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Abstract
We consider the problem of structured classification, where the task is
to predict a label y from an input x, and y has meaningful internal struc-
ture. Our framework includes supervised training of Markov random
fields and weighted context-free grammars as special cases. We describe
an algorithm that solves the large-margin optimization problem defined
in [12], using an exponential-family (Gibbs distribution) representation
of structured objects. The algorithm is efficient—even in cases where the
number of labels y is exponential in size—provided that certain expecta-
tions under Gibbs distributions can be calculated efficiently. The method
for structured labels relies on a more general result, specifically the ap-
plication of exponentiated gradient updates [7, 8] to quadratic programs.

1 Introduction

Structured classification is the problem of predicting y from x in the case where y has
meaningful internal structure. For example x might be a word string and y a sequence of
part of speech labels, or x might be a Markov random field and y a labeling of x, or x
might be a word string and y a parse of x. In these examples the number of possible labels
y is exponential in the size of x. This paper presents a training algorithm for a general
definition of structured classification covering both Markov random fields and parsing.

We restrict our attention to linear discriminative classification. We assume that pairs 〈x, y〉
can be embedded in a linear feature space Φ(x, y), and that a predictive rule is determined
by a direction (weight vector) w in that feature space. In linear discriminative prediction we
select the y that has the greatest value for the inner product 〈Φ(x, y),w〉. Linear discrimi-
nation has been widely studied in the binary and multiclass setting [6, 4]. However, the case
of structured labels has only recently been considered [2, 12, 3, 13]. The structured-label
case takes into account the internal structure of y in the assignment of feature vectors, the
computation of loss, and the definition and use of margins.

We focus on a formulation where each label y is represented as a set of “parts”, or equiv-
alently, as a bit-vector. Moreover, we assume that the feature vector for y and the loss
for y are both linear in the individual bits of y. This formulation has the advantage that it
naturally covers both simple labeling problems, such as part-of-speech tagging, as well as
more complex problems such as parsing.

We consider the large-margin optimization problem defined in [12] for selecting the clas-
sification direction w given a training sample. The starting-point for these methods is a



primal problem that has one constraint for each possible labeling y; or equivalently a dual
problem where each y has an associated dual variable. We give a new training algorithm
that relies on an exponential-family (Gibbs distribution) representation of structured ob-
jects. The algorithm is efficient—even in cases where the number of labels y is exponential
in size—provided that certain expectations under Gibbs distributions can be calculated ef-
ficiently. The computation of these expectations appears to be a natural computational
problem for structured problems, and has specific polynomial-time dynamic programming
algorithms for some important examples: for example, the clique-tree belief propagation
algorithm can be used in Markov random fields, and the inside-outside algorithm can be
used in the case of weighted context-free grammars.

The optimization method for structured labels relies on a more general result, specifically
the application of exponentiated gradient (EG) updates [7, 8] to quadratic programs (QPs).
We describe a method for solving QPs based on EG updates, and give bounds on its rate of
convergence. The algorithm uses multiplicative updates on dual parameters in the problem.
In addition to their application to the structured-labels task, the EG updates lead to simple
algorithms for optimizing “conventional” binary or multiclass SVM problems.

Related work [2, 12, 3, 13] consider large-margin methods for Markov random fields and
(weighted) context-free grammars. We consider the optimization problem defined in [12].
[12] use a row-generation approach based on Viterbi decoding combined with an SMO
optimization method. [5] describe exponentiated gradient algorithms for SVMs, but for
binary classification in the “hard-margin” case, without slack variables. We show that the
EG-QP algorithm converges significantly faster than the rates shown in [5]. Multiplicative
updates for SVMs are also described in [11], but unlike our method, the updates in [11] do
not appear to factor in a way that allows algorithms for MRFs and WCFGs based on Gibbs-
distribution representations. Our algorithms are related to those for conditional random
fields (CRFs) [9]. CRFs define a linear model for structured problems, in a similar way
to the models in our work, and also rely on the efficient computation of marginals in the
training phase. Finally, see [1] for a longer version of the current paper, which includes
more complete derivations and proofs.

