
Notes on Underflow Problems in the Viterbi
Algorithm, and a Solution using Log Probabilities

Michael Collins

This note describes a simple modification to the Viterbi algorithm for HMMs
that is very important in practice. You’ll need to make this modification when im-
plementing your solution to the programming problem for Homework 1. Figure 1
shows the original algorithm as presented in the notes and lectures. Figure 2 shows
the modified algorithm, with changes highlighted in red.

The motivation for the change is as follows. In the original algorithm we are
taking probabilities and multiplying them, for example in the expression

π(k − 1, w, u)× q(v|w, u)× e(xk|v)

The result is that as k gets larger, the values π(k, u, v) will be calculated as prod-
ucts of more and more probabilities q(. . .) and e(. . .). In some cases, we may
eventually see underflow problems, where the π(k, u, v) values become too small
for the floating-point precision of the underlying implementation. This will lead
to very small π(k, u, v) values being set to zero, making the underlying dynamic
program inexact to the point that it fails.

A simple solution to this problem is to modify the dynamic program to search
for

max
y1...yn+1

log p(x1 . . . xn, y1 . . . yn+1)

and
arg max

y1...yn+1
log p(x1 . . . xn, y1 . . . yn+1)

rather than
max

y1...yn+1
p(x1 . . . xn, y1 . . . yn+1)

and
arg max

y1...yn+1
p(x1 . . . xn, y1 . . . yn+1)

Note that we are now using log probabilities. We clearly have

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1) = arg max
y1...yn+1

log p(x1 . . . xn, y1 . . . yn+1)

1

because log is a strictly monotonically increasing function. So the tag sequence
given as output from the two algorithms will be identical.

In addition, because of the identity log(a× b) = log a+ log b for any positive
values a and b, if we have

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

then

log p(x1 . . . xn, y1 . . . yn+1) =
n+1∑
i=1

log q(yi|yi−2, yi−1) +
n∑

i=1

log e(xi|yi)

The algorithm in Figure 2 therefore replaces q(. . .) and e(. . .) by log q(. . .) and
log e(. . .), and replaces multiplication by addition. Log probabilities do not in
general suffer from the underflow problem.

One issue with the new algorithm is that log 0 = −∞. Some care is required
to deal with probability values equal to 0. A simple solution is to set log 0 = −B
where B is a large number.

2

Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

bp(k, u, v) = arg max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Set (yn−1, yn) = argmaxu∈Kn−1,v∈Kn (π(n, u, v)× q(STOP|u, v))

• For k = (n− 2) . . . 1,

yk = bp(k + 2, yk+1, yk+2)

• Return the tag sequence y1 . . . yn

Figure 1: The Viterbi Algorithm with backpointers.

3

Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: DefineK to be the set of possible tags. DefineK−1 = K0 = {*}, andKk = K
for k = 1 . . . n.
Initialization: Set π(0, *, *) = 0.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u) + log q(v|w, u) + log e(xk|v))

bp(k, u, v) = arg max
w∈Kk−2

(π(k − 1, w, u) + log q(v|w, u) + log e(xk|v))

• Set (yn−1, yn) = argmaxu∈Kn−1,v∈Kn (π(n, u, v) + log q(STOP|u, v))

• For k = (n− 2) . . . 1,
yk = bp(k + 2, yk+1, yk+2)

• Return the tag sequence y1 . . . yn

Figure 2: The Viterbi Algorithm with backpointers, using log probabilities.

4

