
Exact Decoding of Syntactic Translation Models
through Lagrangian Relaxation

Abstract
We describe an exact decoding algorithm for
syntax-based statistical translation. The ap-
proach uses Lagrangian relaxation to decom-
pose the decoding problem into tractable sub-
problems, thereby avoiding exhaustive dy-
namic programming. The method recovers ex-
act solutions, with certificates of optimality,
on over 97% of test examples; it has compa-
rable speed to state-of-the-art decoders.

1 Introduction
Recent work has seen widespread use of syn-
chronous probabilistic grammars in statistical ma-
chine translation (SMT). The decoding problem for
a broad range of these systems (e.g., (Chiang, 2005;
Marcu et al., 2006; Shen et al., 2008)) corresponds
to the intersection of a (weighted) hypergraph with
an n-gram language model.1 The hypergraph rep-
resents a large set of possible translations, and is
created by applying a synchronous grammar to the
source language string. The language model is then
used to rescore the translations in the hypergraph.

Decoding with these models is challenging,
largely because of the cost of integrating an n-gram
language model into the search process. Exact dy-
namic programming algorithms for the problem are
well known (Bar-Hillel et al., 1964), but are too ex-
pensive to be used in practice.2 Previous work on
decoding for syntax-based SMT has therefore been
focused primarily on approximate search methods.

This paper describes an efficient algorithm for ex-
act decoding of synchronous grammar models for
translation. We avoid the construction of (Bar-Hillel
et al., 1964) by usingLagrangian relaxationto de-
compose the decoding problem into the following
sub-problems:

1. Dynamic programming over the weighted hy-
pergraph. This step does not require language
model integration, and hence is highly efficient.

1This problem is also relevant to other areas of statistical
NLP, for example NL generation (Langkilde, 2000).

2E.g., with a trigram language model they run inO(|E|w6)
time, where|E| is the number of edges in the hypergraph, and
w is the number of distinct lexical items in the hypergraph.

2. Application of an all-pairs shortest path algo-
rithm to a finite state machine (FSM) derived
from the weighted hypergraph. The size of the
FSM is linear in the size of the hypergraph,
hence this step is again efficient.

Informally, the first decoding algorithm incorporates
the weights and hard constraints on translations from
the synchronous grammar, while the second decod-
ing algorithm is used to integrate language model
scores. Lagrange multipliers are used to enforce
agreement between the structures produced by the
two decoding algorithms.

In this paper we first give background on hyper-
graphs and the decoding problem. We then describe
our decoding algorithm. The algorithm uses a sub-
gradient method to minimize a dual function. The
dual corresponds to a particular linear programming
(LP) relaxation of the original decoding problem.
The method will recover an exact solution, with a
certificate of optimality, if the underlying LP relax-
ation has an integral solution. In some cases, how-
ever, the underlying LP will have a fractional solu-
tion, in which case the method will not be exact. The
second technical contribution of this paper is to de-
scribe a method that iteratively tightens the underly-
ing LP relaxation until an exact solution is produced.
We do this by gradually introducing constraints to
step 1 (dynamic programming over the hypergraph),
while still maintaining efficiency.

We report experiments using the tree-to-string
model of (Huang and Mi, 2010). Our method gives
exact solutions on over 97% of test examples. The
method is comparable in speed to state-of-the-art de-
coding algorithms; for example, over 70% of the test
examples are decoded in 2 seconds or less. We com-
pare our method to cube pruning (Chiang, 2007),
and find that our method gives improved model
scores on a significant number of examples. One
consequence of our work is that we give an accurate
estimate of the number of errors for cube pruning.
It is striking that up to now this has not been possi-
ble: nobody knows for sure how often these methods
make search errors.

2 Related Work
A variety of approximate decoding algorithms have
been explored for syntax-based translation systems,
including cube-pruning (Chiang, 2007; Huang and
Chiang, 2007), left-to-right decoding with beam
search (Watanabe et al., 2006; Huang and Mi,
2010), finite state methods (Iglesias et al., 2009), and
coarse-to-fine methods (Petrov et al., 2008).

Lagrangian relaxation is a classical technique
in combinatorial optimization (Korte and Vygen,
2008). Lagrange multipliers are used to add lin-
ear constraints to an existing problem that can be
solved using a combinatorial algorithm; the result-
ing dual function is then minimized, for example
using subgradient methods. In recent work,dual
decomposition—a special case of Lagrangian relax-
ation, where the linear constraints enforce agree-
ment between two or more models—has been ap-
plied to inference in Markov random fields (Wain-
wright et al., 2005; Komodakis et al., 2007; Sontag
et al., 2008), and also to inference problems in NLP
(Rush et al., 2010; Koo et al., 2010).

