Exact Decoding of Syntactic Translation Models
through Lagrangian Relaxation

Abstract 2. Application of an all-pairs shortest path algo-
We describe an exact decoding algorithm for rithm to a finite state machine (FSM) derived
syntax-based statistical translation. The ap- from the weighted hypergraph. The size of the
proach uses Lagrangian relaxation to decom- FSM is linear in the size of the hypergraph,
pose the decoding problem into tractable sub- hence this step is again efficient.

problems, thereby avoiding exhaustive dy-
namic programming. The method recovers ex-
act solutions, with certificates of optimality,
on over 97% of test examples; it has compa-
rable speed to state-of-the-art decoders.

Informally, the first decoding algorithm incorporates
the weights and hard constraints on translations from
the synchronous grammar, while the second decod-
_ ing algorithm is used to integrate language model
1 Introduction scores. Lagrange multipliers are used to enforce
Recent work has seen widespread use of syAgreement between the structures produced by the
chronous probabilistic grammars in statistical magwo decoding algorithms.

chine translation (SMT). The decoding problem for | this paper we first give background on hyper-
a broad range of these systems (e.g., (Chiang, 20Qgaphs and the decoding problem. We then describe
Marcu et al., 2006; Shen et al., 2008)) correspondsyr decoding algorithm. The algorithm uses a sub-
to the intersection of a (weighted) hypergraph withyradient method to minimize a dual function. The
an n-gram language modelThe hypergraph rep- dual corresponds to a particular linear programming
resents a large set of possible translations, and (isp) relaxation of the original decoding problem.
created by applying a synchronous grammar to thehe method will recover an exact solution, with a
source language string. The language model is the@rtificate of optimality, if the underlying LP relax-
used to rescore the translations in the hypergraph. ation has an integral solution. In some cases, how-

Decoding with these models is challengingever, the underlying LP will have a fractional solu-
largely because of the cost of integrating an n-grafjon, in which case the method will not be exact. The
language model into the search process. Exact dyacond technical contribution of this paper is to de-
namic programming algorithms for the problem argcrihe a method that iteratively tightens the underly-
well known (Bar-Hillel et al., 1964), but are t00 ex-jng |P relaxation until an exact solution is produced.
pensive to be used in practi€ePrevious work on e do this by gradually introducing constraints to
decoding for syntax-based SMT has therefore beeg@ep 1 (dynamic programming over the hypergraph),
focused primarily on approximate search methods,yhile still maintaining efficiency.

This paper describes an efficient algorithm for ex- e report experiments using the tree-to-string
act decoding of synchronous grammar models fq,qqel of (Huang and Mi, 2010). Our method gives
translation. We avoid the construction of (Bar-Hillelgy4ct solutions on over 97% of test examples. The
et al.,, 1964) by usingagrangian relaxatiorio de- method is comparable in speed to state-of-the-art de-
compose the decoding problem into the followingyging algorithms; for example, over 70% of the test
sub-problems: examples are decoded in 2 seconds or less. We com-

1. Dynamic programming over the weighted hypare our method to cube pruning (Chiang, 2007),

pergraph. This step does not require Ianguag%r'd find that .ou.r_method gives improved model
model integration, and hence is highly efficient SCOTeS On a significant number of examples. One
- conseguence of our work is that we give an accurate
1ThiS problem is also relevant to other areas of Sta“stlc%stlmate Of the number Of errors for Cube prunlng
NLP, for example NL generation (Langkilde, 2000). . s . .
E 4., with a trigram language model they rure|E|u®) It |§ striking that up to now this has not been possi
time, where| E| is the number of edges in the hypergraph, andle: nobody knows for sure how often these methods

w is the number of distinct lexical items in the hypergraph. make search errors.

2 Related Work thetail of the edge; in addition, we sometimes refer

A variety of approximate decoding algorithms havd0 v1, va, . . . vy @s thechildrenin the edge. The num-
been explored for syntax-based translation systenfger of childrenk may vary across different edges,
including cube-pruning (Chiang, 2007; Huang andut k£ > 1 for all edges (i.e., each edge has at least
Chiang, 2007), left-to-right decoding with beamone child). We will use:(e) to refer to the head of
search (Watanabe et al., 2006; Huang and M@n edge:, andt(e) to refer to the tail.

