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Abstract

We consider the problem of using nearest neighbor methodsotode a condi-
tional probability estimateP(y|a), when the number of labelsis large and the
labels share some underlying structure. We propose a mébdhdelarning label
embeddings (similar to error-correcting output codes (ESpto model the sim-
ilarity between labels within a nearest neighbor framewdrke learned ECOCs
and nearest neighbor information are used to provide donditprobability esti-
mates. We apply these estimates to the problem of acoustieling for speech
recognition. We demonstrate significant improvementsrimssof word error rate
(WER) on a lecture recognition task over a state-of-the-asebne GMM model.

1 Introduction

Recent work has focused on the learning of similarity metwithin the context of nearest-neighbor
(NN) classification [7, 8, 12, 15]. These approaches learerabedding (for example a linear
projection) of input points, and give significant improvartgin the performance of NN classifiers.

In this paper we focus on the application of NN methods to inuldtss problems, where the number
of possible labels is large, and where there is significantire within the space of possible labels.
We describe an approach that induces prototype vedyse R’ (similar to error-correcting
output codes (ECOCs)) for each laelfrom a set of training examplgga;, y;)} fori = 1... N.
The prototype vectors are embedded within a NN model thamnasts P(y|a); the vectors are
learned using a leave-one-out estimate of conditionaliledihood (CLL) derived from the training
examples. The end result is a method that embeds labiio R” in a way that significantly
improves conditional log-likelihood estimates for mudtass problems under a NN classifier.

The application we focus on is acoustic modeling for speechgnition, where each inpatc R

is a vector of measured acoustic features, and each jabe)) is an acoustic-phonetic label. As
is common in speech recognition applications, the size efldhel space) is large (in our ex-
periments we have 1871 possible labels), and there is signifstructure within the labels: many
acoustic-phonetic labels are highly correlated or corflesaand many share underlying phonolog-
ical features. We describe experiments measuring bothitimmal log-likelihood of test data, and
word error rates when the method is incorporated withinlsfigech recogniser. In both settings the
experiments show significant improvements for the ECOC otktver both baseline NN methods
(e.g., the method of [8]), as well as Gaussian mixture mo@elMs), as conventionally used in
speech recognition systems.

While our experiments are on speech recognition, the methodld be relevant to other domains
which involve large multi-class problems with structureddéls—for example problems in natural
language processing, or in computer vision (e.g., see [ddafrecent use of neighborhood com-



ponents analysis (NCA) [8] within an object-recognitioskavith a very large number of object
labels). We note also that the approach is relatively efficieur model is trained on around 11
million training examples.

2 Related Work

Several pieces of recent work have considered the leartifepture space embeddings with the
goal of optimizing the performance of nearest-neighbossifeers [7, 8, 12, 15]. We make use of
the formalism of [8] as the starting point in our work. The eahcontrast between our work and
this previous work is that we learn an embedding ofldi®elsin a multi-class problem; as we will
see, this gives significant improvements in performancewiearest-neighbor methods are applied
to multi-class problems arising in the context of speecbgedion.

Our work is related to previous work on error-correctingpatcodes for multi-class problems.
[1, 2, 4, 9] describe error-correcting output codes; mocemdy [2, 3, 11] have described algorithms
for learning ECOCs. Our work differs from previous work irattECOC codes are learned within
a nearest-neighbor framework. Also, we learn the ECOC codesder to model the underlying
structure of the label space and not specifically to combiiredsults of multiple classifiers.

3 Background

The goal of our work is to derive a model that estimalég|a) wherea € R” is a feature vector
representing some input, apds a label drawn from a set of possible labgls The parameters of
our model are estimated using training examdles, y1), ..., (ax, yn)}. In general the training
criterion will be closely related to the conditional lodrdlihood of the training points:

N
Zlog P(y;la;)
i=1

We choose to optimize the log-likelihood rather than singiessification error, because these esti-
mates will be applied within a larger system, in our case adpeecognizer, where the probabilities
will be propagated throughout the recognition model; hehisemportant for the model to provide
well-calibrated probability estimates.

For the speech recognition application considered in yiep)’ consists of 1871 acoustic-phonetic
classes that may be highly correlated with one another. ragieg structure in the label space will
be crucial to providing good estimates Bfy|a); we would like to learn the inherent structure
of the label space automatically. Note in addition that efficy is important within the speech
recognition application: in our experiments we make userofiad 11 million training samples,

while the dimensionality of the data i3 = 50.

In particular, we will develop nearest-neighbor method# tive an efficient estimate d?(y|a).
As a first baseline approach—and as a starting point for théadstwe develop—consider the
neighbor components analysis (NCA) method introduced hy IfB NCA, for any test pointa, a
distributiona(j]a) over the training examples is defined as follows whef#a) decreases rapidly
as the distance betwearanda; increases.