3 Background: Hypergraphs
Translation with many syntax-based systems (e.g.,
(Chiang, 2005; Marcu et al., 2006; Shen et al., 2008;
Huang and Mi, 2010)) can be implemented as a two-
step process. The first step is to create a hypergraph
(sometimes called a translation forest) that repre-
sents the set of possible strings (translations) and
derivations under the grammar. The second step is
to integrate an n-gram language model with this hy-
pergraph. For example, in the system of (Chiang,
2005), the hypergraph is created as follows: first, the
source side of the synchronous grammar is used to
create a parse forest over the source language string.
Second, transduction operations derived from syn-
chronous rules in the grammar are used to create the
target-language hypergraph.

A hypergraph is a pair(V,E) where V =
{1, 2, . . . , |V |} is a set of vertices, andE is a set of
hyperedges. A single distinguished vertex is taken
as the root of the hypergraph; without loss of gener-
ality we take this vertex to bev = 1. Each hyper-
edgee ∈ E is a tuple〈〈v1, v2, . . . , vk〉, v0〉 where
v0 ∈ V , andvi ∈ {2 . . . |V |} for i = 1 . . . k. The
vertexv0 is referred to as theheadof the edge. The
ordered sequence〈v1, v2, . . . , vk〉 is referred to as

the tail of the edge; in addition, we sometimes refer
to v1, v2, . . . vk as thechildrenin the edge. The num-
ber of childrenk may vary across different edges,
but k ≥ 1 for all edges (i.e., each edge has at least
one child). We will useh(e) to refer to the head of
an edgee, andt(e) to refer to the tail.

We will assume that the hypergraph is acyclic: in-
tuitively this will mean that no derivation (as defined
below) contains the same vertex more than once (see
(Martin et al., 1990) for a formal definition).

Each vertexv ∈ V is either anon-terminalin the
hypergraph, or aleaf. The set of non-terminals is

VN = {v ∈ V : ∃e ∈ E such that h(e) = v}

Conversely, the set of leaves is defined as

VL = {v ∈ V :6 ∃e ∈ E such that h(e) = v}

Finally, we assume that eachv ∈ V has a label
l(v). The labels for leaves will bewords, and will
be important in defining strings and language model
scores for those strings. The labels for non-terminal
nodes will not be important for results in this paper.3

We now turn to derivations. Define anindex set
I = V ∪ E. A derivation is represented by a vector
y = {yr : r ∈ I} whereyv = 1 if vertexv is used in
the derivation,yv = 0 otherwise (similarlyye = 1 if
edgee is used in the derivation,ye = 0 otherwise).
Thusy is a vector in{0, 1}|I|. A valid derivation
satisfies the following constraints:

• y1 = 1 (the root must be in the derivation).

• For all v ∈ VN , yv =
∑

e:h(e)=v ye.

• For all v ∈ 2 . . . |V |, yv =
∑

e:v∈t(e) ye.

We useY to refer to the set of valid derivations.
The setY is a subset of{0, 1}|I| (not all members of
{0, 1}|I| will correspond to valid derivations).

Each derivationy in the hypergraph will imply an
ordered sequence of leavesv1 . . . vn. We uses(y) to
refer to this sequence. Thesentenceassociated with
the derivation is thenl(v1) . . . l(vn).

In a weighted hypergraph problem, we assume a
parameter vectorθ = {θr : r ∈ I}. The score for

3They might for example be non-terminal symbols from the
grammar used to generate the hypergraph.

any derivation isf(y) = θ · y =
∑

r∈I θryr. Sim-
ple bottom-up dynamic programming—essentially
the CKY algorithm—can be used to findy∗ =
arg maxy∈Y f(y) under these definitions.

The focus of this paper will be to solve problems
involving the integration of ak’th order language
model with a hypergraph. In these problems, the
score for a derivation is modified to be

f(y) =
∑

r∈I

θryr +

n
∑

i=k

θ(vi−k+1, vi−k+2, . . . , vi) (1)

where v1 . . . vn = s(y). The θ(vi−k+1, . . . , vi)
parameters score n-grams of lengthk. These
parameters are typically defined by a language
model, for example withk = 3 we would have
θ(vi−2, vi−1, vi) = log p(l(vi)|l(vi−2), l(vi−1)).
The problem is then to findy∗ = arg maxy∈Y f(y)
under this definition.

Throughout this paper we make the following as-
sumption when using a bigram language model:

Definition 3.1 (Bigram start/end assumption.) For
any derivationy, with leavess(y) = v1, v2, . . . , vn,
it is the case that: (1)v1 = 2 and vn = 3; (2) the
leaves2 and3 cannot appear at any other position
in the stringss(y) for y ∈ Y; (3) l(2) = <s> where
<s> is the start symbol in the language model; (4)
l(3) = </s> where</s> is the end symbol.

This assumption allows us to incorporate lan-
guage model terms that depend on the start and end
symbols. It also allows a clean solution for boundary
conditions (the start/end of strings).4

4 A Simple Lagrangian Relaxation
Algorithm

We now give a Lagrangian relaxation algorithm for
integration of a hypergraph with a bigram language
model, in cases where the hypergraph satisfies the
following simplifying assumption:

Definition 4.1 (The strict ordering assumption.)
For any two leavesv and w, it is either the case
that: 1) for all derivationsy such thatv andw are
both in the sequencel(y), v precedesw; or 2) for all
derivationsy such thatv andw are both inl(y), w

precedesv.