2010), finite state methods (Iglesias et al., 2009), and We will assume that the hypergraph is acyclic: in-
coarse-to-fine methods (Petrov et al., 2008). tuitively this will mean that no derivation (as defined

Lagrangian relaxation is a classical techniqu&elow) contains the same vertex more than once (see
in combinatorial optimization (Korte and Vygen, (Martin et al., 1990) for a formal definition).
2008). Lagrange multipliers are used to add lin- Each vertex € V is either anon-terminalin the
ear constraints to an existing problem that can beypergraph, or &af. The set of non-terminals is
solved using a combinatorial algorithm; the result-
ing dual function is then minimized, for example Vv ={ve€V:3Jec E suchthat i(e) = v}
using subgradient methods. In recent wodkial
decompositior-a special case of Lagrangian relax
ation, where the linear constraints enforce agree-
ment between two or more models—has been ap-
plit_ad to inference in Markov _random fields (Wain- Finally, we assume that eache V' has a label
wright et al., 2005; Komodakis et al., 2007; Sontag(v). The labels for leaves will be&vords and will

etal., 2008), and also to inference problems in NLBe important in defining strings and language model
(Rush etal., 2010; Koo et al., 2010). scores for those strings. The labels for non-terminal
nodes will not be important for results in this paper.
We now turn to derivations. Define andex set

= V U E. A derivation is represented by a vector
={y, : r € I} wherey, = 1 if vertexv is used in

Conversely, the set of leaves is defined as

Vi, ={veV:Bee€ E suchthat h(e) = v}

3 Background: Hypergraphs

Translation with many syntax-based systems (e.
(Chiang, 2005; Marcu et al., 2006; Shen et al., 2008:
Huang and Mi, 2010)) can be implemented as atwd. L . o .
. . the derivationy, = 0 otherwise (similarlyy, = 1 if
step process. The first step is to create a hypergrag . k . .
) . gee is used in the derivationy, = 0 otherwise).
(sometimes called a translation forest) that reprel: . . z| . A
) . . usy is a vector in{0,1}*I. A valid derivation
sents the set of possible strings (translations) ancp . . .
- satisfies the following constraints:
derivations under the grammar. The second step is
to integrate an n-gram language model with this hy-
pergraph. For example, in the system of (Chiang,
2005), the hypergraph is created as follows: first, the e Forallv € Vi, y, = >
source side of the synchronous grammar is used to
create a parse forest over the source language string® Forallv € 2... |V, y, = Ze:vet(e) Ye-
Second, transduction operations derived from syn-) o
We use)) to refer to the set of valid derivations.

chronous rules in the grammar are used to create the . 7]
target-language hypergraph. The set) is a subset of0, 1}*! (not all members of

A hypergraph is a pair(V, E) where V {0, 1} will correspond to valid derivations).
{1,2,...,|V|} is a set of vertices, and is a set of Each derivatiory in the hypergraph will imply an
hyperedges. A single distinguished vertex is takefi"dered sequence of leaves. . . v,,. We uses(y) to
as the root of the hypergraph; without loss of genelr_efer to this sequence. Tisentencessociated with

ality we take this vertex to be = 1. Each hyper- € derivation is thet(v;) ... I(vn).
edgee € E is a tuple((vy, va, . .., v1), vo) Where In a weighted hypergraph problem, we assume a

vw € V,andv; € {2...|V[} fori = 1...k The parameter vectof = {6, : » € Z}. The score for

vertexu is referred to as theeadof the edge. The 3they might for example be non-terminal symbols from the
ordered sequencé,vs,...,vi) is referred to as grammar used to generate the hypergraph.

e y; = 1 (the root must be in the derivation).

e:h(e)=v Ye-

any derivation isf(y) = 0 -y = > .7 0ry,. Sim- Thus under this assumption, the relative ordering
ple bottom-up dynamic programming—essentiallyof any two leaves is fixed. This assumption is overly
the CKY algorithm—can be used to fing® = restrictive® the next section describes an algorithm
arg maxycy f(y) under these definitions. that does not require this assumption. However de-
The focus of this paper will be to solve problemsiving the simple algorithm will be useful in devel-

involving the integration of &’th order language oping intuition, and will lead directly to the algo-
model with a hypergraph. In these problems, thﬁthm for the unrestricted case
score for a derivation is modified to be '

4.1 A Sketch of the Algorithm

F@) =3 0oy, + ie(vi_kﬂ Vipsa,.. o) (1 Atahigh level, the algorithm involves the follow-
k

et P ing steps: (1) For each leaf find the previous leaf
w that maximizes the language model scéfe, v).
where vy ..o, = s(y). The 0(vi—rs1,---,vi) (2) Using the estimate for language modeling scores

parameters score n-grams of length These fom step 1, find the highest scoring derivation us-
parameters are typically defined by a languagdgg dynamic programming over the original (non-

model, for example withk = 3 we would have jyersected) hypergraph. (3) If the output from step

0(vi-2, vi-1, ’Uz;) = 10%_1’(1(”2')‘5(%‘—2)7 [(vi-1))- 2 agrees with the bigrams from step 1, then we have

The problem is then to find" = argmaxyey f(y) an exact solution to the problem. Otherwise, mod-

under this definition. ify Lagrange multipliers that encourage agreement
Throughout this paper we make the following asys the two steps, and return to step 1.

sumption when using a bigram language model: Steps 1 and 2 can be performed efficiently; in par-