2 The General Setting

We consider the problem of learning a function f : X → Y , where X is a set and Y is a
countable set. We assume a loss function L : X × Y × Y → R

+. The function L(x, y, ŷ)
measures the loss when y is the true label for x, and ŷ is a predicted label; typically, ŷ is
the label proposed by some function f(x). In general we will assume that L(x, y, ŷ) = 0
for y = ŷ. Given some distribution over examples (X,Y ) in X × Y , our aim is to find a
function with low expected loss, or risk, EL(X,Y, f(X)).

We consider functions f which take a linear form. First, we assume a fixed function G

which maps an input x to a set of candidates G(x). For all x, we assume that G(x) ⊆ Y ,
and that G(x) is finite. A second component to the model is a feature-vector representation
Φ : X × Y → R

d. Given a parameter vector w ∈ R
d, we consider functions of the form

fw(x) = arg max
y∈G(x)

〈Φ(x, y),w〉.

Given n independent training examples (xi, yi) with the same distribution as (X,Y ), we
will formalize a large-margin optimization problem that is a generalization of support vec-
tor methods for binary classifiers, and is essentially the same as the formulation in [12]. The
optimal parameters are taken to minimize the following regularized empirical risk function:

1

2
‖w‖

2
+ C

∑

i

(

max
y

(L(xi, yi, y) − mi,y(w))

)

+
where mi,y(w) = 〈w, φ(xi, yi)〉 − 〈w, φ(xi, y)〉 is the “margin” on (i, y) and (z)+ =
max{z, 0}. This optimization can be expressed as the primal problem in Figure 1. Fol-
lowing [12], the dual of this problem is also shown in Figure 1. The dual is a quadratic



Primal problem: Dual problem: maxᾱ F (ᾱ), where

minw,ε̄

(

1
2‖w‖

2
+ C

∑

i εi

)

F (ᾱ) =
(

C
∑

i,y αi,yLi,y−

1
2C2

∑

i,y

∑

j,z αi,yαj,z〈Φi,y,Φj,z〉
)

Subject to the constraints:

∀i,∀y ∈ G(xi), 〈w,Φi,y〉 ≥ Li,y − εi

∀i, εi ≥ 0

Subject to the constraints:

∀i,
∑

y

αi,y = 1 ; ∀i, y, αi,y ≥ 0

Relationship between optimal values: w
∗ = C

∑

i,y α∗
i,yΦi,y where w

∗ is the
arg min of the primal problem, and ᾱ∗ is the arg max of the dual problem.

Figure 1: The primal and dual problems. We use the definitions Li,y = L(xi, yi, y), and Φi,y =
Φ(xi, yi) − Φ(xi, y). We assume that for all i, Li,y = 0 for y = yi. The constant C dictates the
relative penalty for values of the slack variables εi which are greater than 0.

program F (ᾱ) in the dual variables αi,y for all i = 1 . . . n, y ∈ G(xi). The dual variables
for each example are constrained to form a probability distribution over Y .

2.1 Models for structured classification

The problems we are interested in concern structured labels, which have a natural decom-
position into “parts”. Formally, we assume some countable set of parts, R. We also assume
a function R which maps each object (x, y) ∈ X ×Y to a finite subset of R. Thus R(x, y)
is the set of parts belonging to a particular object. In addition we assume a feature-vector
representation φ of parts: this is a function φ : X × R → R

d. The feature vector for an
object (x, y) is then a sum of the feature vectors for its parts, and we also assume that the
loss function L(x, y, ŷ) decomposes into a sum over parts:

Φ(x, y) =
∑

r∈R(x,y)

φ(x, r) L(x, y, ŷ) =
∑

r∈R(x,ŷ)

l(x, y, r)

Here φ(x, r) is a “local” feature vector for part r paired with input x, and l(x, y, r) is
a “local” loss for part r when proposed for the pair (x, y). For convenience we define
indicator variables I(x, y, r) which are 1 if r ∈ R(x, y), 0 otherwise. We also define sets
R(xi) = ∪y∈G(xi)R(xi, y) for all i = 1 . . . n.

