Word Embeddings in Feedforward Networks;
Tagging and Dependency Parsing using
Feedforward Networks

Michael Collins, Columbia University

Overview

v

Introduction

v

Multi-layer feedforward networks

v

Representing words as vectors (“word embeddings”)

v

The dependency parsing problem

v

Dependency parsing using a shift-reduce neural-network
model

Multi-Layer Feedforward Networks

>

An integer d specifying the input dimension. A set) of
output labels with |V| = K.

An integer J specifying the number of hidden layers in the
network.

An integer m; for j € {1...J} specifying the number of
hidden units in the j'th layer.

A matrix W' € R™*4 and a vector b* € R™ associated with
the first layer.

For each j € {2...J}, a matrix W7 € R™*™i-1 and a
vector b/ € R™J associated with the j'th layer.

For each j € {1...J}, a transfer function ¢’ : R™ — R™
associated with the j'th layer.

A matrix V € RE*™J and a vector v € R¥ specifying the
parameters in the output layer.

Multi-Layer Feedforward Networks (continued)

» Calculate output of first layer:

der™ = Wl 4 b
Rt eR™ = g'(z)
» Calculate outputs of layers 2. .. J:
Forj=2...J:
P erR™ = WK+
B €R™ = g¢/(2)

» Calculate output value:
lerN = vn/+v’
qeRY = LS(I)

o0 €ER = —logqy

Overview

v

Introduction

v

Multi-layer feedforward networks

v

Representing words as vectors (“word embeddings”)

v

The dependency parsing problem

v

Dependency parsing using a shift-reduce neural-network
model

An Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

e There are many possible tags in the position 77
{NN, NNS, Vt, Vi, IN, DT, ...}

e The task: model the distribution p(;|t1,...,t;—1,wy ... wy,)
where t; is the j'th tag in the sequence, w; is the j'th word

e The input to the neural network will be (¢ ...¢;_1,w; ... wy,J)

One-Hot Encodings of Words, Tags etc.

» A dictionary D with size s(D) maps each word w in the
vocabulary to an integer Index(w, D) in the range 1...s(D).

Index(the, D

)
Index(dog, D)
Index(cat, D) =
Index(saw, D)

=W NN =

» For any word w, dictionary D, Onehot(w, D) maps a word w
to a “one-hot vector’ u = Onehot(w, D) € R*P). We have

u; = 1 for j =Index(w, D)

u; = 0 otherwise

One-Hot Encodings of Words, Tags etc. (continued)

» A dictionary D with size s(D) maps each word w in the
vocabulary to an integer in the range 1...s(D).

Index(the, D) =
Index(dog, D) =
Index(cat, D) =

Onehot(the, D) = [1,0,0,..]
Onehot(dog, D) = [0,1,0,..]
Onehot(cat, D) = 1[0,0,1,..]

The Concatenation Operation

» Given column vectors v* € R% fori =1...n,
z € R = Concat(v!,v?,...v")

where d =31 d;
1

» 2z is a vector formed by concatenating the vectors v . ..

» 2 is a column vector of dimension). d,

The Concatenation Operation (continued)
» Given vectors v* € R% fori=1...n,
z € R? = Concat(v*, v?, ... v")

where d =" | d;
» The Jacobians:

0z dxd;
- € ¢
ot
have entries o
0z
i =1
ov ik
|f] — k + Zi’<idi,l
F 95T
zi —0
ov ik

otherwise

A Single-Layer Computational Network for Tagging
Inputs: A training example z° = (t; ... tj_1,w1...wy, J), y' € V. A
word dictionary D with size s(D), a tag dictionary T with size s(T').
Parameters of a single-layer feedforward network.