Definition 3.1 (Bigram start/end assumptionFor ticular, we avoid the classical dynamic programming

any derivationy, with leavess(y) = vy, vs,...,v,, INtersection, instead relying on dynamic program-

it is the case that: (1); = 2 andwv, = 3; (2) the ming over the original, simple hypergraph.

leaves2 and 3 cannot appear at any other position4 2 A Formal Description

in the stringss(y) for y € J; (3) I(2) = <s>where e now give a formal description of the algorithm.
<s> is the start symbol in the language model; (4)efine3 C V;, x V;, to be the set of all ordered pairs
1(3) = </ s>where</ s> is the end symbol. (v,w) such that there is at least one derivationith

This assumption allows us to incorporate lanv directly precedingu in s(y). Extend the bit-vector
guage model terms that depend on the start and etd0 include variableg (v, w) for (v, w) € B where

symbols. It also allows a clean solution for boundary (v, w) = 1 if leaf v is followed byw in s(y), 0
conditions (the start/end of strings). otherwise. We redefine the index set tobe- V' U

_ _ _ E U B, and definey € {0,1}! to be the set of
4 A Sln_1ple Lagrangian Relaxation all possible derivations. Under assumptions 1 and 2
Algorithm above,Y = {y : y satisfies constrainS0, C1, C2}
We now give a Lagrangian relaxation algorithm forwhere the constraint definitions are:
integration of a hypergraph with a bigram language
model, in cases where the hypergraph satisfies thee (CO) They, andy. variables form a derivation

following simplifying assumption: in the hypergraph, as defined in section 3.
Definition 4.1 (The strict ordering assumptign. o (C1) For allv € V;, such that # 2, y, =
For any two leavesy and w, it is either the case S (w,v)

. . :<w,v>€8y w,v).
that: 1) for all derivationsy such thatv andw are
both in the sequendéy), v precedesy; or 2) for all e (C2) For allv € Vi, such thatv # 3, y, =
derivationsy such thatv and w are both ini(y), w > wwwyen Y(V w).
precedes.

®It is easy to come up with examples that violate this as-
“The assumption generalizes in the obvious wak'to or- sumption: for example a hypergraph with edgés 5), 1) and
der language models: e.g., for trigram models we assume th@b, 4), 1) violates the assumption. The hypergraphs found in
v =2,v2 =3,vp, =4,1(2) =1(3) =<5>,1(4) =</ s>. translation frequently contain alternative orderingshsas this.

C1 states that each leaf in a derivation has exact
one in-coming bigram¢2 states that each leaf in a
derivation has exactly one out-going bigrém.

The score of a derivation is nof(y) = 6 -y, i.e.,

fly) = Zevyv"i‘zeeye"" Z 0 (v, w)y(v, w)

(v,w)eEB

Ynitialization: Setu’(v) = 0forallv € V,
Algorithm: Fort=1...T:

=1y)

o If 4t satisfies constraints2, return ¢,
Else Vv €V, ut(v)

W) = 0t (1) = Sen vl)

e y' = argmaxyey L(u

whered (v, w) are scores from the language model:

Our goal is to computg* = arg max,cy f(y).
Next, define)’ as

V' = {y : y satisfies constraint§0 andC1}

In this definition we have dropped th€2 con-

Figure 1: A simple Lagrangian relaxation algorithm.

e Using dynamic programming, find values for
they, andy, variables that form a valid deriva-
tion, and that maximize

straints. To incorporate these constraints, we use ') =>,08 + an)yy + 3. Bele-
Lagrangian relaxation, with one Lagrange multiplier

u(v) for each constraint i€2. The Lagrangian is

Liwy) = fly) = u@)y@) =) yv,w)

v w:(v,w)eB

By

wheres, = 6, — u(v), B = b, and B(v, w)
0(v,w) + u(v).
The dual problem is to finchin,, L(u) where

L(u) = max L(u,y)
yey’

Figure 1 shows aubgradientmethod for solving

this problem. At each point the algorithm finds

t

y! = argmaxyey L(u'™!,y), whereu!~! are the

Lagrange multipliers from the previous iteration. If

y! satisfies theC2 constraints in addition t€0 and
C1, then it is returned as the output from the algo
rithm. Otherwise, the multipliera(v) are updated.
Intuitively, these updates encourage the valueg,of
and)_.,,. ., wyes ¥(v, w) to be equal; formally, these
updates correspond to subgradient steps.

The main computational step at each iteration is
computearg max,cy- L(u'~1,y) This step is easily
solved, as follows (we again uge, 5. andjs(v1, ve)

to refer to the parameter values that incorporate La-

grange multipliers):

e For all v € Vi, define o*(v)
arg MaXq: (w,v)eB B(wa U) and a,
B(a*(v),v). Forallv € Vi definea, = 0.

Recall that according to the bigram start/end assumptioH(

to

e Sety(v,w) = 1iff y(w) =1 anda*(w) = v.

