The Forward-Backward Algorithm

Michael Collins

1 Introduction

This note describes the forward-backward algorithm. The forward-backward algorithm has very important applications to both hidden Markov models (HMMs) and conditional random fields (CRFs). It is a dynamic programming algorithm, and is closely related to the Viterbi algorithm for decoding with HMMs or CRFs.

This note describes the algorithm at a level of abstraction that applies to both HMMs and CRFs. We will also describe its specific application to these cases.

2 The Forward-Backward Algorithm

The problem set-up is as follows. Assume that we have some sequence length m, and some set of possible states \mathcal{S}. For any state sequence $s_{1} \ldots s_{m}$ where each $s_{i} \in \mathcal{S}$, we define the potential for the sequence as

$$
\psi\left(s_{1} \ldots s_{m}\right)=\prod_{j=1}^{m} \psi\left(s_{j-1}, s_{j}, j\right)
$$

Here we define s_{0} to be $*$, where $*$ is a special start symbol in the model. Here $\psi\left(s, s^{\prime}, j\right) \geq 0$ for $s, s^{\prime} \in \mathcal{S}, j \in\{1 \ldots m\}$ is a potential function, which returns a value for the state transition s to s^{\prime} at position j in the sequence.

The potential functions $\psi\left(s_{j-1}, s_{j}, j\right)$ might be defined in various ways. As one example, consider an HMM applied to an input sentence $x_{1} \ldots x_{m}$. If we define

$$
\psi\left(s^{\prime}, s, j\right)=t\left(s \mid s^{\prime}\right) e\left(x_{j} \mid s\right)
$$

then

$$
\begin{aligned}
\psi\left(s_{1} \ldots s_{m}\right) & =\prod_{j=1}^{m} \psi\left(s_{j-1}, s_{j}, j\right) \\
& =\prod_{j=1}^{m} t\left(s_{j} \mid s_{j-1}\right) e\left(x_{j} \mid s_{j}\right)
\end{aligned}
$$

$$
=p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m}\right)
$$

where $p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m}\right)$ is the probability mass function under the HMM.
As another example, consider a CRF where we have a feature-vector definition $\underline{\phi}\left(x_{1} \ldots x_{m}, s^{\prime}, s, j\right) \in \mathbb{R}^{d}$, and a parameter vector $\underline{w} \in \mathbb{R}^{d}$. Assume again that we have an input sentence $x_{1} \ldots x_{m}$. If we define

$$
\psi\left(s^{\prime}, s, j\right)=\exp \left(\underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s^{\prime}, s, j\right)\right)
$$

then

$$
\begin{aligned}
\psi\left(s_{1} \ldots s_{m}\right) & =\prod_{j=1}^{m} \psi\left(s_{j-1}, s_{j}, j\right) \\
& =\prod_{j=1}^{m} \exp \left(\underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s_{j-1}, s_{j}, j\right)\right) \\
& =\exp \left(\sum_{j=1}^{m} \underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s_{j-1}, s_{j}, j\right)\right)
\end{aligned}
$$

Note in particular, by the model form for CRFs, it follows that

$$
p\left(s_{1} \ldots s_{m} \mid x_{1} \ldots x_{m}\right)=\frac{\psi\left(s_{1} \ldots s_{m}\right)}{\sum_{s_{1} \ldots s_{m}} \psi\left(s_{1} \ldots s_{m}\right)}
$$

The forward-backward algorithm is shown in figure 1. Given inputs consisting of a sequence length m, a set of possible states \mathcal{S}, and potential functions $\psi\left(s^{\prime}, s, j\right)$ for $s, s^{\prime} \in \mathcal{S}$, and $j \in\{1 \ldots m\}$, it computes the following quantities:

1. $Z=\sum_{s_{1} \ldots s_{m}} \psi\left(s_{1} \ldots s_{m}\right)$.
2. For all $j \in\{1 \ldots m\}, a \in \mathcal{S}$,

$$
\mu(j, a)=\sum_{s_{1} \ldots s_{m}: s_{j}=a} \psi\left(s_{1} \ldots s_{m}\right)
$$

