
An SVM Approach
for Natural Language Learning

Michael Collins

MIT EECS/CSAIL

Joint work with Peter Bartlett, David McAllester, Ben Taskar



Supervised Learning in NLP

• Goal is to learn a function F : X → Y ,
where X is a set of possible inputs,
Y is a set of possible outputs.

• We have a training sample (x1, y1), (x2, y2), . . . , (xn, yn)
where each (xi, yi) ∈ X × Y
E.g., each xi is a sentence, each yi is a gold-standard parse



Global Linear Models

• Three components:

GEN is a function from a string to a set of candidates

Φ maps a candidate to a feature vector

W is a parameter vector



Component 1: GEN

• GEN enumerates a set of candidates for a sentence
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Component 2: Φ

• Φ maps a candidate to a feature vector ∈ R
d

• Φ defines the representation of a candidate
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Features

• A “feature” is a function on a structure, e.g.,

h(x) = Number of times A

B C

is seen in x
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Feature Vectors

• A set of functions h1 . . . hd define a feature vector

Φ(x) = 〈h1(x), h2(x) . . . hd(x)〉
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Component 3: W

• W is a parameter vector ∈ R
d

• Φ and W together map a candidate to a real-valued score
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Putting it all Together

• X is set of sentences, Y is set of possible outputs (e.g. trees)

• Need to learn a function F : X → Y

• GEN, Φ, W define

F(x) = arg max
y∈GEN(x)

Φ(x, y) ·W

Choose the highest scoring tree as the most plausible structure

• Given examples (xi, yi), how to set W?
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Examples of Global Linear Models

• Parse Reranking, e.g., [Ratnaparkhi, Reynar and Roukos, 1994],
[Johnson et. al, 1999], [Collins 2000], [Riezler et. al, 2004], [Shen, Sarkar
and Joshi, 2003], [Charniak and Johnson, 2005]

• Conditional random fields for tagging problems
[Lafferty, McCallum, and Pereira, 2001; Sha and Pereira, 2003]

• Speech recognition: estimating a discriminative n-gram model
[Roark, Saraclar and Collins, 2004]

• Dependency parsing [McDonald, Pereira, Ribarov and Hajic, 2005]

• Reranking for machine translation [Shen and Joshi, 2005; Shen,
Sarkar and Och, 2004]

• Alignments in MT [Taskar, Lacoste-Julien, and Klein, 2005]



Overview

• Margins, and the large margin solution

• An SVM algorithm

• Local feature vectors
(what to do when GEN is large...)

• Justification for the algorithm

• Conclusions



Margins

• Given parameter values W, the margin on parse y

for i’th training example is

Mi,y = Φ(xi, yi) ·W −Φ(xi, y) ·W

This is the difference in score between the correct
parse, and parse y
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Support Vector Machines: The Large Margin Solution

Minimize
||W||2

under the constraints

∀i, ∀y 6= yi, Mi,y ≥ 1

(Note: a solution doesn’t always exist)

‖W‖2 =
∑

j W
2
j



Support Vector Machines: The Large Margin Solution

Minimize
||W||2

under the constraints

∀i, ∀y 6= yi, Mi,y ≥ 1

Statistical justification:

• Assume there is a distribution P (x, y) underlying training and test
examples

• If ‖W‖2

n
is small, with high probability W will have low error rate w.r.t.

P (x, y)



Overview

• Margins, and the large margin solution

• An SVM algorithm

• Local feature vectors
(what to do when GEN is large...)

• Justification for the algorithm

• Conclusions



Training an SVM: Dual Variables

• For the perceptron, SVMs, and conditional random fields, the
final parameter values can be expressed as:

W =
∑

i,y

αi,y [Φ(xi, yi)−Φ(xi, y)]

where αi,y are dual variables
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Training an SVM

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: Set αi,y to initial values,

Calculate W =
∑

i,y αi,y [Φ(xi, yi)−Φ(xi, y)]

Note: must have αi,y > 0,
∑

y αi,y = 1



Training an SVM: The Algorithm

(1) Calculate Margins:

∀i, y, Mi,y = Φ(xi, yi) ·W −Φ(xi, y) ·W

(2) Update Dual Variables:

∀i, y, α′i,y ← . . .

(More on this in a moment...)