‘ o~ lla—ayl” .
O[(j|a) - Zﬁzl 6*||a*am||2 ( )

The estimate oP(y|a) is then defined as follows:

N
Prea(yla) = Z a(ila) 2)

1=1y,=y



In NCA the original training data consists of points;,y;) for i = 1... N, wherex; € R,
with D’ typically larger thanD. The method learns a projection matAxthat defines the modified
representation; = Ax; (the same transformation is applied to test points). Theirmatis learned
from training examples, to optimize log-likelihood undeetmodel in Eq. 2.

In our experiments we assume that Ax for some underlying representatiarand a projection
matrix A that has been learned using NCA to optimize the log-likelthof the training set. As

a result the matriXA, and consequently the representatigrare well-calibrated in terms of using
nearest neighbors to estimaly|a) through Eq. 2. A first baseline method for our problem is
therefore to directly use the estimates defined by Eq. 2.

We will, however, see that this baseline method performslpaa providing estimates oP(y|a)
within the speech recognition application. Importanthe model fails to exploit the underlying
structure or correlations within the label space. For eXxemonsider a test point that has many
neighbors with the phonemic labek/ . This should be evidence that closely related phonemes,
/ sh/ for instance, should also get a relatively high probabilinder the model, but the model is
unable to capture this effect.

As a second baseline, an alternative method for estim&iga) using nearest neighbor informa-
tion is the following:

# of k-nearest neighbors efin training set with label,
Pi(yla) = A

Here the choice of is crucial. A smallk will be very sensitive to noise and necessarily lead to
many classes receiving a probability of zero, which is uirelbke for our application. On the other
hand, ifk is too large, samples from far outside the neighborhoaoa wfll influence Py (y|a). We
will describe a baseline method that interpolates estistaten several different values &f This
baseline will be useful with our approach, but again suffesms the fact that it does not model the
underlying structure of the label space.

4 Error-Correcting Output Codes for Nearest-Neighbor Classfiers

We now describe a model that uses error correcting outp@sctudexplicitly represent and learn the
underlying structure of the label spa¥e For each label, we defineM,, € R’ to be a prototype
vector. We assume that the inner prod(®f,, M.) will in some sense represent the similarity
between labelg andz. The vectoraM, will be learned automatically, effectively representing a
embedding of the labels iR”. In this section we first describe the structure of the maaled, then
describe a method for training the parameters of the mogge] @arning the prototype vectd,).

4.1 ECOC Model

The ECOC model is defined as follows. When considering a tespleaa, we first assign weights
a(jla) to pointsa; from the training set through the NCA definition in Eq. 1. [t be a matrix
that contains all the prototype vectdy$, as its rows. We can then construct a veditia; M) that
uses the weighta(j|a) and the true labels of the training samples to calculatexpeated value of
the output code representiag

N
H(a;M) =Y a(jla)M,,
j=1
Given this definition ofHf (a; M), our estimate under the ECOC model is defined as follows:

(M, H (a;M))

> ey ey HEM)

Pecoc(?/'a; M) =
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L | average CLL
2 -4.388
10 -2.748
20 -2.580
30 -2.454
40 -2.432
50 -2.470
60 -2.481

Table 1: Average CLL achieved k... over DevSetl for different values éf

This distribution assigns most of the probability for a sényectora to classes whose proto-
type vectors have a large inner product whltfa; M). All labels receive a non-zero weight under

Pecoc(y|a; M)

4.2 Training the ECOC Model

We now describe a method for estimating the ECOC vedtbysn the model. As in [8] the method
uses a leave-one-out optimization criterion, which isipalarly convenient within nearest-neighbor
approaches. The optimization problem will be to maximize¢bnditional log-likelihood function

Z log P02 (yilai; M)

WherePe(é‘;‘;)(yi\ai; M) is a leave-one-out estimate of the probability of lapebiven the input
a;, assuming an ECOC matriXI. This criterion is related to the classification performant the
training data and also discourages the assignment of varpiabability to the correct class.