4The assumption generalizes in the obvious way tok’th or-
der language models: e.g., for trigram models we assume that
v1 = 2, v2 = 3, vn = 4, l(2) = l(3) = <s>, l(4) = </s>.

Thus under this assumption, the relative ordering
of any two leaves is fixed. This assumption is overly
restrictive:5 the next section describes an algorithm
that does not require this assumption. However de-
riving the simple algorithm will be useful in devel-
oping intuition, and will lead directly to the algo-
rithm for the unrestricted case.

4.1 A Sketch of the Algorithm
At a high level, the algorithm involves the follow-
ing steps: (1) For each leafv, find the previous leaf
w that maximizes the language model scoreθ(w, v).
(2) Using the estimate for language modeling scores
from step 1, find the highest scoring derivation us-
ing dynamic programming over the original (non-
intersected) hypergraph. (3) If the output from step
2 agrees with the bigrams from step 1, then we have
an exact solution to the problem. Otherwise, mod-
ify Lagrange multipliers that encourage agreement
of the two steps, and return to step 1.

Steps 1 and 2 can be performed efficiently; in par-
ticular, we avoid the classical dynamic programming
intersection, instead relying on dynamic program-
ming over the original, simple hypergraph.

4.2 A Formal Description
We now give a formal description of the algorithm.
DefineB ⊆ VL×VL to be the set of all ordered pairs
〈v,w〉 such that there is at least one derivationy with
v directly precedingw in s(y). Extend the bit-vector
y to include variablesy(v,w) for 〈v,w〉 ∈ B where
y(v,w) = 1 if leaf v is followed byw in s(y), 0
otherwise. We redefine the index set to beI = V ∪
E ∪ B, and defineY ⊆ {0, 1}|I| to be the set of
all possible derivations. Under assumptions 1 and 2
above,Y = {y : y satisfies constraintsC0, C1, C2}
where the constraint definitions are:

• (C0) Theyv andye variables form a derivation
in the hypergraph, as defined in section 3.

• (C1) For all v ∈ VL such thatv 6= 2, yv =
∑

w:〈w,v〉∈B y(w, v).

• (C2) For all v ∈ VL such thatv 6= 3, yv =
∑

w:〈v,w〉∈B y(v,w).

5It is easy to come up with examples that violate this as-
sumption: for example a hypergraph with edges〈〈4, 5〉, 1〉 and
〈〈5, 4〉, 1〉 violates the assumption. The hypergraphs found in
translation frequently contain alternative orderings such as this.

C1 states that each leaf in a derivation has exactly
one in-coming bigram;C2 states that each leaf in a
derivation has exactly one out-going bigram.6

The score of a derivation is nowf(y) = θ · y, i.e.,

f(y) =
∑

v

θvyv+
∑

e

θeye+
∑

〈v,w〉∈B

θ(v,w)y(v,w)

whereθ(v,w) are scores from the language model.
Our goal is to computey∗ = arg maxy∈Y f(y).

Next, defineY ′ as

Y ′ = {y : y satisfies constraintsC0 andC1}

In this definition we have dropped theC2 con-
straints. To incorporate these constraints, we use
Lagrangian relaxation, with one Lagrange multiplier
u(v) for each constraint inC2. The Lagrangian is

L(u, y) = f(y) −
∑

v

u(v)(y(v) −
∑

w:〈v,w〉∈B

y(v,w))

= β · y

whereβv = θv − u(v), βe = θe, andβ(v,w) =
θ(v,w) + u(v).

The dual problem is to findminu L(u) where

L(u) = max
y∈Y ′

L(u, y)

Figure 1 shows asubgradientmethod for solving
this problem. At each point the algorithm finds
yt = arg maxy∈Y ′ L(ut−1, y), whereut−1 are the
Lagrange multipliers from the previous iteration. If
yt satisfies theC2 constraints in addition toC0 and
C1, then it is returned as the output from the algo-
rithm. Otherwise, the multipliersu(v) are updated.
Intuitively, these updates encourage the values ofyv

and
∑

w:〈v,w〉∈B y(v,w) to be equal; formally, these
updates correspond to subgradient steps.

The main computational step at each iteration is to
computearg maxy∈Y ′ L(ut−1, y) This step is easily
solved, as follows (we again useβv, βe andβ(v1, v2)
to refer to the parameter values that incorporate La-
grange multipliers):

• For all v ∈ VL, define α∗(v) =
arg maxw:〈w,v〉∈B β(w, v) and αv =
β(α∗(v), v). For allv ∈ VN defineαv = 0.

6Recall that according to the bigram start/end assumption
the leaves2/3 are reserved for the start/end of the sequence
s(y), and hence do not have an incoming/outgoing bigram.