The critical point here is that through our definition
of)’, which ignores th&€2 constraints, we are able
to do efficient search as just described. In the first
step we compute the highest scoring incoming bi-
gram for each leab. In the second step we use
conventional dynamic programming over the hyper-
graph to find an optimal derivation that incorporates
weights from the first step. Finally, we fill in the
y(v,w) values. Each iteration of the algorithm runs
in O(|E| + |BJ) time.

There are close connections between Lagrangian
relaxation and linear programming relaxations. The
most important formal results are: 1) for any value
of u, L(u) > f(y*) (hence the dual value provides
an upper bound on the optimal primal value); 2) un-
der an appropriate choice of the step sizgsthe
subgradient algorithm is guaranteed to converge to
the minimum of L(u) (i.e., we will minimize the
upper bound, making it as tight as possible); 3) if
at any point the algorithm in figure 1 findsj/athat
satisfies theC2 constraints, then this is guaranteed
to be the optimal primal solution.

Unfortunately, this algorithm may fail to produce
a good solution for hypergraphs where the strict or-
dering constraint does not hold. In this case it is
possible to find derivationg that satisfy constraints
CO0, C1, C2, but which are invalid. As one exam-
ple, consider a derivation with(y) = 2,4, 5,3 and
2,3) = y(4,5) = y(5,4) = 1. The constraints

the leaves2/3 are reserved for the start/end of the sequenc@r© all satisfied in this case, but the bigram variables

s(y), and hence do not have an incoming/outgoing bigram.

are invalid (e.g., they contain a cycle).

5 The Full Algorithm Input: A setE of hyperedgesOutput: A directed graph
S, T whereS is a set of vertices, arfl is a set of edges.
We now describe our full algorithm, which does not Step 1: Creating S: DefineS = U.czS(e) whereS(e)
require the strict ordering constraint. In addition, theis defined as follows. Assume= ((vi,va, ..., v), o).
full algorithm allows a trigram language model. We Include the following states i§'(e): (1) (vo |, v1 |) and

first give a sketch, and then give a formal definition] (v% T:201)- () (v T, vjpa [y forj=1...k — 1(if k =1
then there are no such states). (3) In addition, foran

. for j =1...k such thav; € V., add the statév;).

51 A Sketch of the Algorithm Step 2: CreatingT: T is formed by including the fol
A crucial idea in the new algorithm is that of|lowing directed arcs: (1) Add an arc frofa,b) € S
paths between leaves in hypergraph derivationglto (c,d) € S wheneverb = c. (2) Add an arc from

Previously, for each derivationy, we had de- |(@:b |) € Sto(c) € 5 wheneverh = c. (3) Add an
arc from(a) € Sto (b T,c) € S whenevern = b.

<

fined s(y) = wvy,v9,...,v, to be the sequence
of leaves iny. In addition, we will define Figyre 2: Algorithm for constructing a directed graph
g(y) = Do,V1,P1,V2,P2,V3,P3; -+ - Pn—1,Un,Pn (S, T) from a set of hyperedge‘S

where eacly; is a path in the derivation between

leavesv; andv;4,. The path traces through the non'example, rather than making a prediction for |6af

terminals that are between the two leaves in the treﬁ‘iat is should be preceded by lefwe would also
As an example, consider the following derivatio”predict the pathi4 1,2 1) (2 1,5 |) between these
(with hyperedgeg (2, 5), 1) and((3,4),2)): two leaves. Lagrange multipliers will be used to

1 enforce consistency between these predictions (both
2/\5 paths and previous words) and a valid derivation.
3A4 5.2 A Formal Description

)) We first use the algorithm in figure 2 with the en-
For this exampley(y) is (1 1,2 1) (21,3 1) (3) tre set of hyperedgest, as its input. The result
B4 En2n215106)61.1 _T>' is a directed grapliS, T') that containgall possible
States such ag3) correspond to leaf nodes in the . in<for valid derivations inV, E (it also contains

derivation. State_s of the forrfu, b) corre_spond to additional, ill-formed paths§.We then introduce the
the steps taken in a top-down, left-to-right, traverfollowing definition:

sal of the tree, where down and up arrows indi-))
cate whether a node is being visited for the firsP€finition 5.1 A trigram path p is p =

or second time (the traversal in this case would bg1:P1, V2, P2,v3) Where: @) vy, vp,03 €V
1,2,3,4,2,5,1). b) p, is a path (sequence of states) between nodes

. L d in th h(s,T h th
The mapping from a derivation to a pathg(y) f;’;i 22 dégzgr;n S es ng;f C()S];2 |)s \;Vp(;rti ?)c:at\?veg:l

can be performed using the algorithm in figure 2. i
For a given derivationy, defineE(y) = {y : y. — nodes(vy) and (vs) in the g.raph(S, T),_ where no
1}, and useE(y) as the set of input edges to thisother leaf nod_es are seen jn. We defineP to be
algorithm. The output from the algorithm will be athe Set of all trigram paths i, 7).
set of statess, and a set of directed edg@s which ~ The setP of trigram paths plays an analogous role
together fully define the pati(y). to the set3 of bigrams in our previous algorithm.