Example 1: Markov Random Fields (MRFs) In an MRF the space of labels G(x),
and their underlying structure, can be represented by a graph. The graph G = (V,E) is
a collection of vertices V = {v1, v2, . . . vl} and edges E. Each vertex vi ∈ V has a set
of possible labels, Yi. The set G(x) is then defined as Y1 × Y2 . . . × Yl. Each clique in
the graph has a set of possible configurations: for example, if a particular clique contains
vertices {v3, v5, v6}, the set of possible configurations of this clique is Y3 × Y5 × Y6. We
define C to be the set of cliques in the graph, and for any c ∈ C we define Y(c) to be the set
of possible configurations for that clique. We decompose each y ∈ G(x) into a set of parts,
by defining R(x, y) = {(c, a) ∈ R : c ∈ C, a ∈ Y(c), (c, a) is consistent with y}. The
feature vector representation φ(x, c, a) for each part can essentially track any characteris-
tics of the assignment a for clique c, together with any features of the input x. A number
of choices for the loss function l(x, y, (c, a)) are possible. For example, consider the Ham-
ming loss used in [12], defined as L(x, y, ŷ) =

∑

i Iyi 6=ŷi
. To achieve this, first assign each

vertex vi to a single one of the cliques in which it appears. Second, define l(x, y, (c, a)) to
be the number of labels in the assignment (c, a) which are both incorrect and correspond
to vertices which have been assigned to the clique c (note that assigning each vertex to a
single clique avoids “double counting” of label errors).

Example 2: Weighted Context-Free Grammars (WCFGs). In this example x is an
input string, and y is a “parse tree” for that string, i.e., a left-most derivation for x under
some context-free grammar. The set G(x) is the set of all left-most derivations for x



Inputs: A learning rate η.
Data structures: A vector θ̄ of variables, θi,r, ∀i,∀r ∈ R(xi).

Definitions: αi,y(θ̄) = exp(
∑

r∈R(xi,y) θi,r)/Zi where Zi is a normalization term.

Algorithm:
• Choose initial values θ̄1 for the θi,r variables (these values can be arbitrary).
• For t = 1 . . . T + 1:

– For i = 1 . . . n, r ∈ R(xi), calculate µt
i,r =

∑

y αi,y(θ̄t)I(xi, y, r).

– Set wt = C
(

∑

i,r∈R(xi,yi)
φi,r −

∑

i,r∈R(xi)
µt

i,rφi,r

)

– For i = 1 . . . n, r ∈ R(xi),
calculate updates θt+1

i,r = θt
i,r + ηC (li,r + 〈wt, φi,r〉)

Output: Parameter values w
T+1

Figure 2: The EG algorithm for structured problems. We use φi,r = φ(xi, r) and li,r = l(xi, yi, r).

under the grammar. For convenience, we restrict the grammar to be in Chomsky-normal
form, where all rules in the grammar are of the form 〈A → B C〉 or 〈A → a〉, where
A,B,C are non-terminal symbols, and a is some terminal symbol. We take a part r to
be a CF-rule-tuple 〈A → B C, s,m, e〉. Under this representation A spans words s . . . e
inclusive in x; B spans words s . . . m; and C spans words (m + 1) . . . e. The function
R(x, y) maps a derivation y to the set of parts which it includes. In WCFGs φ(x, r) can
be any function mapping a rule production and its position in the sentence x, to a feature
vector. One example of a loss function would be to define l(x, y, r) to be 1 only if r’s
non-terminal A is not seen spanning words s . . . e in the derivation y. This would lead
to L(x, y, ŷ) tracking the number of “constituent errors” in ŷ, where a constituent is a
(non-terminal, start-point, end-point) tuple such as (A, s, e).