Initialization: Setu0(v) = 0 for all v ∈ VL

Algorithm: For t = 1 . . . T :

• yt = argmaxy∈Y′ L(ut−1, y)

• If yt satisfies constraintsC2, return yt,
Else ∀v ∈ VL, ut(v) =

ut−1(v) − αt
(

yt(v) −
∑

w:〈v,w〉∈B y(v, w)
)

.

Figure 1: A simple Lagrangian relaxation algorithm.

• Using dynamic programming, find values for
theyv andye variables that form a valid deriva-
tion, and that maximize
f ′(y) =

∑

v(βv + αv)yv +
∑

e βeye.

• Sety(v,w) = 1 iff y(w) = 1 andα∗(w) = v.

The critical point here is that through our definition
of Y ′, which ignores theC2 constraints, we are able
to do efficient search as just described. In the first
step we compute the highest scoring incoming bi-
gram for each leafv. In the second step we use
conventional dynamic programming over the hyper-
graph to find an optimal derivation that incorporates
weights from the first step. Finally, we fill in the
y(v,w) values. Each iteration of the algorithm runs
in O(|E| + |B|) time.

There are close connections between Lagrangian
relaxation and linear programming relaxations. The
most important formal results are: 1) for any value
of u, L(u) ≥ f(y∗) (hence the dual value provides
an upper bound on the optimal primal value); 2) un-
der an appropriate choice of the step sizesαt, the
subgradient algorithm is guaranteed to converge to
the minimum ofL(u) (i.e., we will minimize the
upper bound, making it as tight as possible); 3) if
at any point the algorithm in figure 1 finds ayt that
satisfies theC2 constraints, then this is guaranteed
to be the optimal primal solution.

Unfortunately, this algorithm may fail to produce
a good solution for hypergraphs where the strict or-
dering constraint does not hold. In this case it is
possible to find derivationsy that satisfy constraints
C0, C1, C2, but which are invalid. As one exam-
ple, consider a derivation withs(y) = 2, 4, 5, 3 and
y(2, 3) = y(4, 5) = y(5, 4) = 1. The constraints
are all satisfied in this case, but the bigram variables
are invalid (e.g., they contain a cycle).

5 The Full Algorithm

We now describe our full algorithm, which does not
require the strict ordering constraint. In addition, the
full algorithm allows a trigram language model. We
first give a sketch, and then give a formal definition.

5.1 A Sketch of the Algorithm

A crucial idea in the new algorithm is that of
paths between leaves in hypergraph derivations.
Previously, for each derivationy, we had de-
fined s(y) = v1, v2, . . . , vn to be the sequence
of leaves in y. In addition, we will define
g(y) = p0, v1, p1, v2, p2, v3, p3, . . . , pn−1, vn, pn

where eachpi is a path in the derivation between
leavesvi andvi+1. The path traces through the non-
terminals that are between the two leaves in the tree.

As an example, consider the following derivation
(with hyperedges〈〈2, 5〉, 1〉 and〈〈3, 4〉, 2〉):

1

2

3 4

5

For this exampleg(y) is 〈1 ↓, 2 ↓〉 〈2 ↓, 3 ↓〉 〈3〉
〈3 ↑, 4 ↓〉 〈4〉 〈4 ↑, 2 ↑〉 〈2 ↑, 5 ↓〉 〈5〉 〈5 ↑, 1 ↑〉.
States such as〈3〉 correspond to leaf nodes in the
derivation. States of the form〈a, b〉 correspond to
the steps taken in a top-down, left-to-right, traver-
sal of the tree, where down and up arrows indi-
cate whether a node is being visited for the first
or second time (the traversal in this case would be
1, 2, 3, 4, 2, 5, 1).

The mapping from a derivationy to a pathg(y)
can be performed using the algorithm in figure 2.
For a given derivationy, defineE(y) = {y : ye =
1}, and useE(y) as the set of input edges to this
algorithm. The output from the algorithm will be a
set of statesS, and a set of directed edgesT , which
together fully define the pathg(y).

In the simple algorithm, the first step was to
predict the previous leaf for each leafv, under
a score that combined a language model score
with a Lagrange multiplier score (i.e., compute
arg maxw β(w, v) where β(w, v) = θ(w, v) +
u(w)). In this section we describe an algorithm that
for each leafv again predicts the previous leaf, but in
addition predicts the fullpathback to that leaf. For

Input: A setE of hyperedges.Output: A directed graph
S, T whereS is a set of vertices, andT is a set of edges.
Step 1: CreatingS: DefineS = ∪e∈ES(e) whereS(e)
is defined as follows. Assumee = 〈〈v1, v2, . . . , vk〉, v0〉.
Include the following states inS(e): (1) 〈v0 ↓, v1 ↓〉 and
〈vk↑, v0↑〉. (2) 〈vj ↑, vj+1↓〉 for j = 1 . . . k − 1 (if k = 1
then there are no such states). (3) In addition, for anyvj

for j = 1 . . . k such thatvj ∈ VL, add the state〈vj〉.
Step 2: Creating T : T is formed by including the fol-
lowing directed arcs: (1) Add an arc from〈a, b〉 ∈ S

to 〈c, d〉 ∈ S wheneverb = c. (2) Add an arc from
〈a, b ↓〉 ∈ S to 〈c〉 ∈ S wheneverb = c. (3) Add an
arc from〈a〉 ∈ S to 〈b ↑, c〉 ∈ S whenevera = b.

