Computational Graphs, and Backpropagation

Michael Collins, Columbia University

A Key Problem: Calculating Derivatives

exp (v(y) - $(x;0) +)
yey P (V(Y) - ¢(a;6) +)

p(yle; 0,v) = 5 (1)

where
P(x;0) = g(Wa +b)
and

» m is an integer specifying the number of hidden units

» W € R™*? and b € R™ are the parameters in 0.
g : R™ — R™ is the transfer function

» Key question, given a training example (z°,y"), define

L(evv) = —logp(y¢|xz-;0,v)

dL(0,v) 9

How do we calculate derivatives such as AP
»J

A Simple Version of Stochastic Gradient Descent
(Continued)

Algorithm:
» Fort=1...T

>

>

>

>

Output:

Select an integer ¢ uniformly at random from {1...n}
Define L(0,v) = —log p(y;|xs; 6, v)

dL(0,
For each parameter 0;, 0, = 0; — nt X %

For each label y, for each parameter v (y),
ok(y) = vi(y) — ' x G

For each label y, v, = v, — 1" X dL(6,v)

parameters ¢ and v

Overview

Introduction

v

The chain rule

v

v

Derivatives in a single-layer neural network

v

Computational graphs

v

Backpropagation in computational graphs

v

Justification for backpropagation

Partial Derivatives

Assume we have scalar variables 2y, 25 ...2,, and y, and a
function f, and we define

y=f(z1,29,...2,)
Then the partial derivative of f with respect to z; is written as

8f(z1, 22y Zn)
823

We will also write the partial derivative as

dy f
azi
21..-Zm

which can be read as “the partial derivative of y with respect to
z;, under function f, at values z; ... 2,,"

Partial Derivatives (continued)

We will also write the partial derivative as

f

32,-

Z1.-Zm

which can be read as “the partial derivative of y with respect to
z;, under function f, at values 27 ... z,,"

The notation including f is non-standard, but helps to alleviate a
lot of potential confusion...

We will sometimes drop f and/or 2 ...z, when this is clear from
context

The Chain Rule

Assume we have equations

Then
dh(z) _ df(g(x)) dg(x)
dr dz dx
Or equivalently,
oy " Oy ! 0z Y
% T N % 9(x) %

The Chain Rule

Assume we have equations

then
dh(z) _ df(g(z)) ., dg(z)

dx dz dx

For example, assume f(z) = 22 and g(z) = x3. Assume in
addition that z = 2. Then:

from which it follows that %Ef) =12 x 16 =192

The Chain Rule (continued)
Assume we have equations
y=[(z)

21 =g1(x), 20 = ¢2(x), ..., 2 = gn()

For some functions f, g; ... g,, where z is a vector z € R", and =
is a vector x € R™.
Define the function

h(m) = f(gl(x)’QQ(x)7 .- gn(x))

Then we have

81' Z 821 83; ;
j]

where z is the vector ¢;(x), g2(x), . .. gn(2).

The Jacobian Matrix

Assume we have a function f : R™ — R™ that takes some vector
x € R™ and then returns a vector y € R™:

y= f(x)
The Jacobian J € R™*™ is defined as the matrix with entries
Ji i =
»J axj

Hence the Jacobian contains all partial derivatives of the function.

The Jacobian Matrix

Assume we have a function f : R™ — R™ that takes some vector
x € R™ and then returns a vector y € R™:

y= f(x)
The Jacobian J € R™*™ is defined as the matrix with entries
Ji i =
»J 817]'

Hence the Jacobian contains all partial derivatives of the function.
We will also use

dy !

x|,
for vectors y and x to refer to the Jacobian matrix with respect to
a function f mapping x to y, evaluated at x

An Example of the Jacobian: The LOG-SOFTMAX

Function

We define LS : RX — RX to be the function such that for
k=1...K,

LS.(1) = log (M) =1 —log Y exp{li}

> w exp{li}
The Jacobian then has entries
{GLS(Z)} ~OLSk(l) = k)] — exp{li}
6[koK 8lk/ Zk” exp{lku}

where [[k = K']] = 1 if k =k, 0 otherwise.

The Chain Rule (continued)

Assume we have equations

2 =g'(ah 2%, ™)

for i =1...n where y is a vector, z* for all 7 are vectors, and 2/
for all j are vectors. Define h(z'...2™) to be the composition of
fand g, soy=h(z'...2™). Then

o h n f i g
oI 07! Oz,
T N~ N——
d(y) xd(z?) d(y)xd(z%) d(z*)xd(z7)

where d(v) is the dimensionality of vector v.

Overview

Introduction

v

The chain rule

v

v

Derivatives in a single-layer neural network

v

Computational graphs

v

Backpropagation in computational graphs

v

Justification for backpropagation

Derivatives in a Feedforward Network

Definitions: The set of possible labels is). We define K = |)/|.
g :R"™ — R™ is a transfer function. We define
LS = LOG-SOFTMAX.

