COMS 4705, Homework 4

Part \#1

Consider a shift-reduce parser applied to the sentence John saw Mary, where as usual a parse configuration is a triple consisting of a stack, a buffer, and a set of dependencies.

We will assume that the set of dependency labels for the parser are $\mathcal{D}=$ \{root, nsubj, dobj\}. The set of possible actions are as follows:

SHIFT

> LEFT-ARC(l) for any label $l \in \mathcal{D}$
> RIGHT-ARC(l) for any label $l \in \mathcal{D}$

The table below shows the sequence of configurations, with actions $a_{1}, a_{2}, \ldots a_{6}$ mapping one parse configuration to the next configuration:

Action	Stack	Buffer	Dependencies
$a_{1}=$ SHIFT	[root ${ }_{0}$]	[John1 Saw_{2} Mary3]	\{\}
	[root $_{0} \mathrm{John}_{1}$]	[$\mathrm{saw}_{2} \mathrm{Mary}_{3}$]	\{\}
a_{2}	[root ${ }_{0} \mathrm{John}_{1}$ saw $_{2}$]	[Mary3]	\{\}
a_{3}	$\left[\text { root }_{0} \mathrm{saw}_{2}\right]$	[Mary ${ }^{\text {] }}$	$\left\{2 \rightarrow^{\text {nsubj }} 1\right\}$
a_{4}	$\left[r r o o t ~_{0} \mathrm{saw}_{2} \mathrm{Mary}_{3}\right]$	[]	$\left\{2 \rightarrow{ }^{\text {nsubj }} 1\right\}$
a_{5}	$\left[\text { root }_{0} \mathrm{saw}_{2}\right]$	[]	$\left\{2 \rightarrow^{\text {nsubj }} 1,2 \rightarrow^{\text {dobj }} 3\right\}$
a_{6}	$\left[\right.$ root $_{0}{ }^{\text {] }}$	[]	$\left\{2 \rightarrow^{\text {nsubj }} 1,2 \rightarrow^{\text {dobj }} 3,0 \rightarrow^{\text {root }} 2\right\}$

What values should the actions $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ take to give the sequence of configurations given in the table?

Consider a computational graph with the following definitions:

- Number of vertices $n=7$
- Number of leaves $l=3$
- Edges $E=\{(1,4),(2,5),(3,5),(4,6),(5,6),(3,7),(6,7)\}$
- Variables $u^{i} \in \mathbb{R}^{d^{i}}$ for $i=1 \ldots 7$, where $d^{i}=1$ for all i (i.e., all variables in the graph are scalars).
- $f^{4} \ldots f^{7}$ are defined as follows:

$$
\begin{gathered}
f^{4}\left(u^{1}\right)=3 \times u^{1} \\
f^{5}\left(u^{2}, u^{3}\right)=u^{2} \times u^{3} \\
f^{6}\left(u^{4}, u^{5}\right)=\left(u^{4}\right)^{2}+\left(u^{5}\right)^{2} \\
f^{7}\left(u^{3}, u^{6}\right)=u^{3}+10 \times u^{6}
\end{gathered}
$$

Question 1 (5 points) Draw the graph corresponding to the edges E and the vertices $1 \ldots 7$.

Question 2 (5 points) Assume we have leaf values $u^{1}=1, u^{2}=2$, and $u^{3}=3$. Write down the values for $u^{4}, u^{5}, u^{6}, u^{7}$ as calculated by the forward algorithm.

Question 3 (10 points) Complete expressions for the Jacobian function associated with each edge in the graph:

$$
\begin{gathered}
J^{1 \rightarrow 4}\left(u^{1}\right)=\frac{\partial f^{4}\left(u^{1}\right)}{\partial u^{1}}=3 \\
J^{2 \rightarrow 5}\left(u^{2}, u^{3}\right)=\frac{\partial f^{5}\left(u^{2}, u^{3}\right)}{\partial u^{2}}=u^{3} \\
J^{3 \rightarrow 5}\left(u^{2}, u^{3}\right)=\frac{\partial f^{5}\left(u^{2}, u^{3}\right)}{\partial u^{3}}= \\
J^{4 \rightarrow 6}\left(u^{4}, u^{5}\right)=\frac{\partial f^{6}\left(u^{4}, u^{5}\right)}{\partial u^{4}}=
\end{gathered}
$$

$$
\begin{aligned}
& J^{5 \rightarrow 6}\left(u^{4}, u^{5}\right)=\frac{\partial f^{6}\left(u^{4}, u^{5}\right)}{\partial u^{5}}= \\
& J^{3 \rightarrow 7}\left(u^{3}, u^{6}\right)=\frac{\partial f^{7}\left(u^{3}, u^{6}\right)}{\partial u^{3}}= \\
& J^{6 \rightarrow 7}\left(u^{3}, u^{6}\right)=\frac{\partial f^{7}\left(u^{3}, u^{6}\right)}{\partial u^{6}}=
\end{aligned}
$$