In the simple algorithm, the first step was to We useuvi(p), p1(p),va(p), p2(p), vs(p) to refer
predict the previous leaf for each leaf under to the individual components of a path In addi-
a score that combined a language model scoft®n, defineSy to be the set of states #iof the form
with a Lagrange multiplier score (i.e., compute(a;b) (s opposed to the forie) wherec € V7).
arg max,, 3(w,v) where S(w,v) = 6(w,v) + We now define a new index sef, = V U E U
u(w)). In this section we describe an algorithm tha®~ U P, adding variableg(s) for s € Sy, andy(p)
for each leab again predicts the previous leaf, butin= 7\nen considered as a finite state automat@h) is a
addition predicts the fulpath back to that leaf. For finite-state approximation to the set of derivationsiin

¢ DO. They, andy. variables form a valid derivatiogn | Initialization: Set\° = 0,7° = 0,u° = 0,0° =
in the original hypergraph. Algorithm: Fort=1...T:

— 1 ?
e D1.Foralls € Sy, ys = >, ses(c) Ve (s€€ figure 2 oyt = argmaxyeyr L(y, A1, 4t~ L, uf= 1, pt=1)

for the definition ofS(e)).

o D2.Forallv € Vi, 4o = 3,00 (o ¥(P) o If 4! satisfies the constrainB3-D6, returny’, else:

e D3.Forallv € Vi, yo = 3 0y ()0 ¥(P) - Vo e VL, AL = AT = (W = Y m)=0 ¥ (D))
v v prw2(p)=v
eD4.Forallv e Vi, yp =3 ()= ¥(P) t—1 teot ¢
 D5. For all s ¢ Sy, Y = Zp_sepl(p) 1/() - Yv eV, 71; =Yy T« (yv - Zp:wl(P):v Yy (p))
e D6.Foralls € Sy, ys = Zp:sépz(p) y(p) - Vs € Sy, US = Uz_l - O‘t(yé - ZP:SGPI(F) yt(p))

e Lagrangian with Lagrange multipliers f@3-D6:
L(y, A\ v, u,v) =0 -y

+3 A (yu - Zp wa (p)=v ! (p)

+2 0T (yv - Z,, w1 (p)=v Y(P

- Vs € SN! U‘Z = U§7 - at(yg - Zp:sEpg(p) yt(p))

Figure 4: The full Lagrangian relaxation algortihm.

)
2t (Ys = Lopsep () Y) resulting Lagrangian is shown in figure 3, and can
+> .U (ys = D pisepa(p) Y(P) be written asL(y, A\, v,u,v) = -y wheres, =
91}“‘/\1}“‘%}’ ﬁs = 9 +uUs+s, ﬁp = Qp_A(U2(p))_
Figure 3: Constraint®0-D6, and the Lagrangian. v(vi(p)) — Zsépl(l’) u(s) — Zsépz(l’) v(s)-

The dual is L\, u,v) =
maxyecy L(y, A,v,u,v); figure 4 shows a sub-
dgradlent method that minimizes this dual. The key
step in the algorithm at each iteration is to compute

arg maxycy L(y, A\, 7,u,v) = argmax,cy -y
_ where 5 is defined above. Again, our definition
) ZU: Do Ze: et + ZS: Oobis zp: rte of V' allows this maximization to be performed
efficiently, as follows:

for p € P. If we take) C {0, 1}! to be the set of
valid derivations, the optimization problem is to fin
y* = argmaxycy f(y), wheref(y) = 6 - y, that is,

In particular, we might definé, = 0 for all s,

andt), = logp(i(vs(p))[l(vi(p)), l(v2(p))) Where 1 Eor each v e Vi, define af =
p(ws|wy, wy) is a trigram probability. Arg MK,y B(0), aNd 0y = %(a*).

The setP is large (typically exponential in size): ie. forpégé)h;, compute the highest scgring
however, we will see that we do not need to represent trigram path ending im.)

the y,, variables explicitly. Instead we will be able

to leverage the underlying structure of a path as as Find values for they,, v. andy; variables that
sequence of states. form a valid derivation, and that maximize

The set of valid derivations iy = {y : fly) =
e . . Y) = 2. By + 0ty Yo+ eﬂeye+ sﬂsys
y satisfies constraint®0-D6} where the constraints W)= 2.0) > >

are shown in figure 3D1 simply states thag, = 1 3. Sety, = 1iff yu,) = landp = a’, .
iff there is exactly one edgein the derivation such o ws(p)
thats € S(e). ConstraintsD2-D4 enforce consis- The first step involves finding the highest scoring in-
tency between leaves in the trigram paths, andthe coming trigram path for each leaf This step can
values. Constraint®5 andD6 enforce consistency pe performed efficiently using an all-pairs shortest
between states seen in the paths, andjthelues. path algorithm over the grapi$, 7'); the details are
The Lagrangian relaxation algorithm is then depmitted for lack of space (the method is straightfor-
rived in a similar way to before. Define ward; a longer version of this paper will have the
details). The second step involves simple dynamic
programming over the hypergraph’,) (it is sim-
We have dropped thB3-D6 constraints, but these ple to integrate the, terms into this algorithm). In
will be introduced using Lagrange multipliers. Thethe third step, the path variableép) are filled in.

