Recurrent Networks, and Attention, for Statistical Machine Translation

Michael Collins, Columbia University

Mapping Sequences to Sequences

- Learn to map input sequences $x_{1} \ldots x_{n}$ to output sequences $y_{1} \ldots y_{m}$ where $y_{m}=$ STOP.
- Can decompose this as

$$
p\left(y_{1} \ldots y_{m} \mid x_{1} \ldots x_{n}\right)=\prod_{j=1}^{m} p\left(y_{j} \mid y_{1} \ldots y_{j-1}, x_{1} \ldots x_{n}\right)
$$

- Encoder/decoder framework: use an LSTM to map $x_{1} \ldots x_{n}$ to a vector $h^{(n)}$, then model

$$
p\left(y_{j} \mid y_{1} \ldots y_{j-1}, x_{1} \ldots x_{n}\right)=p\left(y_{j} \mid y_{1} \ldots y_{j-1}, h^{(n)}\right)
$$

using a "decoding" LSTM

The Computational Graph

Training A Recurrent Network for Translation

Inputs: A sequence of source language words $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$. A sequence of target language words $y_{1} \ldots y_{m}$ where $y_{m}=$ STOP.
Definitions: $\theta^{F}=$ parameters of an "encoding" LSTM. $\theta^{D}=$ parameters of a "decoding" LSTM. LSTM $\left(x^{(t)}, h^{(t-1)} ; \theta\right)$ maps an input $x^{(t)}$ together with a hidden state $h^{(t-1)}$ to a new hidden state $h^{(t)}$. Here θ are the parameters of the LSTM

Training A Recurrent Network for Translation (continued)

Computational Graph:

- Initialize $h^{(0)}$ to some values (e.g. vector of all zeros)
- (Encoding step:) For $t=1 \ldots n$
- $h^{(t)}=\operatorname{LSTM}\left(x^{(t)}, h^{(t-1)} ; \theta^{F}\right)$
- Initialize $\beta^{(0)}$ to some values (e.g., vector of all zeros)
- (Decoding step:) For $j=1 \ldots m$
- $\beta^{(j)}=\operatorname{LSTM}\left(\operatorname{CONCAT}\left(y_{j-1}, h^{(n)}\right), \beta^{(j-1)} ; \theta^{D}\right)$
$l^{(j)}=V \times \operatorname{CONCAT}\left(\beta^{(j)}, y_{j-1}, h^{(n)}\right)+\gamma, \quad q^{(j)}=\operatorname{LS}\left(l^{(j)}\right)$,

$$
o^{(j)}=-q_{y_{j}}^{(j)}
$$

- (Final loss is sum of losses:)

$$
o=\sum_{j=1}^{m} o^{(j)}
$$

The Computational Graph

Greedy Decoding with A Recurrent Network for Translation

- Encoding step: Calculate $h^{(n)}$ from the input $x_{1} \ldots x_{n}$
- $j=1$. Do:
- $y_{j}=\arg \max _{y} p\left(y \mid y_{1} \ldots y_{j-1}, h^{(n)}\right)$
- $j=j+1$
- Until: $y_{j-1}=$ STOP

Greedy Decoding with A Recurrent Network for Translation

Computational Graph:

- Initialize $h^{(0)}$ to some values (e.g. vector of all zeros)
- (Encoding step:) For $t=1 \ldots n$
- $h^{(t)}=\operatorname{LSTM}\left(x^{(t)}, h^{(t-1)} ; \theta^{F}\right)$
- Initialize $\beta^{(0)}$ to some values (e.g., vector of all zeros)
- (Decoding step:) $j=1$. Do:
- $\beta^{(j)}=\operatorname{LSTM}\left(\operatorname{CONCAT}\left(y_{j-1}, h^{(n)}\right), \beta^{(j-1)} ; \theta^{D}\right)$
- $l^{(j)}=V \times \operatorname{CONCAT}\left(\beta^{(j)}, y_{j-1}, h^{(n)}\right)+\gamma$
- $y_{j}=\arg \max _{y} l_{y}^{(j)}$
- $j=j+1$
- Until $y_{j-1}=$ STOP
- Return $y_{1} \ldots y_{j-1}$

A bi-directional LSTM (bi-LSTM) for Encoding

Inputs: A sequence $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$.
Definitions: θ^{F} and θ^{B} are parameters of a forward and backward LSTM.