3. For all $j \in\{1 \ldots(m-1)\}, a, b \in \mathcal{S}$,

$$
\mu(j, a, b)=\sum_{s_{1} \ldots s_{m}: s_{j}=a, s_{j+1}=b} \psi\left(s_{1} \ldots s_{m}\right)
$$

Inputs: Length m, set of possible states \mathcal{S}, function $\psi\left(s, s^{\prime}, j\right)$. Define * to be a special initial state.
Initialization (forward terms): For all $s \in \mathcal{S}$,

$$
\alpha(1, s)=\psi(*, s, 1)
$$

Recursion (forward terms): For all $j \in\{2 \ldots m\}, s \in \mathcal{S}$,

$$
\alpha(j, s)=\sum_{s^{\prime} \in \mathcal{S}} \alpha\left(j-1, s^{\prime}\right) \times \psi\left(s^{\prime}, s, j\right)
$$

Initialization (backward terms): For all $s \in \mathcal{S}$,

$$
\beta(m, s)=1
$$

Recursion (backward terms): For all $j \in\{1 \ldots(m-1)\}, s \in \mathcal{S}$,

$$
\beta(j, s)=\sum_{s^{\prime} \in \mathcal{S}} \beta\left(j+1, s^{\prime}\right) \times \psi\left(s, s^{\prime}, j+1\right)
$$

Calculations:

$$
Z=\sum_{s \in \mathcal{S}} \alpha(m, s)
$$

For all $j \in\{1 \ldots m\}, a \in \mathcal{S}$,

$$
\mu(j, a)=\alpha(j, a) \times \beta(j, a)
$$

For all $j \in\{1 \ldots(m-1)\}, a, b \in \mathcal{S}$,

$$
\mu(j, a, b)=\alpha(j, a) \times \psi(a, b, j+1) \times \beta(j+1, b)
$$

Figure 1: The forward-backward algorithm.

3 Application to CRFs

The quantities computed by the forward-backward algorithm play a central role in CRFs. First, consider the problem of calculating the conditional probability

$$
p\left(s_{1} \ldots s_{m} \mid x_{1} \ldots x_{m}\right)=\frac{\exp \left(\sum_{j=1}^{m} \underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s_{j-1}, s_{j}, j\right)\right)}{\sum_{s_{1} \ldots s_{m}} \exp \left\{\left(\sum_{j=1}^{m} \underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s_{j-1}, s_{j}, j\right)\right)\right.}
$$

The numerator in the above expression is easy to compute; the denominator is more challenging, because it requires a sum over an exponential number of state sequences. However, if we define

$$
\psi\left(s^{\prime}, s, j\right)=\exp \left(\underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s^{\prime}, s, j\right)\right)
$$

in the algorithm in figure 1, then as we argued before we have

$$
\psi\left(s_{1} \ldots s_{m}\right)=\exp \left(\sum_{j=1}^{m} \underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s_{j-1}, s_{j}, j\right)\right)
$$

It follows that the quantity Z calculated by the algorithm is equal to the denominator in the above expression; that is,

$$
Z=\sum_{s_{1} \ldots s_{m}} \exp \left(\sum_{j=1}^{m} \underline{w} \cdot \underline{\phi}\left(x_{1} \ldots x_{m}, s_{j-1}, s_{j}, j\right)\right)
$$

Next, recall that the key difficulty in the calculation of the gradient of the loglikelihood function in CRFs was to calculate the terms

$$
q_{j}^{i}(a, b)=\sum_{\underline{s}: s_{j-1}=a, s_{j}=b} p\left(\underline{s} \mid \underline{x}^{i} ; \underline{w}\right)
$$

for a given input sequence $\underline{x}^{i}=x_{1}^{i} \ldots x_{m}^{i}$, for each $j \in\{2 \ldots m\}$, for each $a, b \in$ \mathcal{S} (see the note on log-linear models). Again, if we define

$$
\psi\left(s^{\prime}, s, j\right)=\exp \left(\underline{w} \cdot \underline{\phi}\left(x_{1}^{i} \ldots x_{m}^{i}, s^{\prime}, s, j\right)\right)
$$

then it can be verified that

$$
q_{j}^{i}(a, b)=\frac{\mu(j, a, b)}{Z}
$$

where $\mu(j, a, b)$ and Z are the terms computed by the algorithm in figure 1 .