V' = {y : y satisfies constrain®0-D2}

5.3 Properties variablesy,,, or the hypergraph variableg. Specif-

We now describe some important properties of th!&a”y’ dgflnev_l(v,y) _to be the leaf preceding
In the trigram pathp with y, = 1 andws(p) = v,

algorithm: and to be the leaf two positions before
Efficiency. The main steps of the algorithm are:. v-2(v,) P

1) construction of the graphs,T); 2) at each it- - the trigram patp with y, = 1 andws(p) = v.

. .) imilarly, definev’ ; (v,y) andv’ ,(v,y) to be the
eration, dynamic programming over the hypergrap . .

} . . . preceding two leaves under thye variables. If the

(V, E); 3) at each iteration, all-pairs shortest path al* ;

: method has not converged, these two trigram def-

gorithms over the graphS, 7). Each of these steps

. = . - initions may not be consistent. For a consistent

is vastly more efficient than computing an exact in- . . ,
:) olution, we requirev_;(v,y) = v’ 4(v,y) and
tersection of the hypergraph with a language modev. (0,y) = o' (v,y) for all v with y L Un
. —2\V, = U_o\V, v = L. -

Exact solutions. By usual guarantees for La fortunately, explicitly enforcing all of these con-

grangian rela_lxatlon, ifat any point the qlgorlthm "€Straints would require exhaustive dynamic program-
turns a solutiony’ that satisfies constraini33-D6,

ming over the hypergraph using the (Bar-Hillel et
theny! exactly solves the problem in Eq. 1. g ypergrap g (

o) al., 1964) method, something we wish to avoid.
Upper bound.s. At each point in the algorithm, Instead, we enforce a weaker set of constraints,
L\~ ut,v!) is an upper bound on the score of

h ial primal soluti Y bound which require far less computation. Assume some
the optimal primal solution(y"). Upper bounds functionw : Vi, — {1,2,...q} that partitions the

::a_n be fuseful _|r;levaluat|?g thﬁ quality r?f p”m"ﬂ Sdo'set of leaves intq different partitions. Then we will
utions from either our algorithm or other methods, 4 o following constraints @'

such as cube pruning.

Simplicity of implementation. Construction of
the (S,T) graph is straightforward. The other
steps—hypergraph dynamic programming, and all-
pairs shortest path—are widely known algorithm
that are simple to implement.

m(v-i(vy) = 7(li(v,y)

m(voa(v,y)) = m(vly(v,y))

Yor all v such thaty, = 1. Findingarg max,cy» 0 -

y under this new definition o’ can be performed

using the construction of (Bar-Hillel et al., 1964),
with ¢ different lexical items (for brevity we omit

The algorithm that we have described minimizedn€ details). This is efficient if is small.
the dual functionZ (), v, u,v). By usual results for ~ The remaining question concerns how to choose
Lagrangian relaxation (e.g., see (Korte and Vygerf partiionm thgt is ef_fectlve in tightening the relax-
2008)), . is the dual function for a particular LP re- ation. To do this we implement the following steps:
laxation arising from the definition @' and the ad- 1) run the subgradient algorithm unfil is close to
ditional constaintsD3-D6. In some cases the LP convergence; 2) then run the subgradient algorithm
relaxation has an integral solution, in which caséer m further iterations, keeping track of all pairs
the algorithm will return an optimal solutiopt.3 of leaf nodes that violate the constraints (i.e., pairs
In other cases, when the LP relaxation has a fraé-= v-1(v,y)lb = v (v,y) Ora = v_a(v,y)lb =
tional solution, the subgradient algorithm will still v~2(v;) Such thata # b); 3) use a graph color-
converge to the minimum df, but the primal solu- Ng algorithm to find a small partition that places all
tionsy! will move between a number of solutions. pairs(a, b) into separate partitions; 4) continue run-
We now describe a method that incrementall;?ing Lagrangian relaxation, with the new constraints
adds hard constraints to the 3&t until the method added. The partitiorr is expanded at each iteration
returns an exact solution. For a givene), for to take into account new paifg, b) that violate the

anyv with y, = 1, we can recover the previous twoconstraints.

leaves (the trigram ending i) from either the path ®In fact in our experiments we use the original hypergraph
to compute admissible outside scores for an exact A* search
8provided that the algorithm is run for enough iterations foralgorithm for this problem. We have found the resulting skar
convergence. algorithm to be very efficient.