Figure 2: Algorithm for constructing a directed graph
(S, T) from a set of hyperedgesE.

example, rather than making a prediction for leaf5
that is should be preceded by leaf4, we would also
predict the path〈4 ↑, 2 ↑〉 〈2 ↑, 5 ↓〉 between these
two leaves. Lagrange multipliers will be used to
enforce consistency between these predictions (both
paths and previous words) and a valid derivation.

5.2 A Formal Description

We first use the algorithm in figure 2 with the en-
tire set of hyperedges,E, as its input. The result
is a directed graph(S, T) that containsall possible
pathsfor valid derivations inV,E (it also contains
additional, ill-formed paths).7 We then introduce the
following definition:

Definition 5.1 A trigram path p is p =
〈v1, p1, v2, p2, v3〉 where: a) v1, v2, v3 ∈ VL;
b) p1 is a path (sequence of states) between nodes
〈v1〉 and 〈v2〉 in the graph(S, T), where no other
leaf nodes are seen inp1; c) p2 is a path between
nodes〈v2〉 and 〈v3〉 in the graph(S, T), where no
other leaf nodes are seen inp2. We defineP to be
the set of all trigram paths in(S, T).

The setP of trigram paths plays an analogous role
to the setB of bigrams in our previous algorithm.

We usev1(p), p1(p), v2(p), p2(p), v3(p) to refer
to the individual components of a pathp. In addi-
tion, defineSN to be the set of states inS of the form
〈a, b〉 (as opposed to the form〈c〉 wherec ∈ VL).

We now define a new index set,I = V ∪ E ∪
SN ∪P, adding variablesy(s) for s ∈ SN , andy(p)

7When considered as a finite state automaton,(S, T) is a
finite-state approximation to the set of derivations inE.

• D0. Theyv andye variables form a valid derivation
in the original hypergraph.
• D1. For alls ∈ SN , ys =

∑

e:s∈S(e) ye (see figure 2
for the definition ofS(e)).
• D2. For allv ∈ VL, yv =

∑

p:w3(p)=v y(p)

• D3. For allv ∈ VL, yv =
∑

p:w2(p)=v y(p)

• D4. For allv ∈ VL, yv =
∑

p:w1(p)=v y(p)

• D5. For alls ∈ SN , ys =
∑

p:s∈p1(p) y(p)

• D6. For alls ∈ SN , ys =
∑

p:s∈p2(p) y(p)

• Lagrangian with Lagrange multipliers forD3–D6:

L(y, λ, γ, u, v) = θ · y

+
∑

v λv

(

yv −
∑

p:w2(p)=v y(p)
)

+
∑

v γv

(

yv −
∑

p:w1(p)=v y(p)
)

+
∑

s us

(

ys −
∑

p:s∈p1(p) y(p)
)

+
∑

s vs

(

ys −
∑

p:s∈p2(p) y(p)
)

.

Figure 3: ConstraintsD0–D6, and the Lagrangian.

for p ∈ P. If we takeY ⊂ {0, 1}|I| to be the set of
valid derivations, the optimization problem is to find
y∗ = arg maxy∈Y f(y), wheref(y) = θ · y, that is,

f(y) =
∑

v

θvyv +
∑

e

θeye +
∑

s

θsys +
∑

p

θpyp

In particular, we might defineθs = 0 for all s,
and θp = log p(l(v3(p))|l(v1(p)), l(v2(p))) where
p(w3|w1, w2) is a trigram probability.

The setP is large (typically exponential in size):
however, we will see that we do not need to represent
the yp variables explicitly. Instead we will be able
to leverage the underlying structure of a path as a
sequence of states.

The set of valid derivations isY = {y :
y satisfies constraintsD0–D6}where the constraints
are shown in figure 3.D1 simply states thatys = 1
iff there is exactly one edgee in the derivation such
that s ∈ S(e). ConstraintsD2–D4 enforce consis-
tency between leaves in the trigram paths, and theyv

values. ConstraintsD5 andD6 enforce consistency
between states seen in the paths, and theys values.

