Recurrent Networks, and LSTMs, for NLP

Michael Collins, Columbia University

Representing Sequences

- Often we want to map some sequence $x_{[1: n]}=x_{1} \ldots x_{n}$ to a label y or a distribution $p\left(y \mid x_{[1: n]}\right)$
- Examples:
- Language modeling: $x_{[1: n]}$ is first n words in a document, y is the $(n+1)$ 'th word
- Sentiment analysis: $x_{[1: n]}$ is a sentence (or document), y is label indicating whether the sentence is positive/neutral/negative about a particular topic (e.g., a particular restaurant)
- Machine translation: $x_{[1: n]}$ is a source-language sentence, y is a target language sentence (or the first word in the target language sentence)

Representing Sequences (continued)

- Slightly more generally: map a sequence $x_{[1: n]}$ and a position $i \in\{1 \ldots n\}$ to a label y or a distribution $p\left(y \mid x_{[1: n]}, i\right)$
- Examples:
- Tagging: $x_{[1: n]}$ is a sentence, i is a position in the sentence, y is the tag for position i
- Dependency parsing: $x_{[1: n]}$ is a sentence, i is a position in the sentence, $y \in\{1 \ldots n\}, y \neq i$ is the head for word x_{i} in the dependency parse

A Simple Recurrent Network

Inputs: A sequence $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$. A label
$y \in\{1 \ldots K\}$. An integer m defining size of hidden dimension.
Parameters $W^{h h} \in \mathbb{R}^{m \times m}, W^{h x} \in \mathbb{R}^{m \times d}, b^{h} \in \mathbb{R}^{m}, h^{0} \in \mathbb{R}^{m}$,
$V \in \mathbb{R}^{K \times m}, \gamma \in \mathbb{R}^{K}$. Transfer function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.

Definitions:

$$
\begin{aligned}
\theta & =\left\{W^{h h}, W^{h x}, b^{h}, h^{0}\right\} \\
R\left(x^{(t)}, h^{(t-1)} ; \theta\right) & =g\left(W^{h x} x^{(t)}+W^{h h} h^{(t-1)}+b^{h}\right)
\end{aligned}
$$

Computational Graph:

- For $t=1 \ldots n$

$$
h^{(t)}=R\left(x^{(t)}, h^{(t-1)} ; \theta\right)
$$

- $l=V h^{(n)}+\gamma, \quad q=\operatorname{LS}(l), o=-q_{y}$

The Computational Graph

A Problem in Training: Exploding and Vanishing Gradients

- Calculation of gradients involves multiplication of long chains of Jacobians
- This leads to exploding and vanishing gradients

LSTMs (Long Short-Term Memory units)

- Old definitions of the recurrent update:

$$
\begin{aligned}
\theta & =\left\{W^{h h}, W^{h x}, b^{h}, h^{0}\right\} \\
R\left(x^{(t)}, h^{(t-1)} ; \theta\right) & =g\left(W^{h x} x^{(t)}+W^{h h} h^{(t-1)}+b^{h}\right)
\end{aligned}
$$

- LSTMs give an alternative definition of $R\left(x^{(t)}, h^{(t-1)} ; \theta\right)$.

Definition of Sigmoid Function, Element-Wise Product

- Given any integer $d \geq 1, \sigma^{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is the function that maps a vector v to a vector $\sigma^{d}(v)$ such that for $i=1 \ldots d$,

$$
\sigma_{i}^{d}(v)=\frac{e^{v_{i}}}{1+e^{v_{i}}}
$$

- Given vectors $a \in \mathbb{R}^{d}$ and $b \in \mathbb{R}^{d}, c=a \odot b$ has components

$$
c_{i}=a_{i} \times b_{i}
$$

$$
\text { for } i=1 \ldots d
$$

LSTM Equations (from llya Sutskever, PhD thesis)

Maintain $s^{t}, \tilde{s}^{t}, h^{t}$ as hidden state at position $t . s^{t}$ is memory, intuitively allows long-term memory. The function $s^{t}, \tilde{s}^{t}, h^{t}=\operatorname{LSTM}\left(x^{t}, s^{t-1}, \tilde{s}^{t-1}, h^{t-1} ; \theta\right)$ is defined as:

$$
\begin{aligned}
u^{t} & =\text { CONCAT }\left(h^{t-1}, x^{t}, \tilde{s}^{t-1}\right) \\
h^{t} & =g\left(W^{h} u^{t}+b^{h}\right) \quad \text { (hidden state) } \\
i^{t} & =g\left(W^{i} u^{t}+b^{i}\right) \quad \text { ("input") }
\end{aligned}
$$

$$
\iota^{t}=\sigma\left(W^{\iota} u^{t}+b^{t}\right) \quad \text { ("input gate") }
$$

$$
o^{t}=\sigma\left(W^{o} u^{t}+b^{o}\right) \quad \text { ("output gate") }
$$

$$
f^{t}=\sigma\left(W^{f} u^{t}+b^{f}\right) \quad \text { ("forget gate") }
$$

$s^{t}=s^{t-1} \odot f^{t}+i^{t} \odot \iota^{t} \quad$ forget and input gates control update of memory $\tilde{s}^{t}=s^{t} \odot o^{t} \quad$ output gate controls information that can leave the unit

An LSTM-based Recurrent Network

Inputs: A sequence $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$. A label $y \in\{1 \ldots K\}$.