Computational Graph:

', e R*™ = Onehot(t;_o,T)
', eR*™ = Onehot(t;_y,T)
w' , e R*P) = Onehot(w;_1, D)
wh e R*P) = Onehot(w;, D)
w',, € R*P) = Onehot(w;1, D)
u e R#DT3WD) — Concat(t' ,, "1, w’_y,wh, w;)
z = Wu+b, h=g(z), l=Vh+~y, ¢=LS()

quyi

The Number of Parameters
', eR*™ = Onehot(t; o, T)

w',, € R¥P)

u

Onehot(wjﬂ, D)
Concat(t’ o, t" |, w’ |, wp, w!, ;)

» An example: s(T') = 50 (50 tags), s(D) = 10,000 (10,000
words), m = 1000 (1000 neurons in the single layer)

» Then
W e RmX(Qs(T)-H%s(D))

and m = 1000, 2s(T") 4+ 3s(D) = 30, 100, so there are
m x (2s(T) 4+ 3s(D)) = 30,100,000 parameters in the matrix W

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

¥, e R*™ = Onehot(t;_p, T)
tLl € RS(T> = Onehot(t; 1, T)
w/,l € RS(D) = Onehot(w;_1, D)
wé € RS(D> = Onehot(w;, D)
w/+1 € RS(D) = Onehot(wji1, D)

u = Concat(tl_Q,t’_l,wl_l,w(’),w;_l)

Embedding Matrices

» Given a word w, a word dictionary D we can map w to a
one-hot representation

w' € R*P*! = Onehot(w, D)

» Now assume we have an embedding dictionary E € R®**(P)
where e is some integer. Typical values of e are e = 100 or
e = 200
» We can now map the one-hot representation w’ to
w’" = FE w' , = F x Onehot(w, D)
—~ =~~~
ex1 exs(D) s(D)x1
» Equivalently, a word w is mapped to a vector E(: j) € R®
where j = Index(w, D) is the integer that word w is mapped
to, and E(: j) is the j'th column in the matrix.

Embedding Matrices vs. One-hot Vectors
» One-hot representation:
w' € R*P*! = Onehot(w, D)

This representation is high-dimensional, sparse
» Embedding representation:

w”" = E w' = FE x Onehot(w, D)
(D)x1

(‘h
X
o
®
X
¥y
—~
=)
~
0

This representation is low-dimensional, dense

» The embedding matrices can be learned using stochastic
gradient descent and backpropagation (each entry of E is a
new parameter in the model)

» Critically, embeddings allow shared information between
words: e.g., words with similar meaning or syntax get
mapped to “similar” embeddings

A Single-Layer Computational Network for Tagging
Inputs: A training example z° = (t; ... tj_1,w1...wy, J), y' € V. A
word dictionary D with size s(D), a tag dictionary T" with size s(T"). A
word embedding matrix E € R***(P) A tag embedding matrix
A € Re*$(D) Parameters of a single-layer feedforward network.
Computational Graph:

t' 5 €R
t', eR?
w' ER®
wp € R®
w', € R
= R2a+36
z

o

A x Onehot(tj_2,T)
A x Onehot(t;_1,T)
E x Onehot(w;_1, D)
E x Onehot(w;, D)
E x Onehot(w;+1, D)

Concat(t’_o, t" 1, w’ 1, wpy, w', ;)

Wu+b, h=g(z), l=Vh+~, ¢=LS()

Qyi

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

t/,2 € R* = ax Onehot(t; _2,T)
tLl € R* = ax Onehot(t; _1,T)
le € R = Ex Onehot(w; 1, D)
w{] ceR* = Ex Onehot(w;, D)
w;_l eR®° = Ex Onehot(w; 11, D)

2a-+3e
uER = Concat(th,tll,wll,wé,wzrl)

Calculating Jacobians

wy € R® = FE x Onehot(w, D)
Equivalently:

(wh); =Y Ejx x Onehoty(w, D)
k

» Need to calculate the Jacobian
owy;,
F

This has entries
[811)6}
E 16w

= 1if j =j" and Onehoty(w, E) = 1, 0 otherwise

An Additional Perspective

t’ 5 €R* = Onehot(tj_o,T) t’, eR? A x Onehot(t;_2,T)
w,; € R® = Onehot(wji1,D) w',, € R E x Onehot(wj41, D)
u = Concat(t’,...w',) a Concat(t’ ... w',)
z€R™ = Wu+b zeR™ Wa+b
> If we set
44 = W, x Diag(A, A, E,E, E)
~— ~— N /,
mx(2s(T)+3s(E)) mx(2a+3e (2a+3¢) % (25(T)+3s(D))

then Wu+b=Wu+bhence z = 2

An Additional Perspective (continued)
> If we set
|14 = xPiag(A,A, E.FE, El

woo- |
mx(2s(T)+3s(E)) mx(2a+3e) (2443¢)x (25(T)+3s(D))

then Wu+b=Wu+bhence z = 2

» An example: s(7T") = 50 (50 tags), s(D) = 10,000 (10,000
words), a = e = 100 (recall a, e are size of embeddings for
tags and words respectively), m = 1000 (1000 neurons)

