
Questions for Flipped Classroom Session of COMS 4705
Week 2, Fall 2014. (Michael Collins)

Question 1 In lecture we saw how to build trigram language models using dis-
counting methods, and the Katz back-off definition. We’re now going to build a
four-gram language model based on these ideas. A four-gram language model
gives estimates

q(w|t, u, v)

where t, u, v, w is any sequence of four words.

Assume we have a corpus, and that c(t, u, v, w) is the number of times the four-
gram t, u, v, w is seen in the data. Then take the following definitions:

A(t, u, v) = {w : c(t, u, v, w) > 0}

and
B(t, u, v) = {w : c(t, u, v, w) = 0}

Define c∗(t, u, v, w) to be the discounted count for the four-gram (t, u, v, w), as
follows:

c∗(t, u, v, w) = c(t, u, v, w)− 0.5

Assume that for any trigram u, v, w, qBO(w|u, v) is an estimate of the trigram
probability, using the backed-off method described in lecture.

Finally, we define the four-gram model as

qBO(w|t, u, v) =


c∗(t,u,v,w)
c(t,u,v) If w ∈ A(t, u, v)

α(t, u, v)× qBO(w|u,v)∑
w∈B(t,u,v) qBO(w|u,v) If w ∈ B(t, u, v)

Question: How would you define

α(t, u, v)

?
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Question 2 Recall that the perplexity of a language model on a test corpus is
defined as

2−l

where

l =
1

M

m∑
i=1

log2 p(x
(i))

and m is the number of sentences in the corpus, M is the total number of words in
the corpus, log2 is log base 2, x(i) is the i’th sentence in the corpus, and p(x(i)) is
the probability of the i’th sentence in the corpus under the language model?

Question 2a: What is the maximum value that the perplexity can take?

Question 2b: What is the minimum value that the perplexity can take?

Question 2c: Assume that we have a bigram language model, where

p(w1 . . . wn) =
n∏

i=1

q(wi|wi−1)

and w0 = *, and wn = STOP. We estimate the parameters as

q(w|v) = Count(v, w)
Count(v)

Write down a training corpus and a test corpus such that the perplexity of the model
trained on the training corpus takes the maximum possible value on the test corpus.

Question 2d: Write down a training corpus and a test corpus such that the perplex-
ity of the model trained on the training corpus takes the minimum possible value
on the test corpus. (Assume that we use a bigram language model, as in 2(c).)
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Question 3 We define a trigram language model as follows. Take Count(w),
Count(v, w) and Count(u, v, w) to be unigram, bigram and trigram counts taken
from a training corpus (here w is a single word, v, w is a bigram, and u, v, w is
a trigram). Take N to be the total number of words seen in the corpus. Then the
unigram, bigram and trigram maximum-likelihood estimates are

qML(w) =
Count(w)

N
qML(w|v) =

Count(v, w)
Count(v)

qML(w|u, v) =
Count(u, v, w)

Count(u, v)

The final estimate is then defined as

q(w|u, v)
= α× qML(w|u, v) + (1− α)× (β × qML(w|u) + (1− β)× qML(w))

where α and β are smoothing parameters, which satisfy the constraints 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1.

Question 3a: Assume that we define α = β = 0.5. Show that the model is
equivalent to a model of the form

q(w|u, v) = λ1 × qML(w|u, v) + λ2 × qML(w|u) + λ3 × qML(w)

and calculate the values for λ1, λ2, λ3 under these settings for α and β.

Question 3b: Now assume that we define smoothing parameters α(u, v) for every
bigram (u, v), and β(u) for every unigram u. The new estimate is

q(w|u, v) = α(u, v)× qML(w|u, v)
+(1− α(u, v))× (β(u)× qML(w|u) + (1− β(u))× qML(w)

Show that providing that 0 ≤ α(u, v) ≤ 1 for all (u, v), and 0 ≤ β(u) ≤ 1 for all
u, the estimate satisfies ∑

w

q(w|u, v) = 1

for all u, v. (For simplicity assume that for all u, v, Count(u, v) > 0, and for all u,
Count(u) > 0.
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Question 3c: Now say we define

α(u, v) =
Count(u, v)

Count(u, v) + C1
β(u) =

Count(u)
Count(u) + C2

where C1 > 0 and C2 > 0 are constants.

What is the intuition behind these definitions? What roles do the constants C1 and
C2 play?

Question 3d: Now say we measure perplexity of the method from question 3c
on a test corpus. We assume that for every unigram u seen in the test corpus,
Count(u) > 0 where Count(u) is again the number of times unigram u is seen in
the training corpus. Show that the perplexity in this case cannot be infinite.

Question 4 Consider a Katz Bigram model, as defined in lecture. To recap, we
define two sets

A(wi−1) = {w : Count(wi−1, w) > 0}
B(wi−1) = {w : Count(wi−1, w) = 0}

The model is then defined as

qBO(wi | wi−1) =


Count∗(wi−1,wi)

Count(wi−1)
If wi ∈ A(wi−1)

α(wi−1)
qML(wi)∑

w∈B(wi−1)
qML(w)

If wi ∈ B(wi−1)

where

α(wi−1) = 1−
∑

w∈A(wi−1)

Count∗(wi−1, w)

Count(wi−1)

Which of the following statements is true?

• For all bigrams v, w we have qBO(w|v) ≥ 0.

• For all unigrams v we have
∑

w qBO(w|v) = 1.
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