6 Tightening the Relaxation

Time %age | %age| %age| %age our method and two other exact decoding methods:
05s (?)L;% (1%'.32) (lg';) (2L1Pc)) integer linear programming (using constraimé—
1.0s 570 | 11.6 | 139 | 311 D6), and exhaustive dynamic programming using
2.0s 722 | 151 | 21.1 | 45.9 the construction of (Bar-Hillel et al., 1964). Our
4.0s 82.5 | 20.7 | 30.7 | 637 method is clearly the most efficient, and is compara-
8.0s 88.9 | 2521 41.8 | /8.3 ble in speed to state-of-the-art decoding algorithms.
16.0s 94.4 | 33.3 | 54.6 | 88.9 \
32 0s 978 | 428 | 685 | 952 We also compare our method to cube pruning
[Median time | 0.79s | 77.6s | 12.15] 2.4s | (Chiang, 2007; Huang and Chiang, 2007). We reim-

plemented cube pruning in C++, to give a fair com-
Figure 5: Results showing percentage of exampldarison to our method._ Cube pruning h_as a parame-
that are decoded in less thanseconds, fort = ter,b, dictating the maximum number of items stored
0.5,1.0,2.0,...,32.0. LR = Lagrangian relaxation; DP at each chart entry. With = 50, our decoder
= exhaustive dynamic programming; ILP = integer lineafinds higher scoring solutions on 50.5% of all exam-
programming; LP = linear programming (LP does not repes (349 examples), the cube-pruning method gets a
cover an exact sqlutlon). We also show the median t'm§trictly higher score on only 1 example (this was one
for each method in seconds. . s .

of the examples that did not converge within 200 it-
7 Experiments erations). Withh = 500, our decoder finds better so-

We report experiments on translation from Chinesk/tions on 18.5% of the examples (128 cases), cube-
to English, using the tree-to-string model describeBruning finds a better solution on 3 examples. The
in (Huang and Mi, 2010). We use an identicaimedian decoding time for our method is 0.79 sec-
model, and identical development and test data, {1dS; the median times for cube pruning wlitk: 50
that used by Huang and Nf?. The translation model @ndb = 500 are 0.06 and 1.2 seconds respectively.
is trained on 1.5M sentence pairs of Chinese-English Our results give a very good estimate of the per-
data; a trigram language model is used. The d&entage of sear.ch errors for cube pruning: we are
velopment data is the newswire portion of the 20080t aware of prior work that has given such accu-
NIST MT evaluation test set (616 sentences). ThEAte measures of search error in syntactic translation
test set is the newswire portion of the 2008 NISTYStems. A natural question is how largenust be
MT evaluation test set (691 sentences). before exact solutions are returned on almost all ex-
We ran the full algorithm with the tightening @MPles. Even & = 1000, we find that our method
method described in section 6. We ran the methddVeS & better solution on 95 test examples (13.7%).
for a limit of 200 iterations, hence some exam- 'able 7 also gives a speed comparison of our
ples may not terminate with an exact solution. ouftethod to a linear programming (LP) solver that
method gives exact solutions on 598/616 developP!Ves the LP relaxation defined by constraDes-

ment set sentences (97.1%), and 675/691 test & We still see speed-ups, in spite of the fact
sentences (97.7%). that our method is solving a harder problem (it pro-

{[des integral solutions). The Lagrangian relaxation

In cases where the method does not converc}}% thod. wh hout the tiahteni thod
within 200 iterations, we can return the best primal ethod, when run without the tightening metho

solutiony® found by the algorithm during those it- _Of secfior&% ishso:illiang T duaIHof the problem be-
erations. We can also get an upper bound on 189 Solve y the _SOIVer. Hence we can mea-
differencef (y*) — f(y") usingmin; L(u;) as an up- sure how often the tlgh_tenmg procedure is abso-
per bound onf(y*). Of the examples that did not lutely necessary, by seeing how often the LP solver

converge, the worst example had a bound that W%owdes a fractional solution. We find that this is

0.34% off(y') (more specificallyf (') was -24.74 e case on 54.0% of the test examples: the tighten-
and the upper bound of(y*) — f(y') was 0.34) " ing procedure is clearly important. Inspection of the
L tightening procedure shows that the number of par-

titions required (the parametej is generally quite

10/ thank Liang Huang and Haitao Mi for providing us with Small: 59% of examples that require tightening re-
their model and data. quireq < 6; 97.2% require; < 10.