3 EG updates for structured objects
We now consider an algorithm for computing ᾱ∗ = arg maxᾱ∈∆ F (ᾱ), where F (ᾱ) is the
dual form of the maximum margin problem, as in Figure 1. In particular, we are interested
in the optimal values of the primal form parameters, which are related to ᾱ∗ by w

∗ =
C
∑

i,y α∗
i,yΦi,y . A key problem is that in many of our examples, the number of dual

variables αi,y precludes dealing with these variables directly. For example, in the MRF
case or the WCFG cases, the set G(x) is exponential in size, and the number of dual
variables αi,y is therefore also exponential.

We describe an algorithm that is efficient for certain examples of structured objects such
as MRFs or WCFGs. Instead of representing the αi,y variables explicitly, we will instead
manipulate a vector θ̄ of variables θi,r for i = 1 . . . n, r ∈ R(xi). Thus we have one of
these “mini-dual” variables for each part seen in the training data. Each of the variables
θi,r can take any value in the reals. We now define the dual variables αi,y as a function of
the vector θ̄, which takes the form of a Gibbs distribution:

αi,y(θ̄) =
exp(

∑

r∈R(xi,y) θi,r)
∑

y′ exp(
∑

r∈R(xi,y′) θi,r)
.

Figure 2 shows an algorithm for maximizing F (ᾱ). The algorithm defines a sequence of
values θ̄1, θ̄2, . . .. In the next section we prove that the sequence F (ᾱ(θ̄1)), F (ᾱ(θ̄2)), . . .
converges to maxα F (ᾱ). The algorithm can be implemented efficiently, independently
of the dimensionality of ᾱ, provided that there is an efficient algorithm for computing
marginal terms µi,r =

∑

i,y αi,y(θ̄)I(xi, y, r) for all i = 1 . . . n, r ∈ R(xi), and all θ̄. A
key property is that the primal parameters w = C

∑

i,y αi,y(θ̄)Φi,y = C
∑

i Φ(xi, yi) −



C
∑

i,y αi,y(θ̄)Φ(xi, y) can be expressed in terms of the marginal terms, because:
∑

i,y

αi,y(θ̄)Φ(xi, y) =
∑

i,y

αi,y(θ̄)
∑

r∈R(xi,y)

φ(xi, r) =
∑

i,r∈R(xi)

µi,rφ(xi, r)

and hence w = C
∑

i Φ(xi, yi) − C
∑

i,r∈R(xi)
µi,rφ(xi, r). The µi,r values can be cal-

culated for MRFs and WCFGs in many cases, using standard algorithms. For example, in
the WCFG case, the inside-outside algorithm can be used, provided that each part r is a
context-free rule production, as described in Example 2 above. In the MRF case, the µi,r

values can be calculated efficiently if the tree-width of the underlying graph is small.

Note that the main storage requirements of the algorithm in Figure 2 concern the vector θ̄.
This is a vector which has as many components as there are parts in the training set. In
practice, the number of parts in the training data can become extremely large. Fortunately,
an alternative, “primal form” algorithm is possible. Rather than explicitly storing the θi,r

variables, we can store a vector z
t of the same dimensionality as w

t. The θi,r values can
be computed from z

t. More explicitly, the main body of the algorithm in Figure 2 can be
replaced with the following:

• Set z1 to some initial value. For t = 1 . . . T + 1:
– Set wt = 0
– For i = 1 . . . n: Compute µt

i,r for r ∈ R(xi), using θt
i,r = ηC((t − 1)li,r + 〈zt, φi,r〉);

Set wt = w
t + C

(

∑

r∈R(xi,yi)
φi,r −

∑

r∈R(xi)
µt

i,rφi,r

)

– Set zt+1 = z
t + w

t

It can be verified that if ∀i, r, θ1
i,r = ηC〈φi,r, z

1〉, then this alternative algorithm defines
the same sequence of (implicit) θt

i,r values, and (explicit) w
t values, as the original algo-

rithm. In the next section we show that the original algorithm converges for any choice of
initial values θ̄1, so this restriction on θ1

i,r should not be significant.