Question 4 (10 points) Define h^{7} to be the global function that maps leaf values u^{1}, u^{2}, u^{3} to the output value u^{7} from the forward algorithm:

$$
u^{7}=h^{7}\left(u^{1}, u^{2}, u^{3}\right)
$$

Again assume we have leaf values $u^{1}=1, u^{2}=2$, and $u^{3}=3$. Recall that to calculate a partial derivative

$$
\left.\frac{\partial u^{7}}{\partial u^{j}}\right|_{u^{1}, u^{2}, u^{3}} ^{h^{7}}=\frac{\partial h^{7}\left(u^{1}, u^{2}, u^{3}\right)}{\partial u^{j}}
$$

for any leaf value $j \in\{1,2,3\}$, we need to sum over all directed paths from vertex j to vertex 7 , taking a product of Jacobians over each path. It follows for example that

$$
\left.\frac{\partial u^{7}}{\partial u^{1}}\right|_{u^{1}, u^{2}, u^{3}} ^{h^{7}}=J^{6 \rightarrow 7}\left(u^{3}, u^{6}\right) \times J^{4 \rightarrow 6}\left(u^{4}, u^{5}\right) \times J^{1 \rightarrow 4}\left(u^{1}\right)
$$

because there is a single directed path $(1,4),(4,6),(6,7)$ from vertex 1 to vertex 7 in the graph.

Write down an expression for

$$
\left.\frac{\partial u^{7}}{\partial u^{3}}\right|_{u^{1}, u^{2}, u^{3}} ^{h^{7}}
$$

in terms of the Jacobian functions, and calculate the value for $\frac{\partial u^{7}}{\partial u^{3}}$ assuming leaf values $u^{1}=1, u^{2}=2$, and $u^{3}=3$. Make sure to show all your working.

Assume we have a feedforward neural network with the following definitions:

- The input dimension $d=2$. Hence each input to the network x is a vector in \mathbb{R}^{d} with components x_{1} and x_{2}.
- The number of hidden units $m=3$.
- A parameter matrix $W \in \mathbb{R}^{m \times d}$. The m rows of W are defined as

$$
\begin{gathered}
W_{1}=\langle 1,1\rangle \\
W_{2}=\langle 1,0\rangle \\
W_{3}=\langle 1,-1\rangle
\end{gathered}
$$

- The bias parameters are all 0 , that is $b_{1}=b_{2}=b_{3}=0$
- The transfer function is $g(z)=\operatorname{RELU}(z)$ where

$$
\operatorname{RELU}(z)=z \text { if } z \geq 0,0 \text { otherwise }
$$

- Given an input x, the outputs from the three neurons in the model are

$$
\begin{aligned}
& h_{1}=g\left(W_{1} \cdot x+b_{1}\right) \\
& h_{2}=g\left(W_{2} \cdot x+b_{2}\right) \\
& h_{3}=g\left(W_{3} \cdot x+b_{3}\right)
\end{aligned}
$$

We use h to refer to the vector in \mathbb{R}^{3} with components h_{1}, h_{2}, and h_{3}.

- The set of output labels in the model are $\mathcal{Y}=\{-1,+1\}$. For each label $y \in \mathcal{Y}$ we define $v(y) \in \mathbb{R}^{3}$ to be a parameter vector associated with label y, and $\gamma_{y} \in \mathbb{R}$ to be a bias parameters. We then have

$$
p(y \mid x)=\frac{\exp \left\{v(y) \cdot h+\gamma_{y}\right\}}{\sum_{y^{\prime}} \exp \left\{v\left(y^{\prime}\right) \cdot h+\gamma_{y^{\prime}}\right\}}
$$

Question 5 (10 points) Assume the input to the network is a vector x with $x_{1}=10, x_{2}=-20$. What are the values for h_{1}, h_{2}, h_{3} for this network with this input?

Consider a computational graph with the following definitions:
Inputs: A training example $\left(x^{i}, y^{i}\right)$ where $x^{i}=\left(x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right)$ and x_{1}^{i}, x_{2}^{i} and x_{3}^{i} are words, and $y^{i} \in \mathcal{Y}$ where \mathcal{Y} is a set of labels. A word dictionary D with size $s(D)$. An embedding matrix $E \in \mathbb{R}^{2 \times s(D)}$. A single-layer feedforward network with $m=1$ neurons, and a transfer function $g(z)=\operatorname{RELU}(z)$ where

$$
\operatorname{RELU}(z)=z \text { if } z \geq 0,0 \text { otherwise }
$$

The feedforward network has parameters $W \in \mathbb{R}^{m \times 2}, b \in \mathbb{R}^{m}, V \in \mathbb{R}^{K \times m}$, and $\gamma \in \mathbb{R}^{K}$, where $K=|\mathcal{Y}|$.