The estimate? :2% (yila;; M) is given through the following definitions:
e llai—a;l|?

loo s - H
if 4 and0 otherwise
(i) = SN e llaanl? 7
m=1,m%#1

N

HU) (a;; M) = ) a9 (j|i)M

Jj=1

M, H ) (a;M
Poo) (y|a;; M) = et o)

ecoc

S ey €M BT @M

The criterionF' (M) can be optimized using gradient-ascent methods, wherer#iukegt is as fol-
lows:

OF(M) )
. =V V)
N N
:ZZ (loo) ¢ (02,9, My, + 0y, .M, )]
=1 5=1
N N
=Y > P M) | Y a0 (j1i)(0. 4 My, + 6y, -M,)]
i=1y'€Y j=1



Model | Average CLL on DevSet 1 Perplexity
Prea -2.657 14.25
Py -2.535 12.61
Prcoc -2.432 11.38
Pruy -2.337 10.35
Py -2.299 9.96
Pric -2.165 8.71

Table 2: Average conditional log-likelihood (CLL) @%,cq, Prn, Pecocr Pan's Pymm and Pp,;; on
DevSetl. The corresponding perplexity values are indicasawell where the perplexity is defined
ase~” given thatr is the average CLL.

Hered,, = 1if a = bands,, = 0if a # b. Sincea’®) (ji) will be very small if||a; — a;||? is
large, the gradient calculation can be truncated for suak papoints which significantly improves
the efficiency of the method (a similar observation is usef@in This optimization is non-convex
and it is possible to converge to a local optimum.

In our experiments we learn the matif using conjugate gradient ascent, though alternatives such
as stochastic gradient can also be used. A random initiilizaf M is used for each experiment.
We selectL = 40 as the length of the prototype vectaxd,. We experimented with different
values ofL. The average conditional log-likelihood achieved on a tigwment set of approximately
115,000 samples (DevSetl) is listed in Table 1. The perfoom®f the method improves initially

as the size ol increases, but the objective levels off aroune: 40.

5 Experiments on Log-Likelihood

We test our approach on a large-vocabulary lecture redogrtask [6]. This is a challenging task
that consists of recognizing college lectures given by ipleltspeakers. We use the SUMMIT
recognizer [5] that makes use of 1871 distinct class lab&le acoustic vectors we use are 112
dimensional vectors consisting of eight concatenated fedsional vectors of MFCC measure-
ments. These vectors are projected down to 50 dimensiong BECA as described in [13]. This
section describes experiments comparing the ECOC modelvera baseline models in terms of
their performance on the conditional log-likelihood of gaenacoustic vectors.

The baseline modeR,,,,, makes use of estimaté (y|a) as defined in section 3. The Jétis a set
of integers representing different values kgthe number of nearest neighbors used to evaliiate
Additionally, we assumé functions over the the label®; (y), ..., P;(y). (More information on the
functionsP; (y) that we use in our experiments can be found in the appendihaide found these
functions over the labels are useful within our speech reitiogp application.) The model is then
defined as

d
(ylas ) = > MePi(yla) + > AIP;(y)
j=1

ke

where\, > 0,Vk € K, A} > 0forj =1,...,d, and}, c,c A + Z 1 AY = 1. The\ values were
estimated using the EM algorithm on a validation set of eﬂam(DevSetZ). In our experiments,
we selectC = {5, 10, 20, 30, 50, 100, 250, 500, 1000}. Table 2 contains the average conditional log-
likelihood achieved on a development set (DevSet1Ry,, P, and P..,.. These results show

that P, clearly outperforms these two baseline models.

In a second experiment we combingd.,. with P,,,, to create a third modeP;,,; (y|a). This model
includes information from the nearest neighbors, the dutpdes, as well as the distributions over
the label space. The model takes the following form:

Pf’ull |a )\ Z Akpk y|a +Z)\O Aeccoc e(oc( |a M)
kel



Acoustic Model | WER (DevSet3)] WER (Test Set)
Baseline Model 36.3 35.4
Augmented Model 35.2 34.5

Table 3: WER of recognizer for different acoustic models andbvelopment and test set.

The values of\ here have similar constraints as before and are again @etimising the EM algo-
rithm. Results in Table 2 show that this model gives a furthear improvement oveP..,..

We also compare ECOC to a GMM model, as conventionally usegpéech recognition systems.
The GMM we use is trained using state-of-the-art algorithwith the SUMMIT system [5]. The
GMM defines a generative modg),,..., (aly); we derive a conditional model as follows:

 Paml(aly)*Py)
Pymm(yla) = > Pym(aly )2 P(y')

y'ey t gmm

The parametew is selected experimentally to achieve maximum CLL on De2%ed P(y) refers
to the prior over the labels calculated directly from theilative proportions in the training set.
Table 2 shows thaPy,; and Py, are close in performance, with,,,,.,, giving slightly improved
results. A final interpolated model with similar constraion the values of trained using the EM
algorithm is as follows:

d
Pmiz(y|a§ X) = Z )‘kpk(y|a) + Z )‘?P](y) + )‘ecocpecoc(y‘a; M) + )\gmmPgmm(y|a)
kel j=1

Results forP,,;, are shown in the final row in the table. This interpolated nhaglees a clear
improvement over both the GMM and ECOC models alone. ThuE@®C model, combined with
additional nearest-neighbor information, can give a cleguarovement over state-of-the-art GMMs
on this task.