4 Exponentiated gradient (EG) updates for quadratic programs

We now prove convergence properties of the algorithm in Figure 2. We show that it is
an instantiation of a general algorithm for optimizing quadratic programs (QPs), which
relies on Exponentiated Gradient (EG) updates [7, 8]. In the general problem we assume a
positive semi-definite matrix A ∈ R

m×m, and a vector b ∈ R
m, specifying a loss function

Q(ᾱ) = b
′ᾱ + 1

2 ᾱ′
Aᾱ. Here ᾱ is an m-dimensional vector of reals. We assume that ᾱ is

formed by the concatenation of n vectors ᾱi ∈ R
mi for i = 1 . . . n, where

∑

i mi = m.
We assume that each ᾱi lies in a simplex of dimension mi, so that the feasible set is

∆ = {ᾱ : ᾱ ∈ R
m; for i = 1 . . . n,

mi
∑

j=1

αi,j = 1; for all i, j, αi,j ≥ 0}. (1)

Our aim is to find arg minᾱ∈∆ Q(ᾱ). Figure 3 gives an algorithm—the “EG-QP”
algorithm—for finding the minimum. In the next section we give a proof of its conver-
gence properties.

The EG-QP algorithm can be used to find the minimum of −F (ᾱ), and hence the maximum
of the dual objective F (ᾱ). We justify the algorithm in Figure 2 by showing that it is
equivalent to minimization of −F (ᾱ) using the EG-QP algorithm. We give the following
theorem:

Theorem 1 Define F (ᾱ) = C
∑

i,y αi,yLi,y − 1
2C2

∑

i,y

∑

j,z αi,yαj,z〈Φi,y,Φj,z〉,
and assume as in section 2 that Li,y =

∑

r∈R(xi,y) l(xi, y, r) and Φ(xi, y) =
∑

r∈R(xi,y) φ(xi, r). Consider the sequence ᾱ(θ̄1) . . . ᾱ(θ̄T+1) defined by the algorithm

in Figure 2, and the sequence ᾱ1 . . . ᾱT+1 defined by the EG-QP algorithm when applied
to Q(ᾱ) = −F (ᾱ). Then under the assumption that ᾱ(θ̄1) = ᾱ1, it follows that ᾱ(θ̄t) = ᾱt

for t = 1 . . . (T + 1).



Inputs: A positive semi-definite matrix A, and a vector b, specifying a loss function
Q(ᾱ) = b · ᾱ + 1

2 ᾱ′
Aᾱ. Each vector ᾱ is in ∆, where ∆ is defined in Eq. 1.

Algorithm:
• Initialize ᾱ1 to a point in the interior of ∆. Choose a learning rate η > 0.
• For t = 1 . . . T

– Calculate s̄t = ∇Q(ᾱt) = b + Aᾱt.
– Calculate ᾱt+1 as: ∀i, j, αt+1

i,j = αt
i,j exp{−ηst

i,j}/
∑

k αt
i,k exp{−ηst

i,k}

Output: Return ᾱT+1.

Figure 3: The EG-QP algorithm for quadratic programs.

Proof. We can write F (ᾱ) = C
∑

i,y αi,yLi,y − 1
2
C2‖

∑

i Φ(xi, yi) −
∑

i,y αi,yΦ(xi, y)‖2. It

follows that ∂F (ᾱt)
∂αi,y

= CLi,y + C〈Φ(xi, y),wt〉 = C
∑

r∈R(xi,y)

(

li,r + 〈φi,r,w
t〉
)

where as

before w
t = C(

∑

i Φ(xi, yi) −
∑

i,y αt
i,yΦ(xi, y)). The rest of the proof proceeds by in-

duction; due to space constraints we give a sketch of the proof here. The idea is to show that
ᾱ(θ̄t+1) = ᾱt+1 under the inductive hypothesis that ᾱ(θ̄t) = ᾱt. This follows immediately
from the definitions of the mappings ᾱ(θ̄t) → ᾱ(θ̄t+1) and ᾱt → ᾱt+1 in the two algo-

rithms, together with the identities st
i,y = −∂F (ᾱt)

∂αi,y
= −C

∑

r∈R(xi,y) (li,r + 〈φi,r,w
t〉)

and θt+1
i,r − θt

i,r = ηC (li,r + 〈φi,r,w
t〉).