Computational Graph:

- $h^{(0)}, s^{(0)}, \tilde{s}^{(0)}$ are set to some inital values.
- For $t=1 \ldots n$
- $s^{(t)}, \tilde{s}^{(t)}, h^{(t)}=\operatorname{LSTM}\left(x^{(t)}, s^{(t-1)}, \tilde{s}^{(t-1)}, h^{(t-1)} ; \theta\right)$
- $l=V^{l h} h^{(n)}+V^{l s} \tilde{s}^{(n)}+\gamma, q=\operatorname{LS}(l), o=-q_{y}$

The Computational Graph

An LSTM-based Recurrent Network for Tagging

Inputs: A sequence $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$. A sequence $y_{1} \ldots y_{n}$ of tags.

Computational Graph:

- $h^{(0)}, s^{(0)}, \tilde{s}^{(0)}$ are set to some inital values.
- For $t=1 \ldots n$
- $s^{(t)}, \tilde{s}^{(t)}, h^{(t)}=\operatorname{LSTM}\left(x^{(t)}, s^{(t-1)}, \tilde{s}^{(t-1)}, h^{(t-1)} ; \theta\right)$
- For $t=1 \ldots n$
- $l^{t}=V \times \operatorname{CONCAT}\left(h^{(t)}, \tilde{s}^{(t)}\right)+\gamma, q^{t}=\operatorname{LS}\left(l^{t}\right), o^{t}=-q_{y^{t}}$
- $o=\sum_{t=1}^{n} o^{t}$

The Computational Graph

A bi-directional LSTM (bi-LSTM) for tagging

Inputs: A sequence $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$. A sequence $y_{1} \ldots y_{n}$ of tags.
Definitions: θ^{F} and θ^{B} are parameters of a forward and backward LSTM.

Computational Graph:

- $h^{(0)}, s^{(0)}, \tilde{s}^{(0)}, \eta^{(n+1)}, \alpha^{(n+1)}, \tilde{\alpha}^{(n+1)}$ are set to some inital values.
- For $t=1 \ldots n$
- $s^{(t)}, \tilde{s}^{(t)}, h^{(t)}=\operatorname{LSTM}\left(x^{(t)}, s^{(t-1)}, \tilde{s}^{(t-1)}, h^{(t-1)} ; \theta^{F}\right)$
- For $t=n \ldots 1$
- $\alpha^{(t)}, \tilde{\alpha}^{(t)}, \eta^{(t)}=\operatorname{LSTM}\left(x^{(t)}, \alpha^{(t+1)}, \tilde{\alpha}^{(t+1)}, \eta^{(t+1)} ; \theta^{B}\right)$
- For $t=1 \ldots n$
- $l^{t}=V \times \operatorname{CONCAT}\left(h^{(t)}, \tilde{s}^{(t)}, \eta^{(t)}, \tilde{\alpha}^{t}\right)+\gamma, q^{t}=\operatorname{LS}\left(l^{t}\right)$,

$$
o^{t}=-q_{y^{t}}
$$

- $o=\sum_{t=1}^{n} o^{t}$

The Computational Graph

Results on Language Modeling

Model	Num. Params	Training Time		Perplexity
[billions]	[hours]	[CPUs]		
Interpolated KN 5-gram, 1.1B n-grams (KN)	1.76	3	100	67.6
Katz 5-gram, 1.1B n-grams	1.74	2	100	79.9
Stupid Backoff 5-gram (SBO)	1.13	0.4	200	87.9
Interpolated KN 5-gram, 15M n-grams	0.03	3	100	243.2
Katz 5-gram, 15M n-grams	0.03	2	100	127.5
Binary MaxEnt 5-gram (n-gram features)	1.13	1	5000	115.4
Binary MaxEnt 5-gram (n-gram + skip-1 features)	1.8	1.25	5000	107.1
Hierarchical Softmax MaxEnt 4-gram (HME)	6	3	1	101.3
Recurrent NN-256 + MaxEnt 9-gram	20	60	24	58.3
Recurrent NN-512 + MaxEnt 9-gram	20	120	24	54.5
Recurrent NN-1024 + MaxEnt 9-gram	20	240	24	51.3

Table 1: Results on the 1B Word Benchmark test set with various types of language models.

- Results from One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling, Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants.

Results on Dependency Parsing

- Deep Biaffine Attention for Neural Dependency Parsing, Dozat and Manning.
- Uses a bidirectional LSTM to represent each word
- Uses LSTM representations to predict head for each word in the sentence
- Unlabeled dependency accuracy: 95.75\%

Conclusions

- Recurrent units map input sequences $x_{1} \ldots x_{n}$ to representations $h^{1} \ldots h^{n}$. The vector h^{n} can be used to predict a label for the entire sentence. Each vector h^{i} for $i=1 \ldots n$ can be used to make a prediction for position i
- LSTMs are recurrent units that make use of more involved recurrent updates. They maintain a "memory" state. Empirically they perform extremely well
- Bi-directional LSTMs allow representation of both the information before and after a position i in the sentence
- Many applications: language modeling, tagging, parsing, speech recognition, we will soon see machine translation