6 Recognition Experiments

In this section we describe experiments that integrate @®E model within a full speech recog-
nition system. We learn parameteysising both DevSetl and DevSet2 . (y|a). However,
we need to derive an estimate fBfa|y) for use by the recognizer. We can do so by using an esti-

mate forP(aly) proportional tol ;@gﬁ [16]. The estimates foP(y) are derived directly from the

proportions of occurrences of each acoustic-phonetis dhahe training set.

In our experiments we consider the following two methodscfdculating the acoustic model.

e Baseline Model; log Pym(aly)

e Augmented Model3; log (ngmm(yla);((ly;wpfu”(y‘a))

The baseline method is just a GMM model with the commonly ussading parametef;,. The
augmented model combinéy,,, ., linearly with Py,,;; using parametey and the log of the combi-
nation is scaled by parametés. The parameters;, 3, v are selected using the downhill simplex
algorithm by optimizing WER over a development set [10]. Oevalopment set (DevSet3) consists
of eight hours of data including six speakers and our testa®ists of eight hours of data including
five speakers. Results for both methods on the developmeamdeest set are presented in Table 3.

The augmented model outperforms the baseline GMM modes ifticates that the nearest neigh-
bor information along with the ECOC embedding, can signifilsaimprove the acoustic model.
Overall, an absolute reduction ©fl% in WER on the development set abd% on the test set are
achieved using the augmented acoustic model. These reselsgnificant withp < 0.001 using
the sign test calculated at the utterance level.
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Figure 1: Plot of 2-dimensional output codes correspontting3 acoustic phonetic classes. The
red circles indicate noise and silence classes. The phordasises are divided as follows: vowels,
semivowels, nasals, stops and stop closures, fricatiffeisages, and the aspirahhh/ .

7 Discussion

7.1 Plot of a low-dimensional embedding

In order to get a sense of what is learned by the output cod€s.qf we can plot the output codes
directly. Figure 1 shows a plot of the output codes learneehwh= 2. The output codes are learned
for 1871 classes, but only 73 internal acoustic-phonetissgs are shown in the plot for clarity. In
the plot, classes of similar acoustic-phonetic categaryshown in the same color and shape. We can
see that items of similar acoustic categories are groupeselyl together. For example, the vowels
are close to each other in the bottom left quadrant, whilestbp-closures are grouped together in
the top right, the affricates in the top left, and the nasalhe bottom right. The fricatives are a
little more spread out but usually grouped close to anottieative that shares some underlying
phonological feature such d&sh/ and/ zh/ which are both palatal aridf / and/ t h/ which are
both unvoiced. We can also see specific acoustic propertiesging. For example the voiced stops
/'bl, 1dl, [gl areplaced close to other voiced items of different acoustiegories.



7.2 Extensions

The ECOC embedding of the label space could also be co-kgavitk an embedding of the input
acoustic vector space by extending the approach of NCA f8kolld simply require the reintro-
duction of the projection matriA in the weightso.

e~ llAx—Ax;||?
(kﬁ=z
alg N . e—|[Ax—Ax,, |2
m=

H(x; M) and P..,. would still be defined as in section 4.1. The optimizatiorecidon would now
depend on bottA andM. To optimizeA, we could again use gradient methods. Co-learning the
two embedding®I and A could potentially lead to further improvements.

8 Conclusion

We have shown that nearest neighbor methods can be usedrwverthe performance of a GMM-
based acoustic model and reduce the WER on a challenginglspesagnition task. We have
also developed a model for using error-correcting outpdiesdo represent an embedding of the
acoustic-phonetic label space that helps us capture ctassinformation. Future work on this task
could include co-learning an embedding of the input acow&ctor space with the ECOC matrix to
attempt to achieve further gains.

Appendix

We define three distributions based on the prior probadsliff(y), of the acoustic phonetic classes.
The SUMMIT recognizer makes use of 1871 distinct acoustangtic labels [5]. We divide the set
of labels,), into three disjoint categories.

o Y includes labels involvingnternal phonemic events (e.g.ay/ )

¢ VY@ includes labels involving thegansition from one acoustic-phonetic event to another
(e.g./ ow ->/ch/)

¢ V) includes labels involving onlyon-phoneti@vents like noise and silence

We define a distributio®(") (y) as follows. Distributions”(®) () andP(*) (y) are defined similarly.

Py), ifyeyW
0, otherwise

Zy/ey<1) P(y')

PW(y) =
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