4.1 Convergence of the exponentiated gradient QP algorithm

The following theorem shows how the optimization algorithm converges to an optimal so-
lution. The theorem compares the value of the objective function for the algorithm’s vector
ᾱt to the value for a comparison vector u ∈ ∆. (For example, consider u as the solution
of the QP.) The convergence result is in terms of several properties of the algorithm and
the comparison vector u. The distance between u and ᾱ1 is measured using the Kullback-
Liebler (KL) divergence. Recall that the KL-divergence between two probability vectors
ū, v̄ is defined as D(ū, v̄) =

∑

i ui log ui

vi
. For sequences of probability vectors, ū ∈ ∆

with ū = (ū1, . . . , ūn) and ūi = (ui,1, . . . , ui,mi
), we can define a divergence as the sum

of KL-divergences: for ū, v̄ ∈ ∆, D̄(ū, v̄) =
∑n

i=1 D(ūi, v̄i). Two other key parameters
are λ, the largest eigenvalue of the positive semidefinite symmetric matrix A, and

B = max
ᾱ∈∆

(

max
i

(∇Q(ᾱ))i − min
i

(∇Q(ᾱ))i

)

≤ 2

(

nmax
ij

|Aij | + max
i

|bi|

)

.

Theorem 2 For all ū ∈ ∆,

1

T

T
∑

t=1

Q(ᾱt) ≤ Q(ū) +
D̄(ū, ᾱ1)

ηT
+

eηB − 1 − ηB

η2B2 (1 − η(B + λ)eηB)

Q(ᾱ1) − Q(ᾱT+1)

T
.

Choosing η = 0.4/(B + λ) ensures that

Q
(

ᾱT+1
)

≤
1

T

T
∑

t=1

Q(ᾱt) ≤ Q(ū) + 2.5(B + λ)
D̄(ū, ᾱ1)

T
+ 1.5

Q(ᾱ1) − Q(ᾱT+1)

T
.

The first lemma we require is due to Kivinen and Warmuth [8].

Lemma 1 For any ū ∈ ∆, ηQ(ᾱt) − ηQ(ū) ≤ D̄(ū, ᾱt) − D̄(ū, ᾱt+1) + D̄(ᾱt, ᾱt+1)

We focus on the third term. Define ∇(i)Q(ᾱ) as the segment of the gradient vector cor-
responding to the component ᾱi of ᾱ, and define the random variable Xi,t, satisfying

Pr
(

Xi,t = −
(

∇(i)Q(ᾱt)
)

j

)

= αi,j .



Lemma 2 D̄(ᾱt, ᾱt+1) =

n
∑

i=1

log E

[

eη(Xi,t−EXi,t)
]

≤

(

eηB − 1 − ηB

B2

) n
∑

i=1

var(Xi,t).

Proof. D̄(ᾱt, ᾱt+1) =

n
∑

i=1

∑

j

αt
ij log

αt
ij

αt+1
ij

=

n
∑

i=1

∑

j

αt
ij

(

log

(

∑

k

αt
ik exp(−η∇i,k)

)

+ η∇i,j

)

=
n
∑

i=1

log

(

∑

k

αt
ik exp

(

−η∇i,k + ηᾱt
i · ∇i

)

)

=
n
∑

i=1

log
(

E

[

eη(Xi,t−EXi,t)
])

≤
eηB − 1 − ηB

B2

n
∑

i=1

var(Xi,t).

This last inequality is at the heart of the proof of Bernstein’s inequality; e.g., see [10].