Inputs: 2' € R4, y* € Y, W € R™*? h € R™, V € RE*™ ~ ¢ RE,
Equations:

ZzER™ = Wa'+b

heRrR™ = g(z)

lerRF = Vh4y

g €RrR® = LS(I)
0ER = —qy

Jacobian Involving Matrices

Equations:
zER™ = Wal+b
heR™ = g(z)
IeRE = Vh+y
g €R® = LS(I)
0oER = —qy

If W € R™*? » € R™, the Jacobian

0z

oW
is a matrix of dimension m x m’ where m’ = (m x d) is the
number of entries in 1. So we treat W as a vector with (m x d)
elements.

Local Functions
Equations:

2€R™ = Wat+b

heR™ = g(z) Leaf variables: W, 2%, b, V, v, yi

lerRF = Vh4y

g €RT = LS(I)
0ER = —q Output variable: o

Intermediate variables: z, h, [, ¢

Each intermediate variable has a “Local” function:

FFWal b) =Wa' +b, f"(2) = g(2), f'(h)=Vh+y,

Global Functions

Equations:

2ER™ = Wa'+b

heR™ = g(z) Leaf variables: W, 2%, b, V, 7, yi

lerRF = Vh4y

g €R® = LS(I)
0ER = —gq Output variable: o

Intermediate variables: z, h, [, ¢

Global functions: for the output variable o, we define f° to be the
function that maps the leaf values W, 2%, b, V, 7, y; to the
output value o = fo(W,x%,b,V,~,;). We use similar definitions
for f2(W, 2%, b, V,v,v:), fA(W,2°,b,V,7,y:), etc.

Applying the Chain Rule
Derivative:

Equations: Do f°
ow

ZER™ = Wal+b
heR™ = g(z)
lerRf = Vh+~y
g €RT = LS(I)
0ER = —qy

Applying the Chain Rule

Derivative:
Equations: Do f _ 0o
ow g

ZER™ = Wal+b
heR™ = g(z)
lerRf = Vh+~y
g €RT = LS(I)
0ER = —qy

fO

dq
“ oW

fq

Applying the Chain Rule

Derivative:

Equations: Do f°
ow

ZER™ = Wal+b
heR™ = g(z)
lerRf = Vh+~y
g €RT = LS(I)
0ER = —qy

@
dq
@
dq

fO

fO

“ a0

dq
“ oW

Jq

fq

q

f

al |
oW

Applying the Chain Rule

Derivative:

Equations: Do f°
ow

Zz€R™ = Wal+b
heR™ = g(z)
lerRf = Vh+~y

g €RT = LS(I) =

0ER = —qy

@
dq
@
dq
@
dq

fO

fO

fO

dq
“ oW

Jq
“al
dq
“ ol

fq

fq

f

q

al |

“ow

A
oh

:

on |I"
oW

Applying the Chain Rule

Equations:

z €R™
h e R™
| e RE
q € RX
o€R

Wa'+b
9(2)
Vh+7y
LS(1)
—dy;

Derivative:

0
ow

f'o

@
dq
0o
dq
do
dq

do
dq

fO

dq
“ oW

Jq

ol
9%
ol
dq

ol

fq

fq

fq

f

q

al |
oW

ol |
* Bh

ol |
< oh

on |7
“ow
Lonf L oe

0z ow

sz

Applying the Chain Rule

Equations:

z €R™
h e R™
| e RE
q € RX
o€R

Wa'+b
9(2)
Vh+7y
LS(1)
—dy;

0
ow

Derivative:

f'o

@
Jq
0o
dq
do
dq
0o
dq

do
dq

ft)

fO

fO

fO

fO

fq

fq

al |

ow

ol
oh

ol
Oh

ol
oh

fl

fl

fl

on |7

ow

onl" o
0z ow
om0z
0z ow

sz

fZ

Another Derivative

Equations:

2€R™ = Wal+b

heR™ = g(z)

leRE = Vh+4+y

g €RE = LS(I)

0cR = —qy
do |’ 9o
av| o

fU

dq
ol

fq

L
ov

fl

A Computational Graph

Equations:

ZER™ = Wal+b
heR™ = g(z)
lerRE = Vh++y
q€RrRY = LS(I)

0ER = —qy

Derivatives:
Q| oo ag" o
oV Y ol ov
oo [ool oq)" a1
aw| g al oh

fl

fl

o
0z

fh

"
ow

fz

Overview

Introduction

v

The chain rule

v

v

Derivatives in a single-layer neural network

v

Computational graphs

v

Backpropagation in computational graphs

v

Justification for backpropagation

Computational Graphs: a Formal Definition

A computational graph consists of:

» An integer n specifying the number of vertices in the graph.
An integer [< n specifying the number of leaves in the
graph. Vertices 1...[are leaves in the graph. Vertex n is a
special “output” vertex.