Computational Graph:

$$
\begin{aligned}
x_{1}^{\prime} \in \mathbb{R}^{2} & =E \times \operatorname{Onehot}\left(x_{1}^{i}, D\right) \\
x_{2}^{\prime} \in \mathbb{R}^{2} & =E \times \operatorname{Onehot}\left(x_{2}^{i}, D\right) \\
x_{3}^{\prime} \in \mathbb{R}^{2} & =E \times \operatorname{Onehot}\left(x_{3}^{i}, D\right) \\
u \in \mathbb{R}^{2} & =x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime} \\
z \in \mathbb{R}^{1} & =W u+b \\
h \in \mathbb{R}^{1} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\log \text {-Softmax }(l) \\
o \in \mathbb{R} & =-q_{y^{i}}
\end{aligned}
$$

Note that u is calculated by summing the values for $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$, not by concatenating the three values.

Assume in addition that the set of possible words in the vocabulary is \{the, a, this, dog, cat, mouse $\}$ and furthermore for any word x in the set $\{$ the, a, this $\}$ we have

$$
E \times \operatorname{Onehot}(x, D)=\left[\begin{array}{l}
1 \tag{1}\\
0
\end{array}\right]
$$

and for any word in the set $\{\operatorname{dog}$, cat, mouse $\}$ we have

$$
E \times \operatorname{Onehot}(x, D)=\left[\begin{array}{l}
0 \tag{2}\\
1
\end{array}\right]
$$

Question 6 (10 points) What is the value for u for each of the following inputs $x_{1}^{i}, x_{2}^{i}, x_{3}^{i}$ given below? Write the value for u for set of input values for $x_{1}^{i}, x_{2}^{i}, x_{3}^{i}$ shown below:

$$
\begin{aligned}
& x_{1}^{i}=\text { the }, \quad x_{2}^{i}=\mathrm{a}, \quad x_{3}^{i}=\text { this, } \\
& u= \\
& x_{1}^{i}=\text { the, } \quad x_{2}^{i}=\mathrm{a}, \quad x_{3}^{i}=\text { mouse, } \\
& u= \\
& x_{1}^{i}=\text { the }, \quad x_{2}^{i}=\text { dog }, \quad x_{3}^{i}=\text { mouse, } \\
& u= \\
& u= \\
& x_{1}^{i}=\text { cat, } \quad x_{2}^{i}=\text { dog }, x_{3}^{i}=\text { mouse }, \\
& u=
\end{aligned}
$$

Question 7 (10 points) Now assume that the bias parameter $b=-2$, and assume

$$
W=[1,0]
$$

Note that from the computational graph given above,

$$
h=g(W u+b)
$$

where $g(z)=\operatorname{RELU}(z)$.
For what values for the triple $\left(x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right)$ do we have $h>0$? Make sure to explain your reasoning. Make sure to specify all values of $x_{1}^{i}, x_{2}^{i}, x_{3}^{i}$ that lead to $h>0$, not just the example values given above.

Question 8 (10 points) Again assume that the bias parameter $b=-2$, and assume

$$
W=[1,0]
$$

Note that from the computational graph given above,

$$
h=g(W u+b)
$$

where $g(z)=\operatorname{RELU}(z)$.
Assume that the set of possible labels is $\mathcal{Y}=\{1,2\}$. It follows that there are parameters $V_{1} \in \mathbb{R}^{1}, V_{2} \in \mathbb{R}^{1}, \gamma_{1} \in \mathbb{R}, \gamma_{2} \in \mathbb{R}$.

Assume we would like the probability distribution under the model to be the following:

- If $x_{1}^{i} \in\{$ the, a, this $\}$ and $x_{2}^{i} \in\{$ the, a, this $\}$ and $x_{3}^{i} \in\{$ the, a, this $\}$,

$$
p\left(1 \mid x^{i} ; W, b, V, \gamma\right)=0.8, \quad p\left(2 \mid x^{i} ; W, b, V, \gamma\right)=0.2
$$

- Otherwise

$$
p\left(1 \mid x^{i} ; W, b, V, \gamma\right)=p\left(2 \mid x^{i} ; W, b, V, \gamma\right)=0.5
$$

What values for the parameters $V_{1}, V_{2}, \gamma_{1}, \gamma_{2}$ give this distribution? Make sure to give justification for your answer.