» Then we have parameters

%% vs. W A E
N —~—

~~ ~—~
1000x 30,100 1000500 100x50 100x10,000

Overview

v

Introduction

v

Multi-layer feedforward networks

v

Representing words as vectors (“word embeddings”)

v

The dependency parsing problem

v

Dependency parsing using a shift-reduce neural-network
model

Unlabeled Dependency Parses

root John saw a movie
» root is a special root symbol

» Each dependency is a pair (h,m) where h is the index of a head
word, m is the index of a modifier word. In the figures, we
represent a dependency (h,m) by a directed edge from h to m.

» Dependencies in the above example are (0,2), (2,1), (2,4), and
(4,3). (We take 0 to be the root symbol.)

The (Unlabeled) Dependency Parsing Problem

John saw a movie

4

AN

root John saw a movie

Conditions on Dependency Structures

root John saw a movie that he liked today

» The dependency arcs form a directed tree, with the root
symbol at the root of the tree.
(Definition: A directed tree rooted at root is a tree, where for
every word w other than the root, there is a directed path
from root to w.)

» There are no “crossing dependencies”.
Dependency structures with no crossing dependencies are
sometimes referred to as projective structures.

All Dependency Parses for John saw Mary

root John saw Mary @
&/\ root John sa
root John saw Mary

AN A

root John saw Mary root John sa

The Labeled Dependency Parsing Problem

| live in New York city .

I live in New York city .
PRP VBP IN NNP NNP NN .

Overview

v

Introduction

v

Multi-layer feedforward networks

v

Representing words as vectors (“word embeddings”)

v

The dependency parsing problem

v

Dependency parsing using a shift-reduce neural-network
model

Shift-Reduce Dependency Parsing: Configurations

» A configuration consists of:

1. A stack o consisting of a sequence of words, e.g.,
o = [rooty, |1, lives]
2. A buffer 8 consisting of a sequence of words, e.g.,
B = [in3, Newy, Yorks, cityg, .7]
3. A set a of labeled dependencies, e.g.,

o = {{1 =" 2} {6 ™" 5}

The Initial Configuration

o = [rooty], [= [ly,lives,ins, Newy, Yorks, cityg, .7|, o ={}

Shift-Reduce Actions: The Shift Action

The shift action takes the first word in the buffer, and adds it to
the end of the stack.

o = [rooty], S = [l lives,ing, Newy, Yorks, cityy, .7|, «={}

SHIFT
¥

o = [rooty, I], 5 = [lives,in3, Newy, Yorks, citys, .7, « = {}

Shift-Reduce Actions: The Shift Action

The shift action takes the first word in the buffer, and adds it to
the end of the stack.

o = [rootg, l], B = [lives,ing, Newy, Yorks, cityy, .7], «={}

SHIFT
Y

o = [rooty, |1, lives|, B = [ing, Newy, Yorks, citys, .7, «={}

Shift-Reduce Actions: The Left-Arc Action

The LEFT-ARC™"J jction takes the top two words on the stack,
adds a dependency between them in the left direction with label
nsubj, and removes the modifier word from the stack. There is a
LEFT-ARC' action for each possible dependency label I.

o = [rooty, |1, lives], 8 = [ing, Newy, Yorks, cityg, .7|, a={}

LEFT-ARC"*""
Y

o = [rooty, lives], B = [ing, Newy, Yorks, citys, .7, a = {{2 =" 1}}

Shift-Reduce Actions: The Right-Arc Action

The RIGHT-ARCP"™ action takes the top two words on the stack,
adds a dependency between them in the right direction with label

prep, and removes the modifier word from the stack. There is a
RIGHT-ARC' action for each possible dependency label I.