The second part of the proof of the theorem involves bounding this variance in terms of
the loss. The following lemma relies on the fact that this variance is, to first order, the
decrease in the quadratic loss, and that the second order term in the Taylor series expansion
of the loss is small compared to the variance, provided the steps are not too large. The
lemma and its proof require several definitions. For any d, let σ : R

d → (0, 1)d be the
softmax function, σ(θ̄)i = exp(θi)/

∑d
j=1 exp(θj), for θ̄ ∈ R

d. We shall work in the
exponential parameter space: let θ̄t be the exponential parameters at step t, so that the
updates are θ̄t+1 = θ̄t − η∇Q(ᾱt), and the QP variables satisfy ᾱt

i = σ(θ̄t
i). Define the

random variables Xi,t,θ̄, satisfying Pr
(

Xi,t,θ̄ = −
(

∇(i)Q(ᾱt)
)

j

)

=
(

σ(θ̄i)
)

j
. This takes

the same values as Xi,t, but its distribution is given by a different exponential parameter
(θ̄i instead of θ̄t

i). Define
[

θ̄t, θ̄t+1
]

=
{

aθ̄t + (1 − a)θ̄t+1 : a ∈ [0, 1]
}

.

Lemma 3 For some θ̄ ∈ [θ̄t, θ̄t+1],

η

n
∑

i=1

var(Xi,t) − η2(B + λ)

n
∑

i=1

var(Xi,t,θ̄) ≤ Q(ᾱt) − Q(ᾱt+1),

but for all θ̄ ∈ [θ̄t, θ̄t+1], var(Xi,t,θ̄) ≤ eηB var(Xi,t). Hence,
n
∑

i=1

var(Xi,t) ≤
1

η (1 − η(B + λ)eηB)

(

Q(ᾱt) − Q(ᾱt+1)
)

.

Thus, for η < 0.567/(B + λ), Q(ᾱt) is non-increasing in t.

The proof is in [1]. Theorem 2 follows from an easy calculation.

5 Experiments
We compared an online1 version of the Exponentiated Gradient algorithm with the factored
Sequential Minimal Optimization (SMO) algorithm in [12] on a sequence segmentation
task. We selected the first 1000 sentences (12K words) from the CoNLL-2003 named
entity recognition challenge data set for our experiment. The goal is to extract (multi-
word) entity names of people, organizations, locations and miscellaneous entities. Each
word is labelled by 9 possible tags (beginning of one of the four entity types, continuation
of one of the types, or not-an-entity). We trained a first-order Markov chain over the tags,

1In the online algorithm we calculate marginal terms, and updates to the w
t parameters, one

training example at a time. As yet we do not have convergence bounds for this method, but we have
found that it works well in practice.
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Figure 4: Number of iterations over training set vs. dual objective for the SMO and EG algorithms.
(a) Comparison with different η values; (b) Comparison with η = 1 and different initial θ values.

where our cliques are just the nodes for the tag of each word and edges between tags of
consecutive words. The feature vector for each node assignment consists of the word itself,
its capitalization and morphological features, etc., as well as the previous and consecutive
words and their features. Likewise, the feature vector for each edge assignment consists of
the two words and their features as well as surrounding words.

Figure 4 shows the growth of the dual objective function after each pass through the data
for SMO and EG, for several settings of the learning rate η and the initial setting of the θ
parameters. Note that SMO starts up very quickly but slows down in a suboptimal region,
while EG lags at the start, but overtakes SMO and achieves a larger than 10% increase in
the value of the objective. These preliminary results suggest that a hybrid algorithm could
get the benefits of both, by starting out with several SMO updates and then switching to EG.
The key issue is to switch from the marginal µ representation SMO maintains to the Gibbs θ
representation that EG uses. We can find θ that produces µ by first computing conditional
“probabilities” that correspond to our marginals (e.g. dividing edge marginals by node
marginals in this case) and then letting θ’s be the logs of the conditional probabilities.
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