The Lagrangian relaxation algorithm is then de-
rived in a similar way to before. Define

Y ′ = {y : y satisfies constraintsD0–D2}

We have dropped theD3–D6 constraints, but these
will be introduced using Lagrange multipliers. The

Initialization: Setλ0 = 0, γ0 = 0, u0 = 0, v0 = 0
Algorithm: For t = 1 . . . T :

• yt = arg maxy∈Y′ L(y, λt−1, γt−1, ut−1, vt−1)

• If yt satisfies the constraintsD3–D6, returnyt, else:

- ∀v ∈ VL, λt
v = λt−1

v − αt(yt
v −

∑

p:w2(p)=v yt(p))

- ∀v ∈ VL, γt
v = γt−1

v − αt(yt
v −

∑

p:w1(p)=v yt(p))

- ∀s ∈ SN , ut
s = ut−1

s − αt(yt
s −

∑

p:s∈p1(p) yt(p))

- ∀s ∈ SN , vt
s = vt−1

s − αt(yt
s −

∑

p:s∈p2(p) yt(p))

Figure 4: The full Lagrangian relaxation algortihm.

resulting Lagrangian is shown in figure 3, and can
be written asL(y, λ, γ, u, v) = β · y whereβv =
θv+λv+γv, βs = θs+us+vs, βp = θp−λ(v2(p))−
γ(v1(p)) −

∑

s∈p1(p) u(s) −
∑

s∈p2(p) v(s).
The dual is L(λ, γ, u, v) =

maxy∈Y ′ L(y, λ, γ, u, v); figure 4 shows a sub-
gradient method that minimizes this dual. The key
step in the algorithm at each iteration is to compute
arg maxy∈Y ′ L(y, λ, γ, u, v) = arg maxy∈Y ′ β · y

where β is defined above. Again, our definition
of Y ′ allows this maximization to be performed
efficiently, as follows:

1. For each v ∈ VL, define α∗
v =

arg maxp:w3(p)=v β(p), and αv = β(α∗
v).

(i.e., for eachv, compute the highest scoring
trigram path ending inv.)

2. Find values for theyv, ye andys variables that
form a valid derivation, and that maximize
f ′(y) =

∑

v(βv +αv)yv +
∑

e βeye +
∑

s βsys

3. Setyp = 1 iff yw3(p) = 1 andp = α∗
w3(p).

The first step involves finding the highest scoring in-
coming trigram path for each leafv. This step can
be performed efficiently using an all-pairs shortest
path algorithm over the graph(S, T); the details are
omitted for lack of space (the method is straightfor-
ward; a longer version of this paper will have the
details). The second step involves simple dynamic
programming over the hypergraph(V,E) (it is sim-
ple to integrate theβs terms into this algorithm). In
the third step, the path variablesy(p) are filled in.

5.3 Properties

We now describe some important properties of the
algorithm:

Efficiency. The main steps of the algorithm are:
1) construction of the graph(S, T); 2) at each it-
eration, dynamic programming over the hypergraph
(V,E); 3) at each iteration, all-pairs shortest path al-
gorithms over the graph(S, T). Each of these steps
is vastly more efficient than computing an exact in-
tersection of the hypergraph with a language model.

Exact solutions. By usual guarantees for La-
grangian relaxation, if at any point the algorithm re-
turns a solutionyt that satisfies constraintsD3–D6,
thenyt exactly solves the problem in Eq. 1.

Upper bounds. At each point in the algorithm,
L(λt, γt, ut, vt) is an upper bound on the score of
the optimal primal solution,f(y∗). Upper bounds
can be useful in evaluating the quality of primal so-
lutions from either our algorithm or other methods
such as cube pruning.

Simplicity of implementation. Construction of
the (S, T) graph is straightforward. The other
steps—hypergraph dynamic programming, and all-
pairs shortest path—are widely known algorithms
that are simple to implement.

6 Tightening the Relaxation

The algorithm that we have described minimizes
the dual functionL(λ, γ, u, v). By usual results for
Lagrangian relaxation (e.g., see (Korte and Vygen,
2008)),L is the dual function for a particular LP re-
laxation arising from the definition ofY ′ and the ad-
ditional constaintsD3–D6. In some cases the LP
relaxation has an integral solution, in which case
the algorithm will return an optimal solutionyt.8

In other cases, when the LP relaxation has a frac-
tional solution, the subgradient algorithm will still
converge to the minimum ofL, but the primal solu-
tionsyt will move between a number of solutions.

We now describe a method that incrementally
adds hard constraints to the setY ′, until the method
returns an exact solution. For a giveny ∈ Y ′, for
anyv with yv = 1, we can recover the previous two
leaves (the trigram ending inv) from either the path

8Provided that the algorithm is run for enough iterations for
convergence.

variablesyp, or the hypergraph variablesye. Specif-
ically, definev−1(v, y) to be the leaf precedingv
in the trigram pathp with yp = 1 andw3(p) = v,
andv−2(v, y) to be the leaf two positions beforev
in the trigram pathp with yp = 1 andw3(p) = v.
Similarly, definev′−1(v, y) andv′−2(v, y) to be the
preceding two leaves under theye variables. If the
method has not converged, these two trigram def-
initions may not be consistent. For a consistent
solution, we requirev−1(v, y) = v′−1(v, y) and
v−2(v, y) = v′−2(v, y) for all v with yv = 1. Un-
fortunately, explicitly enforcing all of these con-
straints would require exhaustive dynamic program-
ming over the hypergraph using the (Bar-Hillel et
al., 1964) method, something we wish to avoid.

