Word2Vec

Michael Collins, Columbia University

Motivation

- We can easily collect very large amounts of unlabeled text data
- Can we learn useful representations (e.g., word embeddings) from unlabeled data?

Bigrams from Unlabeled Data

- Given a corpus, extract a training set $\{x^{(i)}, y^{(i)}\}$ for $i = 1 \dots n$, where each $x^{(i)} \in \mathcal{V}$, $y^{(i)} \in \mathcal{V}$, where \mathcal{V} is the vocabulary
- ► For example,

Hispaniola quickly became an important base from which Spain expanded its empire into the rest of the Western Hemisphere .

Given a window size of +/-3, for x = base we get the pairs

(base, became), (base, an), (base, important), (base, from), (base, which), (base, Spain)

Learning Word Embeddings

- Given a corpus, extract a training set $\{x^{(i)}, y^{(i)}\}$ for $i = 1 \dots n$, where each $x^{(i)} \in \mathcal{V}$, $y^{(i)} \in \mathcal{V}$, where \mathcal{V} is the vocabulary
- ▶ For each word $w \in \mathcal{V}$, define word embeddings $\theta'(w) \in \mathbb{R}^d$ and $\theta(w) \in \mathbb{R}^d$
- \blacktriangleright Define Θ', Θ to be the two matrices of embeddings parameters
- Can then define

$$p(y^{(i)}|x^{(i)};\Theta,\Theta') = \frac{\exp\{\theta'(x^{(i)}) \cdot \theta(y^{(i)})\}}{Z(x^{(i)};\Theta,\Theta')}$$

where $Z(x^{(i)};\Theta,\Theta') = \sum_{y\in\mathcal{V}} \exp\{\theta'(x^{(i)})\cdot\theta(y)\}$

Learning Word Embeddings (Continued)

► Can define

$$p(y^{(i)}|x^{(i)};\Theta,\Theta') = \frac{\exp\{\theta'(x^{(i)}) \cdot \theta(y^{(i)})\}}{Z(x^{(i)};\Theta,\Theta')}$$

where $Z(x^{(i)}; \Theta, \Theta') = \sum_{y \in \mathcal{V}} \exp\{\theta'(x^{(i)}) \cdot \theta(y)\}$

A first objective function that can be maximized using stochastic gradient:

$$L(\Theta, \Theta') = \sum_{i=1}^{n} \log p(y^{(i)} | x^{(i)}; \Theta, \Theta')$$
$$= \sum_{i=1}^{n} \left(\theta'(x^{(i)}) \cdot \theta(y^{(i)}) \} - \log \underbrace{\sum_{y \in \mathcal{V}} \exp\{\theta'(x^{(i)}) \cdot \theta(y)\}}_{\text{Expensive!}} \right)$$

An Alternative: Negative Sampling

- Given a corpus, extract a training set $\{x^{(i)}, y^{(i)}\}$ for $i = 1 \dots n$, where each $x^{(i)} \in \mathcal{V}$, $y^{(i)} \in \mathcal{V}$, where \mathcal{V} is the vocabulary
- In addition, for each i sample y^(i,k) for k = 1...K from a "noise" distribution p_n(y). E.g., p_n(y) is the unigram distribution over words y
- A new loss function:

$$L(\Theta', \Theta) = \sum_{i=1}^{n} \log \frac{\exp\{\theta'(x^{(i)}) \cdot \theta(y^{(i)})\}}{1 + \exp\{\theta'(x^{(i)}) \cdot \theta(y^{(i)})\}} + \sum_{i=1}^{n} \sum_{k=1}^{K} \log \frac{1}{1 + \exp\{\theta'(x^{(i)}) \cdot \theta(y^{(i,k)})\}}$$