Computational Graph:

- $h^{(0)}, \eta^{(n+1)}$ are set to some inital values.
- For $t=1 \ldots n$
- $h^{(t)}=\operatorname{LSTM}\left(x^{(t)}, h^{(t-1)} ; \theta^{F}\right)$
- For $t=n \ldots 1$
- $\eta^{(t)}=\operatorname{LSTM}\left(x^{(t)}, \eta^{(t+1)} ; \theta^{B}\right)$
- For $t=1 \ldots n$
- $u^{(t)}=\operatorname{CONCAT}\left(h^{(t)}, \eta^{(t)}\right) \Leftarrow$ encoding for position t

The Computational Graph

Incorporating Attention

- Old decoder:
- $c^{(j)}=h^{(n)} \Leftarrow$ context used in decoding at j 'th step
- $\beta^{(j)}=\operatorname{LSTM}\left(\operatorname{CONCAT}\left(y_{j-1}, c^{(j)}\right), \beta^{(j-1)} ; \theta^{D}\right)$
- $l^{(j)}=V \times \operatorname{CONCAT}\left(\beta^{(j)}, y_{j-1}, c^{(j)}\right)+\gamma$
- $y_{j}=\arg \max _{y} l_{y}^{(j)}$

Incorporating Attention

- New decoder:
- Define

$$
c^{(j)}=\sum_{i=1}^{n} a_{i, j} u^{(i)}
$$

where

$$
a_{i, j}=\frac{\exp \left\{s_{i, j}\right\}}{\sum_{i=1}^{n} s_{i, j}}
$$

and

$$
s_{i, j}=A\left(\beta^{(j-1)}, u^{(i)} ; \theta^{A}\right)
$$

where $A(\ldots)$ is a non-linear function (e.g., a feedforward network) with parameters θ^{A}

Greedy Decoding with Attention

- (Decoding step:) $j=1$. Do:
- For $i=1 \ldots n$,

$$
s_{i, j}=A\left(\beta^{(j-1)}, u^{(i)} ; \theta^{A}\right)
$$

- For $i=1 \ldots n$,

$$
a_{i, j}=\frac{\exp \left\{s_{i, j}\right\}}{\sum_{i=1}^{n} s_{i, j}}
$$

- Set $c^{(j)}=\sum_{i=1}^{n} a_{i, j} u^{(i)}$
- $\beta^{(j)}=\operatorname{LSTM}\left(\operatorname{CONCAT}\left(y_{j-1}, c^{(j)}\right), \beta^{(j-1)} ; \theta^{D}\right)$
- $l^{(j)}=V \times \operatorname{CONCAT}\left(\beta^{(j)}, y_{j-1}, c^{(j)}\right)+\gamma$
- $y_{j}=\arg \max _{y} l_{y}^{(j)}$
- $j=j+1$
- Until $y_{j-1}=$ STOP
- Return $y_{1} \ldots y_{j-1}$

Training with Attention

- (Decoding step:) For $j=1 \ldots m$
- For $i=1 \ldots n$,

$$
s_{i, j}=A\left(\beta^{(j-1)}, u^{(i)} ; \theta^{A}\right)
$$

- For $i=1 \ldots n$,

$$
a_{i, j}=\frac{\exp \left\{s_{i, j}\right\}}{\sum_{i=1}^{n} s_{i, j}}
$$

- Set $c^{(j)}=\sum_{i=1}^{n} a_{i, j} u^{(i)}$
- $\beta^{(j)}=\operatorname{LSTM}\left(\operatorname{CONCAT}\left(y_{j-1}, c^{(j)}\right), \beta^{(j-1)} ; \theta^{D}\right)$
- $l^{(j)}=V \times \operatorname{CONCAT}\left(\beta^{(j)}, y_{j-1}, c^{(j)}\right)+\gamma, \quad q^{(j)}=\operatorname{LS}\left(l^{(j)}\right)$,

$$
o^{(j)}=-q_{y_{j}}^{(j)}
$$

- (Final loss is sum of losses:)

$$
o=\sum_{j=1}^{m} o^{(j)}
$$

The Computational Graph

Results from Wu et al. 2016

Table 10: Mean of side-by-side scores on production data

	PBMT	GNMT	Human	Relative Improvement
English \rightarrow Spanish	4.885	5.428	5.504	87%
English \rightarrow French	4.932	5.295	5.496	64%
English \rightarrow Chinese	4.035	4.594	4.987	58%
Spanish \rightarrow English	4.872	5.187	5.372	63%
French \rightarrow English	5.046	5.343	5.404	83%
Chinese \rightarrow English	3.694	4.263	4.636	60%

- From Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, Wu et al. 2016. Human evaluations are on a $1-6$ scale (6 is best). PBMT is a phrase-based translation system, using IBM alignment models as a starting point.

Results from Wu et al. 2016 (continued)

Figure 6: Histogram of side-by-side scores on 500 sampled sentences from Wikipedia and news websites for a typical language pair, here English \rightarrow Spanish (PBMT blue, GNMT red, Human orange). It can be seen that there is a wide distribution in scores, even for the human translation when rated by other humans, which shows how ambiguous the task is. It is clear that GNMT is much more accurate than PBMT.

Conclusions

- Directly model

$$
p\left(y_{1} \ldots y_{m} \mid x_{1} \ldots x_{n}\right)=\prod_{j=1}^{m} p\left(y_{j} \mid y_{1} \ldots y_{j-1}, x_{1} \ldots x_{n}\right)
$$

- Encoding step: map $x_{1} \ldots x_{n}$ to $u^{(1)} \ldots u^{(n)}$ using a bidirectional LSTM
- Decoding step: use an LSTM in decoding together with attention

