Parikh, L. Song, and E. P. Xing. A spectral algorithm for latent tree graphical models. In
Proceedings of The 28th International Conference on Machine Learningy (ICML 2011), 2011.

[16] S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact, and interpretable
tree annotation. In Proceedings of COLING-ACL, 2006.

9