Table 7 gives information on decoding time for

References I. Langkilde. 2000. Forest-based statistical sentence gen
)) eration. InProceedings of the 1st North American

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. Onformal cpanter of the Association for Computational Linguis-
properties of simple phrase structure grammars. In i~ conferencepages 170-177. Morgan Kaufmann
Language and Information: Selected Essays on their ppiishers Inc.
Theory and Applicatiorpages 116-150. Daniel Marcu, Wei Wang, Abdessamad Echihabi, and

D. Chiang. 2005. A hierarchical phrase-based model Kevin Knight. 2006. Spmt: Statistical machine
for statistical machine translation. Proceedings of translation with syntactified target language phrases.
the 43rd Annual Meeting on Association for Compu- |n Proceedings of the 2006 Conference on Empirical
tational Linguistics pages 263-270. Association for Methods in Natural Language Processimages 44—

Computational Linguistics. 52, Sydney, Australia, July. Association for Computa-
D. Chiang. 2007. Hierarchical phrase-based translation. tional Linguistics.
computational linguistics33(2):201-228. R.K. Martin, R.L. Rardin, and B.A. Campbell. 1990.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Polyhedral characterization of discrete dynamic pro-
Marcu, and Kenji Yamada. 2001. Fast decoding and gramming.Operations researct88(1):127-138.
optimal decoding for machine translation.Rroceed- Slav Petrov, Aria Haghighi, and Dan Klein. 2008,
ings of the 39th Annual Meeting on Association for Coarse-to-fine syntactic machine translation using lan-
Computational LinguistigsACL '01, pages 228-235, guage projections. IRroceedings of the 2008 Confer-
Morristown, NJ, USA. Association for Computational ~ence on Empirical Methods in Natural Language Pro-
Linguistics. cessing pages 108-116, Honolulu, Hawaii, October.

Liang Huang and David Chiang. 2007. Forest rescoring: ASsociation for Computational Linguistics.
Faster decoding with integrated language models. [a- Riedel and J. Clarke. 2009. Reuvisiting optimal de-
Proceedings of the 45th Annual Meeting of the Asso- c¢oding for machine translation IBM model 4. Rro-

ciation of Computational Linguisticpages 144-151, ceedings of Human Language Technol_ogies: The 2009
Prague, Czech Republic, June. Association for Com- Annual Conference of the North American Chapter of
putational Linguistics. the Association for Computational Linguistics, Com-
Liang Huang and Haitao Mi. 2010. Efficientincremental panion Volume: Shqrt Pf_;lp_erpages 5-8. Association
for Computational Linguistics.

decoding for tree-to-string translation. Fmoceedings ; . .
- : Alexander M Rush, David Sontag, Michael Collins, and
of the 2010 Conference on Empirical Methods in Natu Tommi Jaakkola. 2010. On dual decomposition and

ral Language Processingages 273-283, Cambridge, . i .
linear programming relaxations for natural language

MA, October. Association for Computational Linguis- . .
P g processing. IfProceedings of the 2010 Conference on

tics.
. N . Empirical Methods in Natural Language Processing
Gonz;l\c;v_lnglesmBs, Adngoc(i)% Gﬁ_pert, E_du?rc:]o R, I?)angz, pages 1-11, Cambridge, MA, October. Association for
and William Byrne. . Hierarchical phrase-based 0 tational Linguistics.

translation with weighted finite state transducers. InLibin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A

Proceedings of Human Language Technologies: The ; : -
: new string-to-dependency machine translation algo-
2009 Annual Conference of the North American Chap- rithm withga targFe)t depen):jency language model. gm

ter of tZgSAzsélolclz;tlorlldfor golmpu(;a'ugnal LZlgUIst_lcts_, Proceedings of ACL-08: HL, pages 577-585, Colum-
pages —a41, bouider, -0lorado, June. Association bus, Ohio, June. Association for Computational Lin-

for Computational Linguistics. guistics.

N. Komodakis, N. Paragios, and G. Tziritas. 2007 gontag, T. Meltzer, A. Globerson, T. Jaakkola, and
MRF optimization via dual decomposition: Message- vy, \weiss. 2008. Tightening LP relaxations for MAP
passing revisited. Irinternational Conference on using message passing.Rroc. UAL

Computer Vision M. Wainwright, T. Jaakkola, and A. Willsky. 2005. MAP
Terry Koo, Alexander M. Rush, Michael Collins, Tommi estimation via agreement on trees: message-passing
Jaakkola, and David Sontag. 2010. Dual decompo- and linear programming. IEEEE Transactions on In-
sition for parsing with non-projective head automata. formation Theoryvolume 51, pages 3697—3717.
In Proceedings of the 2010 Conference on EmpiriTaro Watanabe, Hajime Tsukada, and Hideki Isozaki.
cal Methods in Natural Language Processiqmges 2006. Left-to-right target generation for hierarchical
1288-1298, Cambridge, MA, October. Association for phrase-based translation. Rroceedings of the 21st
Computational Linguistics. International Conference on Computational Linguis-
B.H. Korte and J. Vygen. 200€ombinatorial optimiza- tics and the 44th annual meeting of the Association for
tion: theory and algorithmsSpringer Verlag. Computational LinguistiGsACL-44, pages 777-784,

Morristown, NJ, USA. Association for Computational
Linguistics.