» A set of directed edges E. Each member of E' is an ordered
pair (j,i) where j € {1...n},ie{(l+1)...n}, and i > j.
For any i we define (i) to be the set of parents of 7 in the
graph:

m(i) ={j: (4,i) € E}

Computational Graphs (continued)

» A variable u’ € R% is associated with each vertex in the
graph. Here d; for i = 1...n specifies the dimensionality of
u’. We assume d,, = 1, hence the output variable is a scalar.

» A function f? is associated with each non-leaf vertex in the
graph (i € {({+1)...n}). The function maps a vector A’
defined as

A" = (W]j € m(0))

to a vector fi(A?) € R%

An Example

» Definen=4,1=2

» Define d; = 1 for all i (all variables are scalars)
» Define E = {(1,3),(2,3),(2,4),(3,4)}

» Define

fg(ul,UQ) — ul 4 U2

f4(u2,u3) — u2 % u3

Two Questions

» Note that the computational graph defines a function, which
we call f, from the values of the leaf variables to the output
variable:

u" = frut.)

» Given a computational graph, and values for the leaf variables

ul . ub

1. How do we compute the output u"?
2. How do we compute the partial derivatives

8uﬂ f‘n
ou’

forallie {1...1}7?

Forward Computation

Input: Values for leaf variables u' ... u!

Algorithm:
» Fori=(+1)...n ' o
ol = fi(A)
where A ’
A= (W] e m(i))

An Example

» Definen=4,1=2

» Define d; = 1 for all i (all variables are scalars)
» Define E = {(1,3),(2,3),(2,4),(3,4)}

» Define

fg(ul,UQ) — ul 4 U2

f4(u2,u3) — u2 % u3

Defining and Calculating Derivatives

» Forany k € {(I+1)...n}, there is a function f* such that

E_ Fkpo1 2 !
u® = ffu,u’, . u)
» We want to calculate

ou™ m
ouw’

ul.. ul

forj=1...1

Computational Graphs (continued)

» A function J77 is associated with each edge (j,i) € E. The
function maps a vector A’ defined as

A= (W] € m(i))
to a matrix JI7(A?) € R%E*4,

TN afi(Ai) o ou’ !
FA) = ouw Ol |

Forward Pass

Input: Values for leaf variables u' ... u!

Algorithm:
» Fori=(+1)...n

A= (W) € m(i))

Backward Pass

pj _ Z piJj—>i(Ai)

©:(ji)EE
» Output: p’ for i = 1...1[satisfying

7

o
p_ﬁui

ul.. .l

An Example

pr=1
Forj=(n—-1)...1

p= Y B

i:(ji)€E

Overview

Introduction

v

The chain rule

v

v

Derivatives in a single-layer neural network

v

Computational graphs

v

Backpropagation in computational graphs

v

Justification for backpropagation

Products of Jacobians over Paths in the Graph

» A directed path between vertices j and k is a sequence of
edges (i1,12), (i2,73), ... (in_1,7,) with n > 2 such that each
edgeisin F, and i; = j, and i, = k.

» For any 7, k, we write P(j, k) to denote the set of all
directed paths between j and k

» For convenience we define D7 = Jo7°(A) for all edges
(a,b).

» Theorem: forany j € {1...1}, ke {(I+1)...n},

- T o

pEP(j,k) (a,b)€p

Guﬂ

An Example

aukfk a—b
5 =2 1D

pEP(j,k) (a,b)€p

Proof Sketch

» For any j, 7/, k, we write P(j, ', k) to denote the set of all
directed paths between j and k such that the last edge in the
sequence is (', k).

» Proof sketch: By induction over the graph. By the chain rule

we have
k[o 7
P D
u i (j',k)EE w
- > pe 3 Lo
j:(3',k)EE peP(4,5") (a,b)ep

SN E

3":(3",k)EE peP (5.5 k) (a,b)Ep

-y I

pEP(5,k) (a,b)€p

Backward Pass

P = Z piDI7

:(ji)eEE
» Output: p’ for i = 1...[satisfying

. .fTO
(3

i
p_aui

ul w2, .l

Correctness of the Backward Pass

» Theorem: For all p' we have
p= S [o
pEP(i,n) (a,b)Ep
It follows that for any i € {1...1},
B ou™ i
Coud

7

p

Proof

» Theorem: For all p* we have

pi _ Z H Da—>b

pEP(i,n) (a,b)Ep

» Proof sketch: by induction on
i=n,i=(n-—1),i=(n—2),...i=1. For i = n we have
p™ = 1 so the proposition is true. For j = (n—1)...1 we
have

Y

_ Z P DI

i:(j,i)eE

- Z Z H Db | pi—i — Z H Db

i:(4i)eE \p€eP(i,n) (a,b)Ep peP(4,n) (a,b)Ep