Instead, we enforce a weaker set of constraints,
which require far less computation. Assume some
function π : VL → {1, 2, . . . q} that partitions the
set of leaves intoq different partitions. Then we will
add the following constraints toY ′:

π(v−1(v, y)) = π(v′−1(v, y))

π(v−2(v, y)) = π(v′−2(v, y))

for all v such thatyv = 1. Findingarg maxy∈Y ′ θ ·
y under this new definition ofY ′ can be performed
using the construction of (Bar-Hillel et al., 1964),
with q different lexical items (for brevity we omit
the details). This is efficient ifq is small.9

The remaining question concerns how to choose
a partitionπ that is effective in tightening the relax-
ation. To do this we implement the following steps:
1) run the subgradient algorithm untilL is close to
convergence; 2) then run the subgradient algorithm
for m further iterations, keeping track of all pairs
of leaf nodes that violate the constraints (i.e., pairs
a = v−1(v, y)/b = v′−1(v, y) or a = v−2(v, y)/b =
v′−2(v, y) such thata 6= b); 3) use a graph color-
ing algorithm to find a small partition that places all
pairs〈a, b〉 into separate partitions; 4) continue run-
ning Lagrangian relaxation, with the new constraints
added. The partitionπ is expanded at each iteration
to take into account new pairs〈a, b〉 that violate the
constraints.

9In fact in our experiments we use the original hypergraph
to compute admissible outside scores for an exact A* search
algorithm for this problem. We have found the resulting search
algorithm to be very efficient.

Time %age %age %age %age
(LR) (DP) (ILP) (LP)

0.5s 37.5 10.2 8.8 21.0
1.0s 57.0 11.6 13.9 31.1
2.0s 72.2 15.1 21.1 45.9
4.0s 82.5 20.7 30.7 63.7
8.0s 88.9 25.2 41.8 78.3
16.0s 94.4 33.3 54.6 88.9
32.0s 97.8 42.8 68.5 95.2

Median time 0.79s 77.5s 12.1s 2.4s

Figure 5: Results showing percentage of examples
that are decoded in less thant seconds, fort =
0.5, 1.0, 2.0, . . . , 32.0. LR = Lagrangian relaxation; DP
= exhaustive dynamic programming; ILP = integer linear
programming; LP = linear programming (LP does not re-
cover an exact solution). We also show the median time
for each method in seconds.

7 Experiments
We report experiments on translation from Chinese
to English, using the tree-to-string model described
in (Huang and Mi, 2010). We use an identical
model, and identical development and test data, to
that used by Huang and Mi.10 The translation model
is trained on 1.5M sentence pairs of Chinese-English
data; a trigram language model is used. The de-
velopment data is the newswire portion of the 2006
NIST MT evaluation test set (616 sentences). The
test set is the newswire portion of the 2008 NIST
MT evaluation test set (691 sentences).

We ran the full algorithm with the tightening
method described in section 6. We ran the method
for a limit of 200 iterations, hence some exam-
ples may not terminate with an exact solution. Our
method gives exact solutions on 598/616 develop-
ment set sentences (97.1%), and 675/691 test set
sentences (97.7%).

In cases where the method does not converge
within 200 iterations, we can return the best primal
solutionyt found by the algorithm during those it-
erations. We can also get an upper bound on the
differencef(y∗)−f(yt) usingmint L(ut) as an up-
per bound onf(y∗). Of the examples that did not
converge, the worst example had a bound that was
0.34% off(yt) (more specifically,f(yt) was -24.74,
and the upper bound onf(y∗) − f(yt) was 0.34).

Table 7 gives information on decoding time for

10We thank Liang Huang and Haitao Mi for providing us with
their model and data.

our method and two other exact decoding methods:
integer linear programming (using constraintsD0–
D6), and exhaustive dynamic programming using
the construction of (Bar-Hillel et al., 1964). Our
method is clearly the most efficient, and is compara-
ble in speed to state-of-the-art decoding algorithms.

We also compare our method to cube pruning
(Chiang, 2007; Huang and Chiang, 2007). We reim-
plemented cube pruning in C++, to give a fair com-
parison to our method. Cube pruning has a parame-
ter,b, dictating the maximum number of items stored
at each chart entry. Withb = 50, our decoder
finds higher scoring solutions on 50.5% of all exam-
ples (349 examples), the cube-pruning method gets a
strictly higher score on only 1 example (this was one
of the examples that did not converge within 200 it-
erations). Withb = 500, our decoder finds better so-
lutions on 18.5% of the examples (128 cases), cube-
pruning finds a better solution on 3 examples. The
median decoding time for our method is 0.79 sec-
onds; the median times for cube pruning withb = 50
andb = 500 are 0.06 and 1.2 seconds respectively.