(3) Update Parameters: W =
∑

i,y α′
i,y [Φ(xi, yi)−Φ(xi, y)]

(4) If not converged, return to Step (1)



Updating the Dual Variables

∀i, y, α′i,y ←
αi,ye

η5i,y

∑

y αi,ye
η5i,y

where

5i,y = 0 for y = yi

5i,y = 1−Mi,y for y 6= yi

Intuition:

• if Mi,y > 1, αi,y decreases

• if Mi,y < 1, αi,y increases

• if Mi,y = 1, αi,y stays the same

• The learning rate η > 0 controls the magnitude of the updates
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i,y: 0.02 0.088 0.89 0.0



Training an SVM: The Algorithm

(1) Calculate Margins:
∀i, y, Mi,y = Φ(xi, yi) ·W −Φ(xi, y) ·W

(2) Update Dual Variables:

∀i, y, α′
i,y ←

αi,ye
η5i,y

∑

y
αi,ye

η5i,y

where

5i,y = 0 for y = yi

5i,y = 1−Mi,y for y 6= yi

(3) Update Parameters: W =
∑

i,y α′
i,y [Φ(xi, yi)−Φ(xi, y)]

(4) If not converged, return to Step (1)



Theory

• Algorithm converges to the minimum of

∑

i

max
y

(1−Mi,y)+ +
1

2
||W||2

where

(1−Mi,y)+ =

{

(1−Mi,y) if (1−Mi,y) > 0
0 otherwise

This is the hinge loss: penalizes values for Mi,y that are < 1

Note, as before:

Mi,y = Φ(xi, yi) ·W −Φ(xi, y) ·W
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Theory

• Algorithm converges to the minimum of
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Penalizes margins less than 1
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Penalizes large parameter values



Theory

• Algorithm converges to the minimum of

∑

i

max
y

(1−Mi,y)+
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Penalizes margins less than 1

+
∑
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||W||2
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Penalizes large parameter values

• Note: it’s trivial to modify the algorithm to minimize

C
∑

i
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y

(1−Mi,y)+ +
1

2
||W||2

for some C > 0

• As C →∞ we get closer to the large margin solution



Optimizing Other Loss Functions

• Suppose for each incorrect parse tree, we have a “loss”

Li,y

E.g., Li,y is number of parsing errors in y for sentence xi

• New updates:

∀i, y, α′
i,y =

αi,ye
η(Li,y−Mi,y)

∑

y αi,yeη(Li,y−Mi,y)

• Algorithm converges to the minimum of

∑

i

max
y

(Li,y −Mi,y)+ +
1

2
||W||2

(Loss function from [Taskar, Guestrin, Koller, 2003])
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⇓ Φ ⇓ Φ ⇓ Φ ⇓ Φ ⇓ Φ ⇓ Φ

⇓ Φ · W ⇓ Φ · W ⇓ Φ · W ⇓ Φ · W ⇓ Φ · W ⇓ Φ · W

13.6 13.0 14.8 3.3 9.4 11.1

Margins (assuming first parse is correct):
— 0.6 -1.2 10.3 4.2 2.5

Values for Li,y:
0 5.0 1.0 2.3 1.7 2.5

In this case maxy(Li,y −Mi,y)+ = 4.4



Accuracy on a Parse Reranking Task
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• ≈ 36, 000 training examples, 1 million trees total



Overview

• Margins, and the large margin solution

• An SVM algorithm

• Local feature vectors
(what to do when GEN is large...)

• Justification for the algorithm

• Conclusions



Local Representations: What to do when GEN is large

• Suppose GEN(x) is all parses for x under a context-free
grammar

• We now have an exponential number of parses

• We have an exponential number of dual variables αi,y, margins
Mi,y, feature vectors Φ(xi, y), error terms Li,y etc.



Local Representations

A tree:
S

NP

D

the

N

man

VP

V

saw

NP

D

the

N

dog

Its context-free productions:
〈S → NP VP, 1, 2, 5〉
〈NP → D N, 1, 1, 2〉
〈VP → V NP, 3, 3, 5〉
〈NP → D N, 4, 4, 5〉

A part is a 〈rule, start-point, mid-point, end-point〉 tuple



Assumption 1: Local Feature-Vector Representations

• If x is a sentence, r is a part, then

φ(x, r)

is a local feature-vector

• For any parse tree y, we define

Φ(x, y) =
∑

r∈y

φ(x, r)