o = [rooty, lives,ins], B =1[s], a={{2-=""%1}}

RIGHT-ARC”"*?
¥

o = [rooty, lives], B =[7], a={{2 =" 1} {2 PP 3}}

Each Dependency Parse is Mapped to a Sequence of

Actions
Action o B htd
Shift [rooto] [I1,livea, ing, Newy, Yorks, citys, 7]
Shift [I’OOto, |]] [Iiveg, ing, Newy, Yorks, cityg, .7]
Left-Arc™ub7 [rooty, |y, lives] [ing, Newy, Yorks, citys, .7] P
Shift [rooty, lives] [ing, Newy, Yorks, citys, .7]
Shift [rooty, lives, ing] [Newy, Yorks, cityg, .7]
Shift [rooty, lives, ing, Newy] [Yorks, cityg, .7]
Shift [rooto, lives, ing, Newy, Yorks] [citys, 7]
Left-Arc™™ [root, lives, ing, Newy, Yorks, citys] [.7] 625
Left-Arc™” [rooty, lives, ing, Newy, cityg] [-7] 624
Right-ArcP®® [rootg, lives, in3, citys] [7] 3 2,
Right-ArcP™P [rooty, liveg, ins] [7] p R
Shift [rooty, lives] [7]
Right-ArcPuet [rooty, lives, .7] I g Punct, 7
Right-Arc™ [rooty, lives] i 0% o
Terminal [rooto] I

Each Dependency Parse is Mapped to a Sequence of
Actions

» Input wy...w, = I live in New York city .

» Dependency parse requires actions a; ... a,,, €.g.,

ar...am = (Shift,Shift, LEFT-ARC™" Shift, Shift, Shift, Shift,
LEFT-ARC™, LEFT-ARC™, RIGHT-ARCP RIGHT-ARC/"*?,
Shift, RIGHT-ARC”"", RIGHT-ARC"*")

» We use a feedforward neural network to model

m

play...aplwy ... w,) = Hp(ai|a1 Qi1 WY . Wy,)
i=1

Feature Extractors

» We use a feedforward neural network to model

m
play...amlwy ... wy,) = Hp(ai|a1 e Qi 1, WY W)
i=1
» Note that the action sequence a; ...a;_1 maps to a
configuration c¢; = (0, i, a;)
» A feature extractor maps a (¢;, w; ... w,) pair to either a
word, part-of-speech tag, or dependency label
» Weiss et al. 2015 (see also Chen and Manning 2014) have 20
word-based feature extractors, 20 tag-based feature
extractors, 12 dependency label feature extractors
» This gives 20 4+ 20 + 12 = 52 one-hot vectors as input to a
neural network that estimates p(a|c, w; ... w,)

Word-Based Feature Extractors

» A feature extractor maps a (¢;, wy ... w,) pair to either a
word, part-of-speech tag, or dependency label

» s, fort =1...4 is the index of the 7'th element on the stack.
b; fori =1...4 is the index of the i'th element on the
buffer. lcl(s;) is the first left-child of word s;, lc2(s;) is the
second left-child. rcl(s;) and rc2(s;) are the first and second
right-children of s;.

» We then have features:
word(s1) word(s2) word(s3) word(s4) word(b1) word(b2) word(b3)
word(b4) word(lc1(s1)) word(lc1(s2)) word(lc2(s1)) word(Ic2(s2))
word(rc1(sl)) word(rcl(s2)) word(rc2(s1)) word(rc2(s2))
word(lc1(lc1(s1)) word(lc1(lc1(s2)) word(rcl(rcl(sl)) word(rcl(rcl(s2))

Some Results

Method Unlabeled Dep. Accuracy
Global linear model 92.9%
Neural network, greedy? 93.0%
Neural network, beam? 93.6%
Neural network, beam, global training? 94.6%

1. Hand-constructed features very similar to features in log-linear
models. Uses beam search in conjunction with a global linear model.
Transition-based Dependency Parsing with Rich Non-local Features,
Zhang and Nivre 2011.

2, 3: feedforward neural network with greedy search, or beam search.
Globally normalized transition-based neural networks. Andor et al.,
ACL 2016. See also A Fast and Accurate Dependency Parser using
Neural Network Chen and Manning, ACL 2014.

4: Neural network with global training, related to training of global
linear models (but with word embeddings, and non-linearities from a
neural network). See Andor et al. 2016.