Our results give a very good estimate of the per-
centage of search errors for cube pruning: we are
not aware of prior work that has given such accu-
rate measures of search error in syntactic translation
systems. A natural question is how largeb must be
before exact solutions are returned on almost all ex-
amples. Even atb = 1000, we find that our method
gives a better solution on 95 test examples (13.7%).

Table 7 also gives a speed comparison of our
method to a linear programming (LP) solver that
solves the LP relaxation defined by constraintsD0–
D6. We still see speed-ups, in spite of the fact
that our method is solving a harder problem (it pro-
vides integral solutions). The Lagrangian relaxation
method, when run without the tightening method
of section 6, is solving a dual of the problem be-
ing solved by the LP solver. Hence we can mea-
sure how often the tightening procedure is abso-
lutely necessary, by seeing how often the LP solver
provides a fractional solution. We find that this is
the case on 54.0% of the test examples: the tighten-
ing procedure is clearly important. Inspection of the
tightening procedure shows that the number of par-
titions required (the parameterq) is generally quite
small: 59% of examples that require tightening re-
quireq ≤ 6; 97.2% requireq ≤ 10.

References

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On formal
properties of simple phrase structure grammars. In
Language and Information: Selected Essays on their
Theory and Application, pages 116–150.

D. Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 263–270. Association for
Computational Linguistics.

D. Chiang. 2007. Hierarchical phrase-based translation.
computational linguistics, 33(2):201–228.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2001. Fast decoding and
optimal decoding for machine translation. InProceed-
ings of the 39th Annual Meeting on Association for
Computational Linguistics, ACL ’01, pages 228–235,
Morristown, NJ, USA. Association for Computational
Linguistics.

Liang Huang and David Chiang. 2007. Forest rescoring:
Faster decoding with integrated language models. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 144–151,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Liang Huang and Haitao Mi. 2010. Efficient incremental
decoding for tree-to-string translation. InProceedings
of the 2010 Conference on Empirical Methods in Natu-
ral Language Processing, pages 273–283, Cambridge,
MA, October. Association for Computational Linguis-
tics.

Gonzalo Iglesias, Adrià de Gispert, Eduardo R. Banga,
and William Byrne. 2009. Hierarchical phrase-based
translation with weighted finite state transducers. In
Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 433–441, Boulder, Colorado, June. Association
for Computational Linguistics.

N. Komodakis, N. Paragios, and G. Tziritas. 2007.
MRF optimization via dual decomposition: Message-
passing revisited. InInternational Conference on
Computer Vision.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi
Jaakkola, and David Sontag. 2010. Dual decompo-
sition for parsing with non-projective head automata.
In Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1288–1298, Cambridge, MA, October. Association for
Computational Linguistics.

B.H. Korte and J. Vygen. 2008.Combinatorial optimiza-
tion: theory and algorithms. Springer Verlag.

I. Langkilde. 2000. Forest-based statistical sentence gen-
eration. InProceedings of the 1st North American
chapter of the Association for Computational Linguis-
tics conference, pages 170–177. Morgan Kaufmann
Publishers Inc.

Daniel Marcu, Wei Wang, Abdessamad Echihabi, and
Kevin Knight. 2006. Spmt: Statistical machine
translation with syntactified target language phrases.
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, pages 44–
52, Sydney, Australia, July. Association for Computa-
tional Linguistics.

R.K. Martin, R.L. Rardin, and B.A. Campbell. 1990.
Polyhedral characterization of discrete dynamic pro-
gramming.Operations research, 38(1):127–138.

Slav Petrov, Aria Haghighi, and Dan Klein. 2008.
Coarse-to-fine syntactic machine translation using lan-
guage projections. InProceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 108–116, Honolulu, Hawaii, October.
Association for Computational Linguistics.

S. Riedel and J. Clarke. 2009. Revisiting optimal de-
coding for machine translation IBM model 4. InPro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Com-
panion Volume: Short Papers, pages 5–8. Association
for Computational Linguistics.

Alexander M Rush, David Sontag, Michael Collins, and
Tommi Jaakkola. 2010. On dual decomposition and
linear programming relaxations for natural language
processing. InProceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 1–11, Cambridge, MA, October. Association for
Computational Linguistics.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proceedings of ACL-08: HLT, pages 577–585, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. 2008. Tightening LP relaxations for MAP
using message passing. InProc. UAI.

M. Wainwright, T. Jaakkola, and A. Willsky. 2005. MAP
estimation via agreement on trees: message-passing
and linear programming. InIEEE Transactions on In-
formation Theory, volume 51, pages 3697–3717.

Taro Watanabe, Hajime Tsukada, and Hideki Isozaki.
2006. Left-to-right target generation for hierarchical
phrase-based translation. InProceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for
Computational Linguistics, ACL-44, pages 777–784,

Morristown, NJ, USA. Association for Computational
Linguistics.