Local Feature Vectors

(x, y) = S

NP

D

the

N

man

VP

V

saw

NP

D

the

N

dog

Φ(x, y) =
+φ(the man saw the dog, 〈S → NP VP, 1, 2, 5〉)
+φ(the man saw the dog, 〈NP → D N, 1, 1, 2〉)
+φ(the man saw the dog, 〈VP → V NP, 3, 3, 5〉)
+φ(the man saw the dog, 〈NP → D N, 4, 4, 5〉)

Can find arg maxy W ·Φ(x, y) using CKY



Assumption 2: Local Error Functions

• For any example i, assume li,r is “cost” of proposing rule r in
parse tree for xi

• For example: li,r = 1 if rule r is not in the correct parse yi, 0
otherwise

• Define
Li,y =

∑

r∈y

li,r



Local Error Functions

(xi, y) = S

NP

D

the

N

man

VP

V

saw

NP

D

the

N

dog

Li,y =
+l(i, 〈S → NP VP, 1, 2, 5〉)
+l(i, 〈NP → D N, 1, 1, 2〉)
+l(i, 〈VP → V NP, 3, 3, 5〉)
+l(i, 〈NP → D N, 4, 4, 5〉)



The EG Algorithm under Local Assumptions

• The updates:

∀i, y, α′
i,y =

αi,ye
η(Li,y−Mi,y)

∑

y αi,yeη(Li,y−Mi,y)

• But now, we have

Li,y −Mi,y =
∑

r∈y

(li,r + W · φi,r)−W ·Φ(xi, yi)

• We can represent αi,y variables compactly:

αi,y =
e
∑

r∈y
θi,r

∑

y e
∑

r∈y
θi,r

• The updates are implemented as θ′i,r ← θi,r +η(li,r +W ·φi,r)



Local Dual Variables

(xi, y) = S

NP

D

the

N

man

VP

V

saw

NP

D

the

N

dog

αi,y =

eSi,y

Z

Si,y =
+θ(i, 〈S → NP VP, 1, 2, 5〉)
+θ(i, 〈NP → D N, 1, 1, 2〉)
+θ(i, 〈VP → V NP, 3, 3, 5〉)
+θ(i, 〈NP → D N, 4, 4, 5〉)

There are an exponential number of αi,y variables,
but there are a polynomial number of θ(i, rule) variables
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How did we Derive the Algorithm?

• We want to find the W that minimizes:
∑

i

max
y

(1−Mi,y)+

︸ ︷︷ ︸

Penalizes margins less than 1

+
∑

i

1

2
||W||2

∑

i
︸ ︷︷ ︸

Penalizes large parameter values



The Dual Optimization Problem for the SVM

Choose αi,y values to maximize

Q(ᾱ) =
∑

i,y 6=yi

αi,y −
1

2
‖W‖2

where
W =

∑

i,y

αi,y [Φ(xi, yi)−Φ(xi, y)]

Constraints:
∀i, ∀y, αi,y ≥ 0

∀i,
∑

y

αi,y = 1



The Dual Optimization Problem for the SVM

• We want to maximize Q(ᾱ)

• It can be shown that

dQ(ᾱ)

dαi,y

= 5i,y
where 5i,y = 0 for y = yi

5i,y = 1−Mi,y for y 6= yi

• Gradient ascent:

αi,y ← αi,y + η5i,y

• Exponentiated Gradient:

αi,y ←
αi,ye

η5i,y

∑

y αi,yeη5i,y

(Motivation: αi,y’s remain positive,
∑

y αi,y = 1)



• The exponentiated gradient method is an example of
multiplicative updates: central to AdaBoost (Freund
and Schapire), online learning algorithms such as
Winnow (Warmuth), several applications to combinatorial
optimization, linear programming, problems in game theory,
etc. etc. (survey article by Arora, Hazan and Kale)

• Analysis of the algorithm builds on work by Warmuth and
collaborators in online learning



Convergence on a Parse Reranking Task
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• ≈ 36, 000 training examples, 1 million trees total

• ≈ 500, 000 sparse features



Overview

• Margins, and the large margin solution

• An SVM algorithm

• Local feature vectors
(what to do when GEN is large...)

• Justification for the algorithm

• Conclusions



Contributions

• A simple algorithm for finding the SVM solution

• Relies on close connections between margins, dual variables,
dual problem for the SVM

• Experiments show good performance on reranking tasks

• The algorithm has a convenient compact form for context-free
grammars with local feature–vectors


